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Generalizations of Nonanticipative Rate Distortion Function to
Multivariate Nonstationary Gaussian Autoregressive Processes

Charalambos D. Charalambous, Christos Kourtellaris, Themistoklis Charalambous,
and Jan H. van Schuppen

Abstract— The characterizations of nonanticipative rate dis-
tortion function (NRDF) on a finite horizon are generalized
to nonstationary multivariate Gaussian order L autoregressive,
AR(L), source processes, with respect to mean square error
(MSE) distortion functions. It is shown that the optimal repro-
duction distributions are induced by a reproduction process,
which is a linear function of the state of the source, its best
mean-square error estimate, and a Gaussian random process.

I. INTRODUCTION

Motivated by applications of communication systems, in
which encoders and decoders are required to process infor-
mation with minimum coding and decoding delay, respec-
tively, and in some cases, in real-time, such as control system
applications, Gorbunov and Pinsker [1], [2] introduced the
nonanticipatory epsilon entropy of the source subject to
either point-wise distortion or average distortion.

The nonanticipatory epsilon entropy of Gauss-Markov
processes subject to a point-wise distortion is analyzed
extensively in the literature, under various names, such as
sequential, nonanticipative RDF (see, for example, [3]–[5]).
In [3]–[5] various applications are identified, that include
control of linear Gaussian control systems over memoryless
communication channels with finite transmission rates [3],
bounds on the optimal performance theoretically attainable
by noncausal and causal codes [4], filtering subject to a fi-
delity [5], and joint source and channel coding and decoding
design that operate in real-time [6]. In view of the difficulty
to characterize finite-time NRDF and to compute its value,
recently semidefinite programming is proposed to compute
numerically its value for multivariate Gauss-Markov sources
subject to a point-wise distortion [7]. The characterization of
the NRDF for the multivariate Gauss-Markov process with
average distortion is recently derived in [8], and includes
the optimal realization coefficients. It should be mentioned
that the identification of the optimal realization coefficients
was unknown since the work of Gorbunov and Pinsker [2].
Hence, [8] completed the characterization of [2, Theorem 5],
and gave a dynamic reverse-waterfilling, to find the optimal
realization coefficients that turns out to be related to the
solution of a certain difference Riccati matrix equation.
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Despite the literature on the analysis of nonanticipative
epsilon entropy of Gauss-Markov sources (e.g., [3]–[5],
[7]), an analysis of the characterization of NRDF which
parallels the work found in [2] for multivariate Gaussian
autoregressive AR(L) process with point-wise and average
distortion functions is missing. The present paper aims to
close this gap. Our main results state that the characterization
of the NRDF is fundamentally different from that of Gauss-
Markov sources.

II. NOTATION

R , (−∞,∞), Z 4
= {. . . ,−1, 0, 1, . . .}, Z0 ,

{0, 1, 2, . . .}, N , {1, 2, . . .}, Nn , {1, . . . , n}, n ∈ N.
For any matrix A ∈ Rp×m, (p,m) ∈ N × N, we denote
its transpose by AT, and for m = p, we denote its trace
by tr(A), and by diag{A}, the matrix with diagonal entries
Aii, i = 1, . . . , p, and zero elsewhere. Sp×p+ denotes the set
of symmetric positive semidefinite matrices A ∈ Rp×p, and
Sp×p++ its subset of positive definite matrices. The statement
A � A′ (resp. A � A′) means that A − A′ is symmetric
positive semidefinite (resp. positive definite). For x ∈ R,
then {x}+ 4= max{1, x}.
{(Xn,B(Xn)) : n ∈ Z} denotes a sequence of measurable

spaces, where Xn are confined to complete separable metric
spaces or Polish space, and B(Xn) the Borel σ−algebras of
subsets of Xn. Points in the product space XZ , ×n∈ZXn are
denoted by x∞−∞ , (. . . , x−1, x0, x1, . . .) ∈ XZ, and their
restrictions to finite coordinates for any (m,n) ∈ Z × Z
by xnm , (xm, . . . , . . . , xn) ∈ Xnm, n ≥ m. Hence,
B(XZ) , ⊗t∈ZB(Xt) denotes the σ−algebra on XZ, and
similarly B(Xnm)

Given a random variable (RV) X : (Ω,F) 7→ (X,B(X)),
we denote by1 PX(dx) ≡ P(dx) the distribution induced
by X on (X,B(X)), and by M(X) the set of probability
distributions on X. Given another RV, Y : (Ω,F) 7→
(Y,B(Y)) we denote by PY |X(dy|X = x) ≡ P(dy|x) the
conditional distribution of RV Y for a fixed X = x.

III. INFORMATION STRUCTURES OF NRDF
This section presents the mathematical formulation and

the preliminary Theorem 1, which states: if the source
distribution is of L−th order memory, PXt|Xt−1,Y t−1 =
PXt|Xt−1

t−L
, L ∈ {1, 2, . . .}, then the optimal reproduction

distribution of the NRDF, Rna0,n(D), is PYt|Y t−1,Xt−1
t−L

, t =

0, . . . , n.

1The subscript notation is often omitted when it is clear from the
arguments of the distribution.



Definition 1: (Conditional independence)
Consider three RVs X : Ω→ X, Y : Ω→ Y, and Z : Ω→
Z defined on some probability space (Ω,F ,P). We say that
RVs (X,Y ) are conditionally independent given RV Z if
PX|Y,Z = PX|Z−a.a.(y, z) ∈ Y× Z. •

Definition 2: (Source and reproduction distributions)
Let xn , {x0, x1, . . . , xn} ∈ Xn , ×ni=0Xi de-

note a sequence generated by the source and let yn ,
{y0, y1, . . . , yn} ∈ Yn , ×ni=0Yi denote its reproduction
sequence.
(a) The source generates sequences from the set of distribu-
tions that satisfy a conditional independence condition

S[0,n]
4
=
{
PXn = µ(dx0)⊗nt=1 St(dxt|xt−1) :

PXt|Xt−1,Y t−1 = St(dxt|xt−1)− a.a., t = 1, . . . , n
}
.

where (xt−1, yt−1) ∈ Xt−1×Yt−1 and µ(dx0) is the initial
distribution.
(b) The reproduction sequences are generated from the set
of distributions

Q[0,n]
4
=
{
PYt|Y t−1,Xt = Qt(dyt|yt−1, xt), t = 0, . . . , n

}
,

(III.1)

where Q0(dy0|y−1, x0) = Q0(dy0|x0). If initial states
x−1

4
= (. . . , x−1) ∈ X−1 4= X−1−∞ and y−1

4
= (. . . , y−1) ∈

Y−1 4
= Y−1−∞ are available, then (xn, yn) are replaced

by ((x−1, xn), (y−1, yn)), and PX−1,Y −1 = PX−1|Y −1 ⊗
ν(dy−1), where ν(dy−1), is the initial distribution of RV
Y −1. Moreover, when such initial states are available, then
S[0,n] and Q[0,n] are appropriately defined. •
For each t = 0, 1, . . . , we introduce the space Gt of
admissible source and reproduction histories up to time t:

Gt ,X0 × Y0 × . . .× Xt × Yt, t = 0, 1, . . . . (III.2)

A typical element of Gt is (xt, yt)
4
= (x0, y0, . . . , xt, yt).

Given any elements of S[0,n],Q[0,n], and an initial distribu-
tion PX0

(dx0) ≡ µ(dx0), by Ionescu-Tulcea theorem, there
exists a unique probability measure PPµ on

(
G∞,B(G∞)

)
,

with PQµ (G∞) = 1, and carrying the sequence of RVs
{(Xt, Yt) : t = 0, 1, . . .

}
, defined by

PQµ (dx0, dy0, dx1, . . . , dyn−1, dxn, dyn) = µ(dx0)

⊗Q0(dy0|x0)⊗ S1(dx1|x0)⊗ . . .
⊗Qn−1(dyn−1|yn−2, xn−1)⊗ Sn(dxn|xn−1)

⊗Qn(dyn|yn−1, xn), (III.3)

The conditional distribution of Yt given Y t−1 is

PQt (dyt|yt−1)
4
=

∫
Xt

Qt(dyt|yt−1, xt)⊗ St(dxt|xt−1)

⊗PQt (dxt−1|yt−1), t = 1, . . . , n, (III.4)

PQ0 (dy0)
4
=

∫
X0

Q0(dy0|x0)⊗ µ(dx0). (III.5)

For problems with initial states Y −1 and X0
−∞, the above

distributions should be modified.

Definition 3: (Nonanticipative RDF)
Consider the source and reproduction distributions of Defi-

nition 2. The information measure is

EQµ

{
n∑
t=0

log

(
Qt(·|Y t−1, Xt)

PQt (·|Y t−1)
(Yt)

)}

= EQµ

{
log

(
Q0(·|X0)

PQ0 (·)
(Y0)

)}

+ EQµ

{
n∑
t=1

log

(
Qt(·|Y t−1, Xt)

PQt (·|Y t−1)
(Yt)

)}
∈ [0,∞)

≡ I(X0;Y0) +
n∑
t=1

I(Xt;Yt|Y t−1),

where I(Xt;Yt|Y t−1) denotes the conditional mutual infor-
mation between Xt and Yt conditioned on Y t−1. The NRDF
of the source subject to a total distortion is defined by

Rna0,n(D) , inf
Q[0,n](D)

EQµ

{
n∑
t=0

log

(
Qt(·|Y t−1, Xt)

PQ
t (·|Y t−1)

(Yt)

)}
,

(III.6)

Q[0,n](D) ,
{
Qt(dyt|yt−1, xt), t = 0, . . . , n :

1

n+ 1
EQµ

{
d0,n(X

n, Y n)
}
≤ D

}
(III.7)

where d0,n(xn, yn)
4
=
∑n
t=0 ρt(xt, yt) and d0,n : Xn ×

Yn → [0,∞) is a measurable function. If the set Q[0,n](D)
is empty, then we define Rna0,n(D) =∞. •

It should be mentioned that existence of the infimum is
shown in [9], under appropriate conditions.

Theorem 1: (Information structures of optimal distribu-
tions)
Consider the NRDF of Definition 3.

(a) If the source distribution is Markov, that is,
St(dxt|xt−1), t = 1, . . . , n, µ0(dx0) and single-letter distor-
tion is used, d0,n(xn, yn) =

∑n
t=0 ρt(xt, yt), then

Rna0,n(D) = inf
QM

[0,n]
(D)

EQ
M

µ

{
n∑
t=0

log

(
QMt (·|Y t−1, Xt)

PQM

t (·|Y t−1)
(Yt)

)}
,

(III.8)

QM[0,n]
4
=
{
Qt(dyt|yt−1, xt), t = 0, . . . , n :

1

n+ 1
EQ

M

µ

{ n∑
t=0

ρt(xt, yt)
}
≤ D

}
, (III.9)

where the joint and conditional distributions in (III.8) are
given by

PQ
M

(dxt, dyt)
4
= µ0(dx0)⊗Q0(dy0|x0)

⊗ti=1

(
QMi (dyi|yi−1, xi)⊗ St(dxi|xi−1)

)
, t = 1, . . . , n,

PQ
M

t (dyt|yt−1)
4
=

∫
Xt

QMt (dyt|yt−1, xt)⊗PQ
M

t (dxt|yt−1),

PQ
M

0 (dx0, dy0)
4
= Q0(dy0|x0)⊗ µ0(dx0),

PQ
M

0 (dy0)
4
=

∫
X0

QM0 (dy0|x0)⊗ µ0(dx0).

(b) If in part (a) the source distribution is replaced by
St(dxt|xt−1t−L), t = L, . . . , n, µt(dx0, dx1, . . . , dxt), t =



0, . . . , L − 1, L ∈ {1, 2, . . .}, then the optimal reproduction
distribution is of the form

QMt (dyt|yt−1, xtt−L+1), t = L, . . . , n, (III.10)

QM0 (dy0|x0), QM1 (dy1|y0, x0, x1), . . . , (III.11)

QML−1(dyL−1|y0, . . . , yL−2, x0, . . . , xL−1). (III.12)
Proof: Due to [8], see also [10].

IV. THE NRDF OF GAUSSIAN AR(L) PROCESSES
SUBJECT TO MSE FIDELITY

We introduce the definitions of time-varying multivariate
Gaussian AR(L) processes, for which we derive the main
results of this section.

Definition 4: (Multivariate Gaussian AR(L) processes)
Consider a tuple of stochastic processes (Xn, Y n) each of
which is Rp valued defined on some (Ω,F ,P).
(a) The distribution induced by the process Xn is said to be
of memory order L, if it is a subclass of Definition 2.(a),
and satisfies

PXt|Xt−1,Y t−1 = St(dxt|xt−1t−L)− a.a.(xt−1, yt−1), (IV.1)

for t = 0, . . . , n, where X0 ∼ µ(dx0), and x−1−L+1 is as-
sumed to generate the trivial information, i.e., σ{X−1−L+1} =
{Ω, ∅}; otherwise, the initial distribution of X0

−L+1 is
µ(dx0−L+1).
(b) The process Xt of part (a), is called Gaussian, of memory
order L, if St(dxt|xt−1t−L), t = 0, . . . , n are Gaussian, and

E
{
Xt

∣∣∣Xt−1
}

is linear in Xt−1
t−L, t = 0, . . . , n, (IV.2a)

cov
(
Xt, Xt

∣∣∣Xt−1
)

is nonrandom, t = 0, . . . , n. (IV.2b)

(c) The process Xt of part (b), with L = 1, is called a
Gauss-Markov process, if its state-space representation is

Xt = At−1Xt−1 +Bt−1Wt, X0 = x0, (IV.3)

for t = 1, . . . , n, where
(i) At ∈ Rp×p, Bt ∈ Rp×q, t = 1, . . . , n − 1 are non-

random matrices;
(ii) {Wt : t = 1, . . . , n} is an Rq-valued sequence

of independent Gaussian distributed RVs, N(0,KWt
),

KWt
∈ Sq×q+ ;

(iii) X0 ∈ Rp is Gaussian N(0,KX0), independent of Wn.
(d) The process Xt of part (b) is called Gaussian AR(L), if
its representation is

Xt =
L∑
k=1

At,kXt−k +Wt, t = 0, 1, . . . , L ∈ N, (IV.4)

σ{X−1−L} = σ{Ω, ∅}, or S0
4
= X−1−L = s0, (IV.5)

where {Wt : t = 0, . . . , n} is a sequence of independent
Gaussian distributed RVs (i.e., N(0,KWt)), independent of
the RV S0, and At,k ∈ Rp×p. •

A. The NRDF of Multivariate Gauss-Markov Processes with
Average Distortion

The main results of this section are for AR(1), which
are included herein to compare the results for the AR(L)
source. Specifically, Theorem 2, which identifies suffi-
cient conditions, for a Markov Gaussian joint distribution
PXn,Y n(dxn, dyn) to achieve the minimum in the definition
of Rna0,n(D), and the weak realization of the joint processes
(Xn, Y n). Theorem 3, then characterizes the NRDF, and
gives the construction of the corresponding joint distribution
PXn,Y n(dxn, dyn), and the parametric realization of the
joint process (Xn, Y n) that achieves the characterization.
Since some of the statements of Theorem 2 and Theorem 3
are derived also in [8], we omit the proofs herein due to
space limitations.

We shall need the following definitions from mean-square
estimation theory. The filter estimates X̂t|t , E

{
Xt

∣∣∣Y t},

X̂t|t−1 , E
{
Xt

∣∣Y t−1}, for t = 0, . . . , n, where X̂0|−1
4
=

E
{
X0

}
= 0, and error covariances

Σt , E
{(
Xt − X̂t|t

)(
Xt − X̂t|t

)T}
, t = 0, . . . , n,

Σ−t , E
{(
Xt − X̂t|t−1

)(
Xt − X̂t|t−1

)T}
, t = 1, . . . , n.

Theorem 2: (Preliminary characterization of Rna0,n(D) for
a Gauss-Markov processes) Consider the Gauss-Markov pro-
cess Xn of Definition 4.(b), and the distortion function
d0,n(xn, yn)

4
= 1

n+1

∑n
t=0 ||Xt − Yt||2. Assume Rna0,n(D) ∈

[0,∞) for D ∈ [0, Dmax) ⊆ [0,∞). For any distribution
Pµ(dxn, dyn) induced by the joint process (Xn, Y n), the
following hold.
(a) Given any arbitrary joint distribution of the joint process
(Xn, Y n) that achieves the minimum of the NRDF Rna0,n(D),
then there exists a jointly Gaussian distribution defined by

PQµ (dxn, dyn) = µ0(dx0)⊗Q0(dy0|x0)

⊗nt=1

(
Qt(dyt|yt−1, xt)⊗ St(dxt|xt−1)

)
(IV.6)

and induced by the process Xn and the reproduction process

Yt = HtXt + gt(Y
t−1) + Vt, t = 0, . . . , n (IV.7a)

=

{
HtXt +

(
I −Ht

)
At−1X̂t−1|t−1 + Vt, t = 1, . . . , n

HtXt + Vt, t = 0
(IV.7b)

such that

Ht, t = 0, . . . , n are nonrandom, (IV.8a)
gt(·), t = 1, . . . , n is a measurable function, (IV.8b)
Vt ∼ N(0,KVt

),KVt
= KT

Vt
� 0, t = 0, . . . , n, (IV.8c)

∀t = 0, . . . , n, Vt is independent of X0 and Ws, (IV.8d)
s = 0, 1, . . . , t



Moreover, the reproduction distribution is parametrized by(
Ht,KVt

)
, t = 0, . . . , n, and satisfies

Qt(dyt|yt−1, xt) = Pt(dyt|yt−1, x̂t−1|t−1, xt) (IV.9a)

≡ Q1
t (dyt|x̂t−1|t−1, xt), t = 1, . . . , n,

Q0(dy0|x0) ≡ Q1
0(dy0|x0), (IV.9b)

while the pay-off satisfies

I(X0;Y0) +
n∑
t=1

I(Xt;Yt|Y t−1)

= I(X0;Y0) +
n∑
t=1

I(Xt;Yt|Y t−1, X̂t−1|t−1), (IV.10a)

where

PQ
1

t (dyt|yt−1) =

∫
Q1
t (dyt|x̂t−1|t−1, xt)⊗PQ

1

(dxt|yt−1),

t = 1, . . . , n,

PQ
1

0 (dy0) =

∫
Q1

0(dy0|x0)⊗ µ(dx0),

and the average distortion is given by

EQ
1

µ

{ n∑
t=0

||Xt − Yt||2
}
≤ (n+ 1)D. (IV.12)

(b) For any joint distribution PQ
1

µ (dxn, dyn) of part (a), then
the following inequality holds.

I(X0;Y0) +
n∑
t=1

I(Xt;Yt|Y t−1, X̂t−1|t−1)

≥ I(X0; X̂0|0) +
n∑
t=1

I(Xt; X̂t|t|Y t−1, X̂t−1|t−1). (IV.13)

(c) Consider the statement of part (a). If there exists
(Ht,KVt

) ∈ Rp×p × Sp×p+ , t = 0, . . . , n, such that X̂t|t =
Yt−a.s., t = 0, . . . , n then the inequality (IV.13) holds with
equality, and the characterization of NRDF is given by

Rna0,n(D) , inf
Q1

0,n(D)

{
I(X0;Y0) +

n∑
t=1

I(Xt;Yt|Yt−1)

}

= inf
Q1

0,n(D)
EQ

1

µ

{
log
(Q1

0(·|X0)

PQ
1

0 (·)
(Y0)

)
+

n∑
t=1

log
(Q1

t (·|Yt−1, Xt)

PQ
1

t (·|Yt−1)
(Yt)

)}
, (IV.14)

where

Q1
0,n(D) ,

{
Q1
t (dyt|yt−1, xt), t = 0, . . . , n :

1

n+ 1
EQ

1

µ

{ n∑
t=0

||Xt − Yt||2
}
≤ D

}
(IV.15)

and the joint distribution of (Xn, Y n) is Markov, and it is
induced by the representation

Xt =At−1Xt−1 +Bt−1Wt, X0 = x0, t = 1, . . . , n,

Yt =HtXt +
(
I −Ht

)
At−1Yt−1 + Vt, t = 1, . . . , n,

Y0 =H0X0 + V0.

Moreover, the joint distribution of the process (Xn, Y n) is
Gaussian, defined by

PG
1

µ (dxn, dyn) = µ(dx0)⊗Q1
0(dy0|x0)

⊗nt=1

(
Q1
t (dyt|yt−1, xt)⊗ St(dxt|xt−1)

)
. (IV.16)

In the next theorem, we address Theorem 2.(c), i.e,
we identify sufficient conditions such that there exists
(Ht,KVt) ∈ Rp×p × Sp×p+ , t = 0, . . . , n, with the property
X̂t|t = Yt− a.s., t = 0, . . . , n, and we give their precise ex-
pressions, thus completing the characterization of Rna0,n(D).

Theorem 3: (Characterization of Rna0,n(D) for a Gauss-
Markov processes) Consider the statement Theorem 2.(c).
Then, the following hold.
(a) The representation of Y n, with (Ht,KVt), t = 0, . . . , n,
defined below, satisfies X̂t|t = Yt − a.s, t = 0, . . . , n.

Yt =HtXt + (I −Ht)At−1Yt−1 + Vt, t = 1, . . . , n,

=HtAt−1
(
Xt−1 − Yt−1

)
+At−1Yt−1 +HtBt−1Wt + Vt,

Y0 =H0X0 + V0,

where (Ht,KVt
), t = 0, . . . , n are given by

Ht , I − Σt(Σ
−
t )−1, (IV.17a)

KVt
, ΣtH

T
t = Σt − Σt(Σ

−
t )−1Σt � 0, (IV.17b)

Σ−t
4
= At−1Σt−1A

T
t−1 +Bt−1KWtB

T
t−1, Σ−0 = KX0 .

(b) The representation of Y n of part (a) induces a distribution
Q1(dyt|yt−1, xt), t = 0, . . . , n, which achieves the charac-
terization of NRDF Rna0,n(D) given by (IV.14)-(IV.15).
(c) The characterization of the NRDF is equivalent to the
following optimization problem.

Rna0,n(D) = inf
Q1

0,n(D)

{
I(X0;Y0) +

n∑
t=1

I(Xt;Yt|Yt−1)
}

= inf
◦
Q

1

[0,n](D)

{
1

2
log
{ |ΣX0

|
|Σ0|

}+

(IV.18)

+
1

2

n∑
t=1

log
{ |At−1Σt−1A

T
t−1 +Bt−1KWt

BT
t−1|

|Σt|

}+
}
.

where the constraint set is characterized by

◦
Q

1

[0,n](D)
4
=
{

Σt ∈ Sp×p+ , t = 0, . . . , n :

Σt � At−1Σt−1A
T
t−1 +Bt−1KWtB

T
t−1,

Σ0 � KX0
, t = 1, . . . , n,

1

n+ 1

n∑
t=0

tr(Σt) ≤ D
}
.•

Note that Theorem 3.(c), that is, Rna0,n(D) given by (IV.18),
is the generalization of Gorbunov and Pinsker [1, Example 1]
to multivariate sources with total distortion function.

B. The Nonanticipative RDF of Multivariate Gaussian Pro-
cesses with Arbitrary Memory with average Distortion

Now, we generalize the results of Section IV-A to AR(L)
models, i.e., to time-varying multivariate Gaussian processes
Xn. We consider a slight variation of Section IV-A, when



(x−1−L+1, y
−1) ∈ X−1−L+1×Y

−1
−∞ are also available. We define

a variant of the NRDF (III.6) by

Rna0,n(D)

, inf
Q0,n(D)

EQ

{
n∑
t=0

log

(
Qt(·|Y t−1−∞ , X

t
−L+1)

PQt (·|Y t−1−∞ )
(Yt)

)}
(IV.19)

= inf
Q0,n(D)

{
I(X0

−L+1;Y0|Y −1−∞) +
n∑
t=1

I(Xt
−L+1;Yt|Y t−1−∞ )

}
,

(IV.20)

where Xt
−L+1

4
= (X−L+1, . . . , X−1, X0, X1, . . . , Xt),

Y t−∞
4
= (. . . , Y−1, Y0, Y1, . . . , Yt). The distribution of the

initial data is PX−1
−L+1,Y

−1
−∞

= PX−1
−L+1|Y

−1
−∞
⊗ ν(dy−1−∞).

We show the following structural property. The optimal re-
production distribution of the NRDF Rna0,n(D) of a Gaussian
process Xn, with memory of order L, and MSE distortion
d0,n(xn, yn) =

∑n
t=0 ||xt − yt||2, is of the form

Qt(dyt|Y t−1−∞ , X
t
−L+1) = QLt (dyt|E

{
St−1|Y t−1−∞

}
, St).

where St is the state of the source process. That is, at each
time t = 0, . . . , n the conditional distribution depends only
on the estimate of the state Ŝt−1|t−1 = E

{
St−1|Y t−1−∞

}
and

St. For any finite integer L ∈ {1, . . .}, we derive the main
theorem, by first introducing, a state space representation for

St , vector
(
S1
t , S

2
t , . . . , S

L
t

)
= vector

(
Xt, . . . , Xt−L+1

)
, t = 0, . . . , n. (IV.21)

as follows:

St = At−1St−1 +Bt−1Wt, S0 = s0, t = 1, . . . , n,
(IV.22)

Xt = CtSt, (IV.23)

At
4
=


At,1 At,2 . . . At,L
I 0 . . . 0
0 I . . . 0
...

...
. . . 0

0 0 . . . I 0

 , Bt
4
=


I
0
0
...
0

 ,

(IV.24)

Ct
4
=
(
I 0 . . . 0

)
. (IV.25)

for some non-random matrices (At, Bt, Ct), where Wt ∼
N(0,KWt

) is an independent Gaussian sequence, indepen-
dent of S0 ∼ N(0,KS0

).
Next, we state the main theorem.
Theorem 4: (Characterization of Rna0,n(D) for Gaussian

processes with memory of order L, and MSE distortion)
Consider the time-varying multivariate Gaussian process
Xn, AR(L), and MSE distortion, of Definition 4.(b), and
Gaussian distribution µ(dx0−L+1). Assume the infimum in
Rna0,n(D) defined by (IV.19) exists, i.e., Rna0,n(D) ∈ [0,∞)
for some D < Dmax ⊆ [0,∞). The following hold.
(a) For any finite integer L ∈ {1, . . .}, then (IV.21)-(IV.25)

is a representation of the process Xt
−L+1. Moreover, the

process St is Markov, i.e.,

Pt(dst|st−1) = Pt(dst|st−1), t = 1, . . . , n. (IV.26)

(b) The joint distribution that achieves the infimum of the
nonanticipative RDF defined by (IV.19) is jointly Gaussian
given by

PQµ (dxn−L+1, dy
n
−∞) = Pµ(ds0, dy

−1
−∞)⊗Q0(dy0|s0, y−1−∞)

⊗nt=1

(
Qt(dyt|yt−1−∞, st)⊗ St(dxt|st−1)

)
(IV.27)

and induced by process Sn and reproduction process Y n−∞

Yt =HtSt + g∗t (Y t−1−∞ ) + Vt, t = 0, . . . , n (IV.28)
(a)
=HtSt +

(
Ct −Ht

)
At−1Ŝt−1|t−1 + Vt (IV.29)

(b)
=HtAt−1

(
St−1 − Ŝt−1|t−1

)
+ CtAt−1Ŝt−1|t−1

+HtBt−1Wt + Vt, (IV.30)

where (a) is due to

g∗t (Y t−1−∞ ) =
(
Ct −Ht

)
At−1Ŝt−1|t−1, (IV.31)

(b) is due to the substitution of St, i.e., (IV.22), and

i) Ht, t = 0, . . . , n are non-random, (IV.32)
ii) Vt ∼ N(0,KVt

),KVt
= KT

Vt
� 0, t = 0, . . . , n, (IV.33)

iii) Vt is independent of Wt, t = 0, . . . , n and S0. (IV.34)

Further, the reproduction distribution (parametrized by(
Ht,KVt

)
, t = 0, . . . , n), satisfies

Qt(dyt|yt−1−∞, st) = Pt(dyt|yt−1−∞, ŝt−1|t−1, st)
≡ QLt (dyt|ŝt−1|t−1, st), t = 0, . . . , n, (IV.35)

and the pay-off in (IV.19) is expressed as

EQ

{
n∑
t=0

log

(
Qt(·|Y t−1−∞ , X

t
−L+1)

PQt (·|Y t−1−∞ )
(Yt)

)}
(IV.36)

=EQ
L

{
n∑
t=0

log

(
QLt (·|Ŝt−1|t−1, St)

PQ
L

t (·|Y t−1−∞ )
(Yt)

)}
(IV.37)

=
n∑
t=0

I(St;Yt|Y t−1−∞ ), (IV.38)

where the conditional distribution of Yt given Y t−1−∞ is

PQ
L

t (dyt|yt−1−∞) =

∫
Qt(dyt|ŝt−1|t−1, st)

⊗PQ
L

(dst|yt−1−∞), t = 0, . . . , n. (IV.39)

Moreover, the following inequality holds
n∑
t=0

I(St;Yt|Y t−1−∞ ) =
n∑
t=0

I(St;Yt|Y t−1−∞ , Ŝt−1|t−1)

≥
n∑
t=0

I(St; X̂t|t|Y t−1−∞ , Ŝt−1|t−1), (IV.40)



and it is achieved if X̂t|t = Yt − a.s.
(c) In part (b) the information measure

∑n
t=0 I(St;Yt|Y t−1−∞ ),

i.e, (IV.37) is given by
n∑
t=0

I(St;Yt|Y t−1−∞ )

=
1

2

n∑
t=0

log

{
|ΣYt |

|HtBt−1KWt

(
HtBt−1

)T
+KVt |

}+

=
1

2

n∑
t=0

log

{
|Σ−t |
|Σt|

}+

,

where

ΣYt = cov(Yt, Yt|Y t−1−∞ ) = HtAt−1Σt−1
(
HtAt−1

)T

+HtBt−1KWt

(
HtBt−1

)T
+KVt

, (IV.41)

Σt , E
{(
St − Ŝt|t

)(
St − Ŝt|t

)T}
, (IV.42)

Σ−t , E
{(
St − Ŝt|t−1

)(
St − Ŝt|t−1

)T}
, (IV.43)

and Σt satisfies the Kalman-filter Riccati equation for esti-
mating St from Y t−∞, and similarly Σ−t .
The average distortion constraint is

E
{
d0,n(Xn, Y n)

}
= E

{ n∑
t=0

||CtSt − Yt||2
}
≤ D(n+ 1)

(IV.44)

(d) The characterization of NRDF is given by the follow-
ing optimization problem.

Rna0,n(D) = inf
(Ht,KVt ),t=0,...,n: (IV.44) holds

n∑
t=0

I(St;Yt|Y t−1−∞ ).

and the relation between (Ht,KVt) is found from the condi-
tion X̂t|t = Yt− a.s., which ensure the lower bound (IV.40)
is achieved.

Proof: The derivation is based on the techniques of
Theorem 2 and Theorem 3.
(a) The process Xn is not Markov; however, {St : t =
0, . . . , n} defined by (IV.22) is Markov, as easily shown by
an application of Bayes’ theorem. The state-space represen-
tation of {St : t = 0, . . . , n} is one way to represent Xn.
(b) Note that by a slight variation of Theorem 1, to account
for the initial data (X0

−L+1, Y
−1
−∞), the minimization over

Qt(dyt|yt−1−∞, xt−L+1), t = 0, . . . , n in (IV.19) is of the form
QLt (dyt|yt−1−∞, xtt−L+1), t = 0, . . . , n. Further, since the RVs
(X0
−L+1, Y

−1
−∞) are jointly Gaussian, the minimization in

(IV.19) occurs in the set of jointly Gaussian distributions
defined by (IV.27). The rest of the statements (IV.28)-(IV.39)
are shown by following Theorem 2, (a).
(c) This is simply an evaluation of the information measure
and average distortion using part (b).
(d) This follows from part (c) and (IV.40).

In the next remark we state some observations regarding
Theorem 4.

Remark 1: Discussion on Theorem 4
(a) There is a clear and fundamental difference between

Theorem 4, which treats AR(L) sources, and analogous
results for AR(1).
(b) Whether the optimization of Theorem 4 can be further
simplified, is not a subject of analysis in this paper.

V. CONCLUSIONS

We generalized the NRDF to nonstationary, multivariate
Gaussian process of memory order L, with MSE distortion.
Characterizations of the NRDF and corresponding optimal
reproduction distributions, and their realizations are obtained,
and shown to depend on the state of the source and its mean-
square error estimate.
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