
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Virtanen, Juho Pekka; Daniel, Sylvie; Turppa, Tuomas; Zhu, Lingli; Julin, Arttu; Hyyppä,
Hannu; Hyyppä, Juha
Interactive dense point clouds in a game engine

Published in:
ISPRS Journal of Photogrammetry and Remote Sensing

DOI:
10.1016/j.isprsjprs.2020.03.007

Published: 01/05/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Virtanen, J. P., Daniel, S., Turppa, T., Zhu, L., Julin, A., Hyyppä, H., & Hyyppä, J. (2020). Interactive dense point
clouds in a game engine. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 375-389.
https://doi.org/10.1016/j.isprsjprs.2020.03.007

https://doi.org/10.1016/j.isprsjprs.2020.03.007
https://doi.org/10.1016/j.isprsjprs.2020.03.007


Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Interactive dense point clouds in a game engine
Juho-Pekka Virtanena,c,⁎, Sylvie Danielb, Tuomas Turppac, Lingli Zhuc, Arttu Julina,
Hannu Hyyppäa, Juha Hyyppäc
a Aalto University School of Engineering, Department of Built Environment. P.O. Box 14100, FI-00076 Aalto, Finland
b Laval University, Department of Geomatics Sciences. 1055, Avenue du Seminaire, Quebec, QC G1V0A6, Canada
cNational Land Survey of Finland, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430 Masala, Finland

A R T I C L E I N F O

Keywords:
Point cloud
Game engine
VR

A B S T R A C T

With the development of 3D measurement systems, dense colored point clouds are increasingly available.
However, up to now, their use in interactive applications has been restricted by the lack of support for point
clouds in game engines. In addition, many of the existing applications for point clouds lack the capacity for
fluent user interaction and application development. In this paper, we present the development and architecture
of a game engine extension facilitating the interactive visualization of dense point clouds. The extension allows
the development of game engine applications where users edit and interact with point clouds. To demonstrate
the capabilities of the developed extension, a virtual reality head-mounted display is used and the rendering
performance is evaluated. The result shows that the developed tools are sufficient for supporting real-time 3D
visualization and interaction. Several promising use cases can be envisioned, including both the use of point
clouds as 3D assets in interactive applications and leveraging the game engine point clouds in geomatics.

1. Introduction

Methods for producing dense, colored point clouds are increasingly
available. Three-dimensional measuring and reconstruction can be
achieved with image-based techniques (e.g., Toschi et al., 2017;
Micheletti et al., 2015), laser scanning, or a number of other techniques
(e.g., structured light systems). 3D measuring methods have improved
both in efficiency (e.g., Nocerino et al., 2017; Kukko et al., 2017; Li
et al., 2019) and consumer availability (e.g. Diakité and Zlatanova,
2016; Hyyppä et al., 2017; Zollhöfer et al., 2018). In addition, point
cloud data sets are already being offered as open data by national
mapping agencies. There are also projects focused on digitally ar-
chieving individual sites in more detail (Reardon, 2012). The avail-
ability of measuring systems and complete data sets has stimulated the
research on point cloud data processing and application. Analysis
methods using point clouds have been introduced to ecology (Saarinen
et al., 2018), forestry (Hyyppä et al., 2017), city and building modeling
(Dorninger and Pfeiffer, 2008; Haala and Kada, 2010; Maas and
Vosselman, 1999) and map updating (Matikainen et al., 2017). Con-
sequently, dense point clouds have been identified as a significant data
type by several researchers (Virtanen et al., 2017; Cura et al., 2017;
Poux et al., 2016; Otepka et al., 2013). This has led to the development

of management systems for massive point cloud data sets (van
Oosterom et al., 2015; Cura et al., 2017; El-Mahgary et al., 2020), and
point cloud visualization (Deibe et al., 2019).

Several authors have studied point cloud visualization, including
Nebiker et al. (2015), Richter et al. (2015), and Tredinnick et al.
(2015), with direct point-based rendering gradually emerging as a vi-
able alternative to the more traditional polygonal mesh methods
(Goswani et al., 2013; Tschirschwitz et al., 2019). In some cases, point
based rendering has even been suggested as a solution for rendering
large meshes (Rusinkiewicz and Levoy, 2000). Aims in research on
point cloud visualization have varied from data integration (Nebiker
et al., 2015) to the use of immersive display devices (Tredinnick et al.,
2015; Zhao et al., 2019; Kharroubi et al., 2019) or browser based 3D-
visualization (De La Calle et al., 2011; Zeng et al., 2012; Discher et al.,
2019; Deibe et al., 2019). Many of the applied systems have been
customized for the manufacturers themselves (Ye et al., 2016). Powered
by WebGL, some renderers have recently become available for the vi-
sualization of point cloud data over the Web (Ye et al., 2016; Martinez-
Rubi et al., 2015; Discher et al., 2019; Schütz, 2016). Point cloud vi-
sualization has also been realized on top of the online virtual globe
Cesium (CesiumJS, 2019; Discher et al., 2019). The platform supports
the creation of the interactive web apps for sharing dynamic geospatial

https://doi.org/10.1016/j.isprsjprs.2020.03.007
Received 4 April 2019; Received in revised form 5 March 2020; Accepted 5 March 2020

⁎ Corresponding author at: Aalto University School of Engineering, Department of Built Environment. P.O. Box 14100, FI-00076 Aalto, Finland.
E-mail addresses: juho-pekka.virtanen@aalto.fi (J.-P. Virtanen), sylvie.daniel@scg.ulaval.ca (S. Daniel), tuomas.turppa@nls.fi (T. Turppa),

lingli.zhu@nls.fi (L. Zhu), arttu.julin@aalto.fi (A. Julin), hannu.hyyppa@aalto.fi (H. Hyyppä).

ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

Available online 08 April 2020
0924-2716/ © 2020 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2020.03.007
https://doi.org/10.1016/j.isprsjprs.2020.03.007
mailto:juho-pekka.virtanen@aalto.fi
mailto:sylvie.daniel@scg.ulaval.ca
mailto:tuomas.turppa@nls.fi
mailto:lingli.zhu@nls.fi
mailto:arttu.julin@aalto.fi
mailto:hannu.hyyppa@aalto.fi
https://doi.org/10.1016/j.isprsjprs.2020.03.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2020.03.007&domain=pdf


data, and utilizes the 3D Tiles format (OGC, 2019) for streaming mas-
sive geospatial datasets, including point clouds, for visualization in a
web browser. In Cesium 3D Tiles (OGC, 2019), a tileset is a set of tiles
organized in a tree structure such as k-d trees, quadtrees, octrees, or
grids. Each tileset contains tileset metadata and a tree of tile objects.
The tile’s content is a binary blob containing a feature table and a batch
table. A feature table stores the feature’s position and its appearance
properties. A batch table stores additional application-specific proper-
ties.

Game engines have become highly efficient tools for developing
interactive 3D applications, for both professional (Indraprastha, &
Shinozaki, 2009; Virtanen et al., 2015; Wirth et al., 2019) and en-
tertainment purposes (e.g., Rua & Alvito, 2011; Alatalo et al., 2016).
They are also commonly used for building VR environments viewed
with HMDs (e.g., Donghui et al., 2017; Jamei et al., 2017; Rua & Alvito,
2011; Alatalo et al., 2016). One of the advantages of game engines as a
development platform is that they allow efficient development of ap-
plications where the users interact with the 3D environment (Wirth
et al., 2019). This interaction potential is essential for many profes-
sional applications, as it allows the user not only to benefit from the
visualization but also to provide output (Nguyen et al., 2016). However,
in using the game engines for visualization of geospatial data, one of the
commonly encountered challenges has been the amount of work re-
quired in producing game engine compatible models from dense point
cloud data (e.g. Tschirschwitz et al., 2019). While tools exist to allow
automatic generation of suitable textured mesh models in some cases
(Julin et al., 2019), their generation still represents an additional
computational step compared to direct point cloud visualization.
Compared to mesh models, the point clouds would offer a direct, un-
filtered access to original 3D reconstruction data and allow easy data
integration from any point cloud production method (Discher et al.,
2019).

While systems for visualizing point clouds in VR and rendering them
in game engines have been developed (e.g., Point Cloud Viewer and
Tools, 2017; Point Cloud Plugin, 2019), the systems that allow the use
of point clouds in game engines as moveable, interactable assets are still
missing. And current point cloud visualization software is still not
flexible enough to allow application development. Our aim is to de-
velop and implement a game engine extension facilitating the use of
dense colored point clouds as interactable objects in a 3D game engine.
We review the relevant point cloud organization and rendering solu-
tions, and present our rendering approach combining different shader
types with an octree-based implementation allowing interaction with
3D point cloud including dynamically movable point cloud based ob-
jects as a part of the octree.

As a demonstrator, we implement an application using the devel-
oped tools, in which the user is able to visualize and interact with a set
of point clouds in a VR environment. In this article, we first review the
relevant optimization and rendering strategies, then we present the
development and architecture of the extension, and finally we present
its use in a demonstrator application and evaluate the results.

2. Dense point cloud storage and visualization

2.1. Influence of point cloud acquisition methods to visualization

3D point clouds depicting the environment can be obtained with a
variety of methods, such as SAR (Karjalainen et al., 2012), laser scan-
ning (Vosselman & Maas, 2010), photogrammetry (Szeliski, 2011), and
depth cameras (Zollhöfer et al., 2018), to name a few. To some extent,
the measuring techniques also influence the visualization of the point
cloud data sets.

In laser scanning (LS) methods, a common limitation is the inability
of a laser scanner operating on a single wavelength to capture surface
color information. In a majority of systems, this has been overcome by
adding an imaging sensor and then resolving the calibration and

synchronization between the laser scanner and camera (Lerma et al.,
2010). However, this implies that the quality of point cloud colorization
is subject to the quality of the camera system used to obtain imagery for
colorization (as noted for texturing by Julin et al., 2019). In photo-
grammetric reconstruction, the 3D geometry and textures can be de-
rived from the same image set. However, purely image based re-
construction can be problematic in e.g. indoor environments, where
flat, textureless surfaces lack the detectable features (Lehtola et al.,
2014). Laser scanning systems, on the other hand, may suffer from
artifacts originating from sensor errors, causing stray points in the data,
co-registration errors, temporal changes in the scene, sensor noise etc.

In LS, the point density varies according to distance and multiple
other factors e.g. the scanning mechanism, possible platform move-
ment, laser beam divergence, target geometry and reflectance etc. This
generates varying artifacts in terrestrial (TLS) and mobile laser scan-
ning (MLS) (Vaaja et al., 2011). The emerging systems capable of si-
multaneous localization and mapping (SLAM) significantly increase the
efficiency of 3D mapping, especially in indoor environments (Nocerino
et al., 2017). In addition to indoor mapping, SLAM systems have seen a
lot of development and applications in robotics (Nüchter et al., 2007).
In these cases, the point cloud density varies by distance and movement
of the system, often leaving the trajectory of the system visible in the
data.

The footprint size of the laser beam on the target varies according to
the used sensor and scanning technique, distance, and target geometry
etc. In addition, different laser scanning systems produce different point
cloud densities, especially if comparing ALS point clouds to those ob-
tained with contemporary TLS instruments. More dense airborne data
can be obtained from UAV-LS, from a lower flying altitude (Jaakkola
et al., 2010). The ability of laser scanning systems to penetrate vege-
tation also varies, with full-waveform systems achieving better canopy
penetration (Yu et al., 2014).

For individual objects, structured light scanners (Lachat et al.,
2017), photogrammetry or laser scanning can be applied. The Microsoft
Kinect represents one of the most popular devices based on structured
light projection. It exploits an RGB camera, an IR camera, and an IR
projector (Weinmann, 2016). Such a solution is used not only for ob-
jects but also for scanning the indoor and outdoor environment (Labrie-
Larrivée et al., 2016). Lechat et al. (2017) report attaining dense point
clouds with geometric errors remaining below 5 mm for large (~1 m)
cultural heritage artifacts using the Faro Freestyle instrument. Typi-
cally, depth camera instruments suffer from a higher amount of noise
and more limited range than laser scanners, also affecting the visuali-
zation of depth camera point clouds.

In addition, ready point cloud data sets are increasingly offered.
Utilizing airborne laser scanning (ALS) systems, national mapping
agencies have initiated large surveying campaigns. Some of these point
cloud data sets have been released as open data (e.g., Actueel
Hoogtebestand Nederland, 2019; Geoportal Thüringen, 2019; National
Land Survey of Finland, 2019; Scottish Remote Sensing Portal, 2019).
In many openly released ALS datasets, the point density has been quite
low, reducing their utility in point cloud visualization. At the same
time, these point cloud data sets are often classified and represent
meaningful features (e.g. ground, vegetation, building roofs etc.), of-
fering also additional potential for visualization.

2.2. Point cloud storage and retrieval strategies

As dense point clouds may contain hundreds of billions of points,
sophisticated organization is a requirement for efficient visualization
and processing. Appropriate spatial data structures are needed to speed
up search queries. In the following, we review the key issues and their
existing solutions concerning visualization of dense point clouds.

The simplest data structures (arrays and lists) are not suitable for
storing large amounts of data alone, as unorganized point sets easily
result in excessive search times. Over the last three decades, a variety of

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

376



different spatial indices have been developed to overcome this. These
spatial indexing systems subdivide the domain either in a regular or
irregular manner. As there is no optimal index for all situations, a few
common approaches are used, depending on the case.

2.2.1. Voxel and grid structures
Voxelization, referring to the conversion of point data into volu-

metric data stored in a 3D array of voxels (Karabassi et al., 1999) can be
used to store point data. For example, it has been applied to ALS-de-
rived point cloud (Wand et al., 2017). Voxelization has also been in-
tegrated into 3D surface reconstruction (Xu et al., 2015), rendering
(Crassin, 2011), robotics (Hornung et al., 2013) and point cloud seg-
mentation and clustering (Chen et al., 2019). While voxel systems are
simple to implement, they also become limited in performance and
memory requirements with large data sets. Furthermore, a lack of
multiple resolutions prevents the efficient execution of spatial algo-
rithms. In some cases, this has been overcome by combining multi-level
octree structure with voxel-style algorithms (Poux and Billen, 2019a).

Additionally, voxel (or 2D grid) structures are often applied as a
starting point for producing more sophisticated, multi-level tree struc-
tures accomplished by merging and subsampling voxels or 2D grid cells,
as presented for example in Yu and Mei (2019). In Deibe et al. (2019), a
regular 2D grid-structure is used to attain multiple levels of detail in
rendering by producing multiple non-duplicate subsets of each grid tile
beforehand and obtaining the different levels of detail by selectively
combining these. In database storage, it is also common to utilize a
regular grid for storing the point cloud (van Oosterom et al., 2015).

2.2.2. Tree data structures
The size of the massive point clouds is usually larger than the main

memory of the systems that have to handle them. In order to avoid sub-
sampling the data (decreasing point density) or limiting their visuali-
zation to only small portions at once, multi-resolution data structures
are used. The k-d tree, or k-dimensional tree, is a data structure used for
organizing a number of points in a space with k dimensions. It is a very
fast indexing method for nearest neighbor queries relying on a binary
tree search. The k-d tree may rapidly get unbalanced in the case of
update operations (insertion or deletion of points). Dedicated methods
have been proposed to build a balanced k-d tree (Brown, 2015).

A subtype of the k-d tree—the quadtree (2D index)—is a tree data
structure in which each internal node has exactly four children. Octrees
are a three-dimensional analog of quadtrees, with each internal node
having exactly eight children. While quadtrees are most often used to
partition a two-dimensional space by recursively subdividing it into
four quadrants or regions, octrees are most often used to partition a
three-dimensional space by recursively subdividing it into eight octants.
Due to the compression and multi-resolution properties of quad- and
octree structures, global modeling and efficient algorithm execution are
feasible (Elseberg et al., 2012), and octrees have indeed been applied
for point cloud storage in analysis tasks as well (e.g. Bassier et al.,
2019). Also, they are well-suited for update operations. By applying
solutions commonly used with voxel data, the octree structure has been
applied for multi-scale point cloud analysis (Poux & Billen, 2019b).

Even if efficient, quad- and octree structures cannot compete with k-d
trees in terms of speed when performing nearest neighbor queries.
However, quad- and octrees are often used for visualization, since they can
be easily adapted to support level-of-detail (LOD) structures. Such LOD
information is required to realize efficient out-of-core (i.e., external
memory) rendering techniques (Richter et al., 2015). In order to achieve an
LOD representation, quantized points are used. They are specified using the
quadtree or octree structure. If there are one or more points in each grid
cell, only one representative point is selected by a random manner and is
stored in the node of the tree. Several authors have presented efficient
techniques for out-of-core multi-resolution construction and high-quality
interactive visualization of massive point clouds (Goswani et al., 2013;
Kuhn and Mayer, 2015; Discher et al., 2019).

From a rendering point of view, the challenge in octree structure is
choosing a suitable octree depth: if more points are stored in each node,
they become heavier to render, but constitute less draw calls, if each of
the nodes invokes a single draw call (Schütz, 2016). Some approaches
introduce a hierarchical level of detail (LOD) organization based on
multi-way kd-trees, which simplifies memory management and allows
control over the LOD-tree height (Goswami et al., 2013). Implementa-
tions combining different tree structures have been proposed to better
adapt the structure to the properties of laser scanning point clouds. Yu
and Mei (2019) combined a variable cell size 2D index with a single
level octree, noting that the structure is efficient for point clouds de-
picting larger areas of terrain where the height-component is less sig-
nificant.

While in many implementations, the tree structures are produced in
a pre-processing stage (Schütz, 2016) they can also be produced
adaptively in real-time to facilitate loading data from a predefined grid
structure, as in (Deibe et al., 2019). Schütz et al. (2019)on the other
hand, use the modifiable nested octree structure of the Potree system
(Schütz, 2016) to produce level-of-detail information for points, but do
not apply this for point storage.

2.2.3. Database and file implementations
In the case of huge point clouds as obtained by current measurement

technologies, the data clearly exceeds the amount of available computer
memory. In addition, even if a sufficient amount of RAM is available,
memory fragmentation makes it hard to allocate a large enough con-
tinuous memory block. Hence, the data needs to be stored in secondary
storage (such as hard disk drives or solid state disks) and can be loaded
into memory chunk-wise only. Several approaches have been tested and
utilized for storing large point clouds.

Many of the systems that utilize tree structures rely on storing in-
dividual leaf nodes as binary files, which are then loaded as required
when traversing the tree (e.g. Schütz, 2016). In similar manner, Deibe
et al (2019) store each of the pre-produced sampling levels from each
grid cell as individual file on the disk. However, Schütz et al. (2019)
apply a different system, storing the entire cloud in a single file, with
the intent of minimizing the reading operations. This is enabled by their
iterative drawing buffer generation.

Database systems can also be applied for point cloud storage, with
the most common approach being the division of point cloud into a
regular grid and storing grid cells as compressed binary patches in rows
of the database table (van Oosterom et al., 2015). Other division
schemes, relying e.g. on the semantic information associated with the
points can be applied as well (El-Mahgary et al., 2020), this also being
applicable for file-based storage.

2.3. Point cloud rendering

From the visualization perspective, the dense point cloud datasets
are not problem-free: While perspective projection of point cloud points
can be carried out with the same algorithms used for triangle mesh
vertices, rendering point clouds is inherently problematic due to lack of
connectivity information. This introduces several issues for rendering,
such as the inability to represent linear edges and a minimum display
distance caused by missing data between points, which eventually
causes the user to “see through” the surface.

2.3.1. Frustum culling
In computer graphics, the frustum is the visible region of space.

Non-visible elements do not need to be drawn, hence increasing per-
formance. The main bottleneck in a software culling implementation is
transmitting the point information to the graphics card when a large
number of them are within the viewing frustum. Elseberg et al. (2012)
as well as Tredinnick et al. (2015) mitigate this problem using the oc-
tree structure. This approach allows the rendering quality to be dyna-
mically adjusted. This is achieved by sending to the graphics card only

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

377



single vertices of volumes in the octree that fall below a level-of-detail
threshold.

Frustum culling using nodes of a tree structure as units to be dis-
played or not is a common solution employed in several systems (e.g.
Deibe et al., 2019; Schütz, 2016). The main benefit of this approach is
that the decision to draw does not have to be made point-per-point, but
rather by the node extents. In addition to excluding points from ren-
dering, the viewing frustum is also commonly applied for choosing
nearby nodes for drawing with a higher level of detail (e.g. Deibe et al.,
2019). Schütz et al. (2019) point out that this commonly results in some
artifacts in visualization, arising from observable borders of nodes of
different levels of detail, that do not correlate with the geometric fea-
tures of the point cloud.

2.3.2. Point drawing
Point cloud rendering algorithms can be divided into using primi-

tives, such as quads (in screen space) and scaling them according to
perspective projection, or alternatively, projecting primitives, such as
disks, following surface orientation (in object space) (Sainz and
Pajarola, 2004). In point cloud visualization, at least four different
approaches have been proposed to overcome the issues caused by the
lack of connectivity information between points (Kaushik et al., 2012):

1. Hole detection and filling in screen-space: Individual samples are
projected on the screen, and the pixels not receiving samples are
detected. The surface is then interpolated from the neighboring
samples;

2. Generating more samples: A surface is adaptively interpolated in
object-space to guarantee that every pixel receives at least one
sample.

3. Splatting: A surface sample is projected on the screen (the result of
the projection is called a splat), and its contribution is spread into
the neighboring pixels to guarantee coverage. Higher quality
methods average the contributions of all splats contributing to the
pixel.

4. Meshing: A polygon mesh is used for interpolating the surface
samples.

A comprehensive survey of point-based rendering is provided by
Kobbelt and Botsch (2004). Splatting is advantageous since it can create
a visually-continuous surface without the need for costly triangulation.
In the context of LiDAR point cloud, Kovac and Zalik (2010) applied
first a two-pass rendering to efficiently blend splats, then Kuder and
Kovac (2012) combined splatting with deferred shading in a three-pass
algorithm. Gao et al. (2012) improved such approaches by addressing
the drawback of splatting related to areas with sparse or no points due
to occlusions. Splatting still involves heavy precomputing as it needs
normals and radii. This is a problem when the dataset is massive or
when visualization should be performed on the fly.

Another way to render point clouds efficiently without preproces-
sing is to increase the size of the points. Schautz and Wimmer (2015)
shows that this simple method can achieve good quality results by
drawing, for each point, camera aligned paraboloids instead of flat
squares. Allowing a varying point size also helps mitigate issues caused
by varying point cloud density, and simultaneous display of point cloud
segments of different levels of detail (Scheiblauer and Wimmer, 2011).

Another efficient approach for point cloud rendering is to use screen
space operators. Marroquin and al. (2008) use the pull-push algorithm
to reconstruct a filled color and depth buffer. However, they rely on
precomputed normals to perform both reconstruction and shading.
Preiner et al. (2012) use screen space nearest neighbor queries to
compute normals and radii to feed splatting algorithm in real-time.
Their algorithm is however very computational intensive. Bouchida
et al. (2018) recent method uses as input a framebuffer with depth and
an optional color after a single geometric pass that renders one pixel per
point. The method is then based on three screen space pyramidal

operators: a hidden point removal operator; the push-pull algorithm;
the depth texture pyramid. Their method achieved good visual results
on a wide range of point clouds types from photogrammetry to noisy
mobile mapping. Hofer et al. (2018) also base their solution on ma-
nipulating depth information via 2D image processing, and attain a
surface reconstruction for conventional mesh rendering via them.

2.3.3. Game engine implementations
In addition to commercially available game engine point cloud ex-

tensions (Point Cloud Viewer and Tools, 2017; Point Cloud Plugin,
2019), the utilization of game engines in point cloud visualization has
been touched upon in research literature. Proposed applications include
the utilization of VR for manual point labeling (Wirth et al., 2019) and
use of real-time point cloud processing with depth camera data (Hofer
et al., 2018). In many of the presented implementations, the point or-
ganization, retrieval and rendering strategies presented earlier have
been implemented for commercial game engines, negotiating their
specific limitations, such as maximum vertex count for an individual
object (e.g. Vincke et al., 2019).

Vincke et al (2019) utilize a conversion from point clouds to mesh
faces prior to game engine use, splitting the point cloud to segments to
improve performance. Kharroubi et al (2019) utilize an octree structure
and file based storage in combination with the Unity game engine,
relying on work by Fraiss (2017). For rendering relief-like depth camera
data, Hofer et al. (2018) utilize a set of buffers in Unity.

As game engines offer the possibility for drawing individual pixels,
sets of pixels or mesh objects, different point rendering schemes can be
implemented (Fraiss, 2017). As different drawing strategies carry
varying computational costs, it may prove useful to combine them by
utilizing a different drawing scheme for far-away points and those close
to the camera (Santana et al., 2019).

3. Materials and methods

To facilitate interactive point cloud visualization in game engine
environment, a set of methods were developed and implemented on the
Unity game engine (Version 2018.2.15). The following chapters de-
scribe the key solutions in data storage, rendering and object interac-
tion.

3.1. Point cloud loading & storage in game engine

Point cloud import is realized from LAS, PLY, or ASCII formats,
reading the point coordinates, intensity, classification (if available), and
RGB values. To maintain functionality with precision limits imposed by
the 32-bit floats used in coordinates, a coordinate shift is applied to the
point cloud to center it at the origin. In addition, the cloud can be scaled
if wanted. This also allows easy utilization of a point cloud originating
in different units.

The most significant processing step performed for the point cloud
prior to rendering is its division into an octree. The scaled and shifted
point cloud is divided into an octree structure, with a depth specified by
the user. An octree with n-depth is generated to fill the bounding box of
the point cloud. Point data is then fed to the root, which will divide the
data into its immediate children and repeat the division for each child
until the final depth has been reached. Unlike in Schütz (2016), the
point cloud is only stored in the final octree nodes. This allows con-
trolling the rendered area is as small regions as possible via occlusion
culling, and simplifies the implementation of interaction functions (in
Section 3.4) as several overlapping levels in octree do not have to be
considered.

After processing, the point geometry, normal vector, and RGB va-
lues are stored in a binary format along with octree structure in-
formation. A single point consists of coordinates (three 32-bit floats), a
normal index (16-bit unsigned integer) used to access normal values
from a separate lookup table, and a point ID (16-bit unsigned integer).

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

378



The point ID can be used later to bind additional information layers to
points. Prior to rendering, the data is stored in two different structured
buffers, one of them containing the performance-wise aligned point
data for fast reading and handling, the other buffer providing a mask for
quick data manipulation.

3.2. LOD via vertex shader invocation

To generate the amount of LOD levels (as specified by the user),
points are captured to each node by iterating the parent node n times
(Fig. 1). Each iteration captures every nth point of the total points in an
individual octree node. The resulting subsets of the particular node
each contain a set of unique points, forming the total set of node points
when combined. A similar concept has been utilized in 2D grid struc-
ture by Deibe et al. (2019).

The point subsets are utilized in rendering to produce different
LODs by invoking a desired amount of vertex shader instances for each
node. For each draw call, n vertex shader instances are invoked, de-
termined by the distance between the user and the rendering node, each
facilitating the drawing of a prebuilt subset of points in the specific
node (Fig. 1). For higher levels of detail, more shader instances are
invoked, each drawing a subset of the node’s points. The applied sha-
ders support real-time lighting (directional and point lights), which are
calculated in the vertex shader. The impact of the LOD system is illu-
strated in Fig. 2, showing from top view how the point cloud density is
reduced as the range to camera increases. The nodes that remain out-
side the camera view frustum are remain hidden. The rendering pro-
cedure is summarized in Fig. 3.

This approach detaches the rendering LOD from the octree depth,
unlike in systems where increasing the LOD is performed by traversing
the octree to the next level (e.g. Schütz, 2016). This is especially ben-
eficial for maintaining the amount of draw calls: for a conventional
octree structure, with all nodes populated and three LOD levels, the
highest LOD would invoke 21 draw calls (1 for the first level, 4 for the
consecutive level, and 16 for the children of the middle-level). In our
solution, three LOD levels can be realized with a minimum of three
draw calls for the highest LOD. Our solution maintains a more con-
sistent amount of draw calls over a range of LODs.

3.3. Multi-shader point cloud rendering

For rendering the point cloud, a multi-shader strategy is applied
based on the distance between the point cloud and the virtual camera,
in similar fashion as in Santana et al. (2019). Prior to rendering, a
frustum culling utilizing the octree structure is implemented to reduce

rendering load. The octree nodes outside the viewing frustum are
locked out of rendering. For the remaining nodes, we calculate the
distance to the virtual camera, and then choose a shader program ac-
cordingly. For distant nodes, a simplistic vertex- and fragment shader is
applied. For nodes closer to the camera, two alternative approaches are
implemented: a geometry shader method and a vertex dereferencing
method (the latter one is offered for compatibility with older hardware,
these methods are described later). The multi-shader strategy allows us
to combine highly efficient rendering of points as individual pixels (in
“Far pass”) for more distant points, and rendering larger quad primi-
tives oriented towards the camera for closer points (Fig. 3). As de-
scribed in Section 3.2, the LOD of rendering is controlled via invoking a
varying amount of shaders. This applies to both rendering the more
distant points with the vertex shader, and the closer points with either
of the two shader methods.

The geometry shader method uses a two-pass shader, with the first
pass involving a geometry shader for producing renderable geometry
from points. In this approach, there is no need for additional data, and
the point geometry can be generated in render time, only when needed,
and it also grants great flexibility to manipulate the geometry. The
disadvantages of this method are the backward compatibility with older
hardware (especially pre-DirectX 11.0) and potential performance dif-
ferences between graphic cards.

The Vertex dereferencing method utilizes a simple vertex-frag-
ment shader pipeline where we feed each vertex n times for each n-
polygon. These duplicate instances are then dereferenced in a vertex
shader by division into individual vertices from a predefined list de-
fining the geometry, using a vertexID passed to the shader. This ap-
proach is much more backward-compatible and also more available to
different platforms, as it does not use any advanced shader stages and
takes the same amount of CPU memory. However, due to the LOD
system, this will introduce one additional shader state change, as it
needs to change between drawing points and drawing triangles or
quads.

3.4. Real-time interaction with point cloud objects

To facilitate real-time interaction with the point cloud objects in the
game engine, a set of functions were developed. These allow the use of
point cloud segments as dynamically moved objects in the game engine,
selecting such objects with ray-casting, and selective re-coloring or
hiding of points dynamically. The dynamically manipulatable point
clouds and ray-casting them are analogous to using different mesh
models to represent different objects in a game engine, and facilitating
e.g. object selection via ray-casting.

Fig. 1. Principle of utilizing sampled point sets to produce LODs by controlling the number of vertex shaders invoked. The points of an individual node are divided
into n subsets, after which n LOD levels can be produced by invoking n shader instances drawing individual points. The number of LOD levels is arbitrary, but it has to
be defined prior to octree generation.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

379



3.4.1. Capture node - a dynamic nested sub-octree
To facilitate dynamic manipulation of pre-defined point cloud seg-

ments in the octree structure, a dynamic, nested sub-octree solution is
utilized, referred to as “capture nodes”.

The capture nodes differ from normal octree nodes in a scene by not
being static parts of the octree structure; they are rather being linked to
the node of the octree in which they currently reside, making them a
dynamic part of the octree. This allows the capture nodes to be used to

Fig. 2. The impact of the utilized LOD system on point cloud visualization illustrated from the top view. The octree nodes further away from the camera are rendered
with a lower point density. The effect has been exaggerated in the figure for illustrative purposes.

Fig. 3. Summary of rendering pipeline. The two illustrated methods for rendering near points are alternatives.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

380



form separate objects in a point cloud. Additionally, separate point
clouds can be loaded into capture nodes, which can contain their own
octree structure, if necessary. Capture nodes can be used to clip off or
duplicate parts of the octree point cloud in a copy, paste, and cut
manner to separate objects from the point cloud.

For applying transformations to point cloud objects in capture
nodes, node-specific transformation matrices can be edited and sent to
the shader. This can be utilized to move the point cloud object or to
bind them with physics simulation, executed in the game engine using
mesh or primitive collider objects. This effectively allows using point
cloud segments much like mesh models are utilized in game engine
application development, whilst maintaining the octree-based occlu-
sion culling in point cloud rendering.

3.4.2. Ray-casting via simplified mesh equivalents
To facilitate ray-casting in point cloud scenes, simplified mesh

equivalents of point cloud segments are utilized. These are produced in
game engine with a self-implemented Marching Cubes algorithm (ori-
ginal form in Lorensen and Cline, 1987).

For raycasting, a simplified collision mesh is generated from the
voxelized space around the point cloud, which is divided into separate
meshes according to the octree structure and linked to corresponding
nodes. The point of interest is then found when the ray intersects the
surface of the collision mesh, after which the queried points can then be
searched from the linked node. Therefore, raycasting does not use the
octree structure to the full extent but benefits from the frustum culling,
as the out-of-frustum colliders will be excluded from the search.

The simple mesh equivalents can also be applied to form colliders
that can be applied in interactable objects and physics. (As such, it is
not required for point cloud visualization.)

3.4.3. Point editing masks
To facilitate point recoloring and removal, a 32-bit floating point

mask is associated with each point and sent to the buffer structure in
the GPU. Values above 0 are reserved for RGB values, and the values
below define other functions such as removing points. As the removal of
the point is done within the graphical pipeline in the GPU, it is sepa-
rated from the actual point data structures for faster transfers between
the CPU and the GPU.

This allows re-coloring and hiding points dynamically in the game
engine without this necessitating the reconstruction of the octree
structure. Therefore, the point editing functions can be used in real-
time.

3.5. Data for the demonstrator application

To test the developed Unity extension in practice, a demonstrator
application combining indoor and object point clouds was developed.
To facilitate performance comparison, textured indoor mesh models
were also produced from the same datasets.

3.5.1. Indoor 3D point cloud acquisition
Two rooms, a storage room and a boiler room, from a basement of a

1960s detached house in Helsinki, Finland, were scanned using Faro
Focus S350 TLS (Fig. 4). To produce data sets as occlusion-free as
possible, scanning was performed with a low point density, utilizing
instead a large number of scan locations (6 for the first room and 9 for
the second). For aesthetic reasons, no reference targets were installed in
the interiors prior to scanning.

The interiors were photographed from a tripod with a Nikon D800E
digital single-lens reflex (DSLR) camera using a Nikkor AF-S 14–24 mm
lens with focus and zoom locked at 14 mm (Fig. 2). A total of 65 images
were obtained from the first room and 81 from the second room. The
NEF (Nikon Electronic File) images were preprocessed using Adobe
Lightroom software (version 6.12) and exported as JPEG files. The main
purpose of the pre-processing was to adjust the tonal scales of the

images to fix possible overexposure and underexposure, as well as to
exclude all blurred or otherwise failed images from the data set.

Faro SCENE software (Version 6.0.0.31) was used to process the TLS
scans. Point cloud based co-registration methods of the SCENE software
were applied: Preliminary registration was performed with the inter-
active “top view based” method. For refining the registration, an au-
tomatic “cloud to cloud” method was used (effectively being an im-
plementation of Iterative Closest Point (ICP) based on Besl and McKay,
1992). Mean scan point tensions (mean of distances between reference
pairs) of 1.531 mm and 1.267 mm were obtained, with the percentage
of points with mismatch below 4 mm being 87.3% and 83%, respec-
tively, indicating a successful registration and high overlap of scan
point clouds.

Reality Capture software (1.0.2.3012) by Capturing Reality was
used to produce the final 3D point cloud data (Fig. 5). Both the TLS scan
data and the imagery were used to achieve the final colorized 3D point
cloud. The prior registration of the scans was maintained, allowing the
pre-registered TLS “block” to act as the reference frame of the project,
helping to orient the images and provide metric scale for the photo-
grammetric reconstruction.

3.5.2. Object scanning
For producing interactable objects, a set of 17 individual items were

scanned with the Faro Freestyle handheld 3D scanner (Fig. 6). Scanning
was performed with the “interpolation” function of the scanner dis-
abled, as it has been reported by the manufacturer to reduce the metric
accuracy of the results. Instead, a very slow scanner movement was
preferred to produce sufficiently dense point clouds. Faro SCENE
(version 6.0.0.31) was used for processing the scans.

For combining several scans from a different orientation, CloudCompare
(version 2.8) was used. The point clouds were manually segmented to re-
move table surface and markers and manually oriented to close proximity.
The iterative closest point (ICP) algorithm (based on Besl and McKay, 1992)
was used to refine the orientation. Manual orientation was performed in
cases where the ICP failed to produce adequate results. The scanned objects
varied in size from approx. 80 cm long to less than 5 cm long, resulting in
point counts ranging from 1,076,684 points (for the largest object) to 4,659
points (for the smallest object).

3.5.3. Indoor mesh model for performance evaluation
The Reality Capture software was also applied to produce a textured

3D mesh model from one of the interiors. This was done to facilitate the
comparison of rendering performance between the point clouds (with
implemented tools) and mesh models (utilizing conventional Unity
shaders and tools). Same TLS & image datasets were utilized in pro-
ducing the textured mesh.

The mesh model was produced with game engine application in
mind, aiming for sufficiently low polygon counts etc. The resulting
indoor mesh model of the boiler room contained 599,920 vertices and a
total of four 4096 × 4096 (4k) sized texture files.

4. Results

4.1. Unity point cloud extension

The presented methods were implemented in an extension for the
Unity game engine (Version 2018.2.15) consisting of point cloud pro-
cessing tools (running in the Unity editor) and the rendering and in-
teraction tools, facilitating real-time rendering and interaction. The
point cloud preparation and rendering and interaction tools were im-
plemented in C#, whereas the shader programmes were written in the
Open GL Shading Language, GLSL. The rendering and interaction tools
can be run either in the Unity editor to facilitate interactive point cloud
visualization or in stand-alone applications built with Unity. The system
thus facilitates first the preparing of the point cloud for game engine use
in the Unity editor, secondly for visualizing it in the editor, and finally

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

381



for using Unity to build stand-alone applications that utilize the ex-
tension for efficient visualization of the prepared point clouds (Fig. 7).

The point cloud processing tools facilitate the import of point cloud
data from an external file, processing it to an octree structure with pre-
generated LOD levels and writing the prepared point cloud as a binary
file. Visualization of the point cloud is initiated by loading the prepared

point cloud from the binary file to the octree. This may be performed
either in the editor (to allow point cloud visualization in the Unity
editor) or in a stand-alone application produced with Unity (visualizing
the point cloud in the application made with Unity). In the following
performance experiments, only the performance of stand-alone appli-
cations was evaluated.

Fig. 4. Scanning and photographing the basement interiors.

Fig. 5. A single basement interior point cloud, shown with two walls and a roof segmented for illustration (a), and a close-up showing the obtained details (b).

Fig. 6. An individual point cloud from Faro Freestyle, showing a collection of smaller objects being scanned, the markers mounted on the table, and the trajectory of
the scanner (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

382



4.1.1. Adjustments and additional optimization methods implemented
In addition to the two described shader methods, multiple different

shader programs have been developed for the point cloud rendering and
interaction extension for use in different visualization scenarios. These in-
clude, for example, a shader that renders distance fog with the point clouds,
intended for larger outdoor scenes. As an alternative to the distance-based
LOD level selection described, the LOD selection can also be made depen-
dent of attained rendering frame times. This allows the application to de-
termine the LOD with the aim of maintaining a specified rendering per-
formance.

When point data can be assumed to contain a lot of invisible data,
an extra culling step can be performed in a vertex shader by comparing
the rendering camera's direction to the points normal and then dis-
carding it by placing it outside the view space if the dot product is equal
or more than 0.0. This allows in addition to conventional occlusion
culling, the culling of the points according to their normal, much like in
conventional rendering of polygon meshes. If normal information is not
available, normal estimation can also be performed for the point cloud,
processing being executed by the GPU. The closest two neighbors for
each point are utilized in normal estimation.

In the octree-based rendering used, the last children are responsible for
rendering their part of the space: render handling is placed as deep into the
tree as possible. This is intended to allow CPU-side frustum culling to stop
unnecessary data from being passed further down the rendering pipeline to
the GPU. This maintains efficiency and keeps the size of structured buffers
to a minimum, to ensure that enough continuous space can be allocated for
each buffer and masks can be transferred CPU-GPU with minimal impact to
performance. However, this increases the amount of draw calls as the octree

depth; and consequently, the number of nodes increases. The management
of the octree depth, and therefore the number of nodes, becomes a balan-
cing question. Depending on the depth of the octree, it can be beneficial for
rendering performance in some cases to directly address the final depth, i.e.,
draw all points from the lower level nodes in a single draw call rather than
try to limit the number of points drawn by drawing lower levels node by
node.

4.2. The demonstration application

The presented extension was used in producing a demonstration ap-
plication visualizing the test data sets described earlier. The aim of the
demonstrator was to showcase the use of interactive point clouds with real-
time lighting in a virtual environment. The application was developed in
Unity, using the point cloud processing tools of the extension to prepare the
test point clouds. The final application was built as a stand-alone for the
Windows operating system. The HTC Vive Pro VR headset with the asso-
ciated handheld controls and external tracking system was used in the
demo. The headset supports stereoscopic visualization with a resolution of
1440 × 1600 px per eye, with a maximum refresh rate of 90 hz. The
headset uses 1.4x supersampling to compensate for the barrel distortion that
results in the required rendering resolution of 2016 × 2240 px per eye.

The demo consists of two basement areas: a boiler room
(14,680,146 points + objects) and a storage room (26,005,015
points + objects). Both rooms (Fig. 8) are illuminated with real-time
dynamic lighting with an animated movement pattern. The user is able
to move from one room to another by placing their controller through
the doorway and holding the trigger down. Both rooms have a set of

Fig. 7. Extension and tools in the Unity editor and stand-alone applications.

Fig. 8. User exploring the interiors in VR. The scenes are illuminated by dynamic lighting.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

383



separate, interactable point cloud objects with physics simulation.
Objects can be grabbed, carried, and thrown around (Video 1). Real-
time point cloud editing is done with a brush tool that can be used to
recolor or remove points in a point cloud within the user-defined ra-
dius, mimicking traditional graphic editors (Fig. 9). Editing functions
allow the user to either re-color (Video 2) or erase the points (Video 3).

The demo also featured the possibility to resize the points in real time
with the Vive controller as well as a measuring tool to calculate the
distance between each point.

Video 1.

Video 2.

Video 3.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

384



4.2.1. Performance of point cloud rendering
The demonstrator application was evaluated by testing the perfor-

mance of the produced Unity standalone executable on a desktop PC
(Intel Core i7 3.7 GHz CPU; 64 GB RAM; GeForce GTX 1080 Ti GPU).
For the performance evaluation, a total of three different versions of the
demonstrator were built: a version for each of the shading strategies
(vertex dereferencing & geometry shader) and a version utilizing a
textured mesh model instead of the point cloud.

The performance evaluation was carried out by launching the ap-
plication, waiting for the CPU load to stabilize and then studying the
environment in the application for a duration of 1 min, logging the

rendering frametimes from the Steam VR application (version 1.8.21).
To estimate the potential impact of point cloud editing tools on the
performance, the geometry shader version of the application was
evaluated twice, once with the user only studying the point cloud, and a
second time with the user performing point cloud coloring the appli-
cation. Figs. 10–13 provide the frametimes from all four experiments.

Out of the two point cloud shading methods utilized, the geometry
shader method appeared to offer a better performance than the vertex
dereferencing method (during the experiment, average frametime of
7.1 vs. 13.1 ms). Most of the frametime fluctuations (Figs. 10–12) are
likely explained by the varying position of the user's head and gaze

Fig. 10. The frametime (ms) while studying the point cloud with the geometry shader method.

Fig. 9. (a) User painting the points with selected color, (b) erasing points, and (c) moving objects. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. The frametime (ms) while studying the point cloud with the vertex dereferencing method.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

385



direction, affecting the number of points rendered. In most cases, the
frametimes remained below 15 ms, indicating a frame rate of over 66
FPS. With the geometry shader method, the system was able to attain a
frametime below 11 ms, allowing the maximum frame rate of the VR
HMD (90 FPS) to be used. The mesh model offered an even higher
rendering performance than the point cloud (average frametime of
3.9 ms).

Performing manual coloring operations on the point cloud seemed
to inflict a small performance loss with the geometry shader method
(during the experiment, average frametime of 7.9 ms). Utilizing the
point editing tools also increased the variations of performance.
However, the frametimes still remained mostly below 11 ms, permitting
fluent VR interaction.

5. Discussion

Concerning the presented methods for point cloud rendering in
game engines, the work demonstrates that in real-time rendering, dif-
ferent shader programmes can be combined to limit the use of more
computationally intensive shaders to only render a subset of all ren-
dered points. Secondly, via a dynamic, nested octree structure, it is
possible to utilize an octree for occlusion culling and data management,
but still allow moving sub-objects in the scene. Thirdly, by controlling
shader invocation for octree node subsets, the rendering LOD can be
detached from the octree level, allowing better control of draw calls in
real time rendering. Finally, point editing masks allow re-coloring and
hiding of arbitrary segments in large point clouds, in real-time. While
many of these approaches have been mentioned in prior literature
(Deibe et al., 2019; Santana et al., 2019; Wirth et al., 2019), we have
demonstrated that they can be utilized concurrently in a commercial
game engine.

Looking at the results obtained with the Unity implementation, it

can be concluded that a game engine platform can be applied in
building interactive applications using dense colored point clouds. With
the presented point cloud rendering and interaction extension, the use
of point clouds in a game engine is not restricted to visualization only
but may as well include the use of point clouds as interactable objects,
attaching physics simulation to them, and editing the point clouds
within the game engine application, in runtime.

Compared with existing point cloud extensions of game engines
(Point Cloud Viewer and Tools, 2017; Point Cloud Plugin, 2019), and
browser based point cloud visualization systems (Discher et al., 2019;
Schütz, 2016) similar visualization and editing features are offered by
our system. As both of the existing game engine extensions for point
clouds operate on game engines compatible with commercial VR sys-
tems, we assume they are also applicable for VR visualization. VR is
also mentioned in Discher et al. (2019), but they do not indicate
whether VR visualization or any VR functionalities for e.g. editing have
been implemented. Wirth et al (2019) utilize VR for point labeling, but
do not specify the associated point cloud rendering capabilities. As the
Potree system (Schütz, 2016) is based on WebGL, we can assume that
implementation of it with a WebVR device would be feasible. Utilizing
multiple point clouds as objects in a virtual scene is mentioned in Point
Cloud Plugin (2019) and Discher et al. (2019), as has also been de-
monstrated in Potree. However, these do not mention coupling the
point cloud objects with game engine physics, demonstrated in our
work. Neither have the VR tools for editing point clouds been demon-
strated in these existing implementations. These developments bring
the point clouds closer to conventional textured mesh models that are
typically used as 3D content in game engines, and increase their ap-
plicability in immersive visualization. The editing functionalities are a
prerequisite for the use of VR in point cloud processing tasks.

In the demonstrator, rendering times below 15 ms were commonly
attained for stereoscopic visualization with the HTC Vive Pro VR HMD,

Fig. 12. The frametime (ms) while manually coloring segments of the point cloud with the geometry shader method.

Fig. 13. The frametime (ms) while studying the mesh model.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

386



with rendering times below 11 ms reached with the geometry shader
method. This indicates that the presented rendering methods are cap-
able of producing a dataflow of over nine megapixels per second, re-
quired by the contemporary VR HMD. This was attained on a high-end
PC with a powerful GPU, leaving the applicability of the proposed
system on low-end computers or mobile systems remaining to be
proven. Discher et al (2019) report similar framerates on a PC (56-122
FPS), attained in browser, but with a smaller point count (2–8 M
points). Their rendering resolution is not given, but we can assume that
the rendering is monoscopic. Bouchiba et al. (2018) likewise report a
high rendering performance, but also concerning monoscopic rendering
with a 1248 × 768 px resolution.

In experiments, both mesh and point cloud visualization were able
to attain a sufficient rendering performance in VR. The frametimes
when rendering mesh models were significantly smaller, indicating
higher performance. Here, the larger data volumes (599,920 vertices vs.
14,680,146 points) and lack of hardware optimization impose perfor-
mance limitations on point cloud rendering. In addition, the established
tools (e.g., processing software), format support, and resources like
asset libraries are largely absent for point clouds. Nevertheless, the
direct application of point clouds for visualization holds potential for
reducing the costs associated with applications requiring 3D re-
constructions of existing environments. The steps required for mesh
model production can be avoided in point cloud visualization. This also
simplifies data integration: in the presented case, point clouds from
several different methods were effortlessly combined. The feasibility of
interactive point cloud visualization methods can be expected to further
improve along with the development of graphics hardware and soft-
ware (e.g., increases in rendering performance or new technologies like
real-time ray tracing).

Looking at the data acquisition process, several observations con-
cerning the use and production of point clouds can be made. First, when
producing point clouds intended for aesthetic rather than metric ap-
plications, the perceived visual quality of the point clouds should also
be considered. In tests carried out with synthetic data, Zhang et al.
(2014) found an almost direct correlation between point density and
human perception. In the same study, color noise had a smaller influ-
ence than spatial noise on perceived quality (Zhang et al., 2014). This
would indicate that visualization point clouds should preferably be as
dense and noise-free as possible, and that measuring for visualization
purposes places new demands on the production of point cloud data.

Secondly, point clouds offer a data format usable for combining 3D
measuring data, regardless of the sensor technology used. This has also
been acknowledged by other authors (e.g., Persad & Armenakis, 2017).
In addition to scale, rotation, and translation, differences in overlap,
point distribution, density, and occlusions may complicate fusing 3D
point clouds, as noted by Persad and Armenakis (2017). These notions
also apply when using several measuring systems for producing visua-
lization data for the same project, as encountered in our work. Similar
point cloud densities should be attained if the point clouds are to be
used together.

Thirdly, the use of point clouds in interactive applications raises the
importance of object detection and separation from a point cloud to
produce a semantic structure. Point cloud segmentation (e.g., Dong
et al., 2018) is a prerequisite for this; but for producing interactive
applications, some level of semantic interpretation (e.g., Shi et al.,
2019) is required. Further, if the objects in a point cloud are to be
moved interactively, hole-filling algorithms for point cloud data sets are
also required (e.g., Barazzetti, 2018).

From an application perspective, the availability of low-cost sensors
(e.g., Henry et al., 2012) and computational methods (e.g., Gonzalez-
Aguilera et al., 2018) capable of efficiently producing 3D point cloud
data of real-life objects and scenes could enable new applications for
non-expert users, attained with game engine point cloud rendering and
interaction. These potential applications include virtual configuration

of furniture (Oh et al., 2008), virtual training (Gavish et al., 2015), and
therapy (Reger and Gahm, 2008), to offer some examples. Many of the
current examples of such applications are produced using manually
produced game engine models. Compared with manual modeling, the
use of point clouds obtained with affordable methods would sig-
nificantly reduce the costs of producing virtual environments for many
use cases.

In addition to the applications mentioned above, the use of game-
engine-based point cloud visualization in VR may find a use in geo-
matics. As such, dense point clouds may operate as a basis for visuali-
zation in applications like city planning and architecture. In this case,
producing an immersive, near-photorealistic visualization directly from
the point clouds allows a significant increase in efficiency when com-
pared with traditional 3D modeling. This is especially relevant when
discussing highly efficient 3D mapping methods such as MLS or air-
borne laser scanning. In addition, improving the applicability of point
clouds is an enabling component in several future visions involving the
increased application of point cloud data sets (Nebiker et al., 2010;
Virtanen et al., 2017). Further, VR environments could also be applied
to point cloud editing to offer more efficient ways to interact with dense
terrestrial data sets. These applications could include manual classifi-
cation of dense point clouds for teaching classification algorithms,
cleaning of point cloud data sets from clutter originating from pedes-
trians and vehicles, and object separation from indoor point clouds, to
offer a few examples.

6. Conclusion

In the presented work, an extension facilitating the rendering and
interaction with point clouds, and the required preprocessing, was
implemented for the Unity game engine. The developed extension
contains the tools to prepare the point cloud prior to game-engine use
and the rendering system to facilitate real-time rendering of dense point
clouds in Unity. The implemented interaction functions allow the use of
conventional game engine tools, such as rigid body physics, with point
cloud objects. In addition, custom tools for interactively painting colors
and removing points were implemented. The implementation of physics
and raycasting rely on mesh counterparts coupled with the point cloud
components, which facilitate interaction while the point cloud is used
for visualization. To test the developed extension, a demonstrator ap-
plication was produced and its performance evaluated in rendering a
set of point clouds obtained with TLS, photogrammetry, and 3D object
scanning. The performance tests found the system to perform with a
sufficient frame rate for using VR HMDs for visualization, even with
point counts in excess of 10 million points.

Several potential benefits have been perceived for direct visualiza-
tion of dense point clouds. First, the points are often more efficient for
initial data processing: direct application of point cloud data for vi-
sualization omits the need for a separate modeling process for visuali-
zation. In addition, the visualized point cloud is theoretically closer to
the original scan data than a mesh model constructed via a separate
process. Furthermore, several of the modeling workflows used lead to
the omittance of small details (e.g., from building facades), which could
be avoided by direct application of point clouds. Finally, managing the
levels of detail (LOD) when visualizing a 3D scene is easier with points,
as it can be accomplished by displaying more or less points with varying
volume according to the requested LOD.

Our development efforts allow the use of point clouds beyond
capabilities offered by current existing software functions. By realizing
the real-time lighting and interaction functions, the work has the po-
tential of improving the user experience associated with point cloud
visualization, expanding the applicability of dense point clouds to new
realms, and offering new tools for geomatics practitioners working with
dense point cloud data sets.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

387



Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This research project was supported by the Academy of Finland, the
Centre of Excellence in Laser Scanning Research (CoE-LaSR) (No.
272195, 307362). The Strategic Research Council at the Academy of
Finland is acknowledged for financial support for the project,
“Competence-Based Growth Through Integrated Disruptive
Technologies of 3D Digitalization, Robotics, Geospatial Information and
Image Processing/Computing – Point Cloud Ecosystem (No. 293389,
314312)” and the Business Finland for the innovation project “VARPU”
(7031/31/2016). The support from the European Social Fund for the
project S21272 is acknowledged.

References

Actueel Hoogtebestand Nederland, 2019,< http://www.ahn.nl/index.html> (accessed
on14.3.2019).

Alatalo, T., Koskela, T., Pouke, M., Alavesa, P., & Ojala, T. 2016. VirtualOulu: colla-
borative, immersive and extensible 3D city model on the web. In: Proc. 21st
International Conference on Web3D Technology. ACM, Anaheim, CA, 22-24 July, pp.
95–103. https://doi.org/10.1145/2945292.2945305.

Barazzetti, L., 2018. Point cloud occlusion recovery with shallow feedforward neural
networks. Adv. Eng. Inf. 38, 605–619. https://doi.org/10.1016/j.aei.2018.09.007.

Bassier, M., Van Genechten, B., Vergauwen, M., 2019. Classification of sensor in-
dependent point cloud data of building objects using random forests. J. Build. Eng.
21, 468–477. https://doi.org/10.1016/j.jobe.2018.04.027.

Besl, P.J., McKay, N.D., 1992. Method for registration of 3-D shapes. Proc. Sensor Fusion
IV: Control Paradigms and Data Structures. International Society for Optics and
Photonics, Boston, MA. pp. 586–607. https://doi.org/10.1117/12.57955.

Bouchiba, H., Deschaud, J.E., Goulette, F., 2018. Raw point cloud deferred shading
through screen space pyramidal operators.

Brown, R.A., 2015. Building k-d Tree in O (knlog n) Time. J. Comput. Graph. Tech. 4 (1).
CesiumJS, retrieved from:< https://cesium.com/cesiumjs/> (Accessed on 10.12.2019).
Chen, Y., Wang, S., Li, J., Ma, L., Wu, R., Luo, Z., Wang, C., 2019. Rapid urban roadside

tree inventory using a mobile laser scanning system. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 12 (9), 3690–3700.

Crassin, C., 2011. GigaVoxels: A Voxel-Based Rendering Pipeline For Efficient Exploration
Of Large And Detailed Scenes. PhD thesis. Grenoble University.

Cura, R., Perret, J., Paparoditis, N., 2017. A scalable and multi-purpose point cloud server
(PCS) for easier and faster point cloud data management and processing. ISPRS J.
Photogramm. Remote Sens. 127, 39–56.

Deibe, D., Amor, M., Doallo, R., 2019. Supporting multi-resolution out-of-core rendering
of massive LiDAR point clouds through non-redundant data structures. Int. J.
Geograph. Inform. Sci. 33 (3), 593–617. https://doi.org/10.1080/13658816.2018.
1549734.

De La Calle, M., Gómez-Deck, D., Koehler, O., Pulido, F., 2011. Point cloud visualization
in an open source 3d glob3. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011 ISPRS
Trento 2011 Workshop, 2-4 March 2011, Trento, Italy.

Diakité, A.A., Zlatanova, S., 2016. First experiments with the tango tablet for indoor
scanning. ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci. 3.

Discher, S., Richter, R., Döllner, J., 2019. Concepts and techniques for web-based vi-
sualization and processing of massive 3D point clouds with semantics. Graph. Models,
101036.

Dong, Z., Yang, B., Hu, P., Scherer, S., 2018. An efficient global energy optimization
approach for robust 3D plane segmentation of point clouds. ISPRS J. Photogramm.
Remote Sens. 137, 112–133. https://doi.org/10.1016/j.isprsjprs.2018.01.013.

Donghui, C., Guanfa, L., Wensheng, Z., Qiyuan, L., Shuping, B., Xiaokang, L., 2017.
Virtual reality technology applied in digitalization of cultural heritage. Clust.
Comput. 1–12. https://doi.org/10.1007/s10586-017-1071-5.

Dorninger, P., Pfeifer, N., 2008. A comprehensive automated 3D approach for building
extraction, reconstruction, and regularization from airborne laser scanning point
clouds. Sensors 8 (11), 7323–7343. https://doi.org/10.3390/s8117323.

Elseberg, J., Borrmann, D., Nüchter, A., 2012. One billion points in the cloud – an octree
for efficient processing of 3d laser scans. ISPRS J. Photogramm. Remote Sens. https://
doi.org/10.1016/j.isprsjprs.2012.10.004.

El-Mahgary, S., Virtanen, J.P., Hyyppä, H., 2020. A simple semantic-based data storage
layout for querying point clouds. ISPRS Int. J. Geo-Inf. 9 (2), 72.

Fraiss, M. Rendering Large Point Clouds in Unity. Bachelor's thesis, TU Wien.
Gao, Z., Nocera, L., Neumann, U., 2012. Visually-complete aerial LiDAR point cloud

rendering. In: Proceedings of the 20th international conference on advances in geo-
graphic information systems. ACM, pp. 289–298.

Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., Tecchia, F.,

2015. Evaluating virtual reality and augmented reality training for industrial main-
tenance and assembly tasks. Interact. Learn. Environ. 23 (6), 778–798. https://doi.
org/10.1080/10494820.2013.815221.

Geoportal Thüringen, 2019,<http://www.geoportal-th.de/de-de/downloadbereiche/
downloadoffenegeodatenth%C3%BCringen/downloadh%C3%B6hendaten.
aspx> (accessed 14.3.2019).

Gonzalez-Aguilera, D., López-Fernández, L., Rodriguez-Gonzalvez, P., Hernandez-Lopez,
D., Guerrero, D., Remondino, F., Menna, F., Nocerino, E., Toschi, I., Ballabeni, A.,
Gaiani, M., 2018. GRAPHOS–open-source software for photogrammetric applica-
tions. Photogram. Rec. 33 (161), 11–29. https://doi.org/10.1111/phor.12231.

Goswami, P., Erol, F., Mukhi, R., Pajarola, R., Gobbetti, E., 2013. An efficient multi-
resolution framework for high quality interactive rendering of massive point clouds
using multi-way kd-trees. Visual Comput. 29 (1), 69–83. https://doi.org/10.1007/
s00371-012-0675-2.

Haala, N., Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS J.
Photogramm. Remote Sens. 65 (6), 570–580. https://doi.org/10.1016/j.isprsjprs.
2010.09.006.

Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D., 2012. RGB-D mapping: Using Kinect-
style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot.
Res. 31 (5), 647–663. https://doi.org/10.1177/0278364911434148.

Hofer, H., Seitner, F., Gelautz, M., 2018, December. An End-to-End System for Real-Time
Dynamic Point Cloud Visualization. In: 2018 International Conference on 3D
Immersion (IC3D), pp. 1–8. IEEE. https://doi.org/10.1109/IC3D.2018.8657915.

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W., 2013. OctoMap: an
efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34 (3),
189–206. https://doi.org/10.1007/s10514-012-9321-0.

Hyyppä, J., Virtanen, J.P., Jaakkola, A., Yu, X., Hyyppä, H., Liang, X., 2017. Feasibility of
Google Tango and Kinect for Crowdsourcing Forestry Information. Forests 9 (1), 6.
https://doi.org/10.3390/f9010006.

Indraprastha, A., Shinozaki, M., 2009. The investigation on using Unity3D game engine in
urban design study. J. ICT Res. Appl., vol. 3, 1, pp. 1–18. http://dx.doi.org/10.
5614%2Fitbj.ict.2009.3.1.1.

Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y., 2010. A
low-cost multi-sensoral mobile mapping system and its feasibility for tree measure-
ments. ISPRS J. Photogramm. Remote Sens. 65 (6), 514–522. https://doi.org/10.
1016/j.isprsjprs.2010.08.002.

Jamei, E., Mortimer, M., Seyedmahmoudian, M., Horan, B., Stojcevski, A., 2017.
Investigating the role of virtual reality in planning for sustainable smart cities.
Sustainability 9 (11), 2006. https://doi.org/10.3390/su9112006.

Julin, A., Jaalama, K., Virtanen, J.P., Maksimainen, M., Kurkela, M., Hyyppä, J., Hyyppä,
H., 2019. Automated multi-sensor 3D reconstruction for the Web. ISPRS Int. J. Geo-
Inf. 8 (5), 221. https://doi.org/10.3390/ijgi8050221.

Karabassi, E.A., Papaioannou, G., Theoharis, T., 1999. A fast depth-buffer-based vox-
elization algorithm. J. Graph. Tools 4 (4), 5–10. https://doi.org/10.1080/10867651.
1999.10487510.

Karjalainen, M., Kankare, V., Vastaranta, M., Holopainen, M., Hyyppä, J., 2012.
Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote
Sens. Environ. 117, 338–347. https://doi.org/10.1016/j.rse.2011.10.008.

Kaushik, M., Nagwanshi, K.N., Sharma, L.K., 2012. A overview of point-based rendering
techniques. Int. J. Comput. Trends Technol. V3 (1), 19–24.

Kharroubi, A., Hajji, R., Billen, R., Poux, F., 2019. Classification and integration of
massive 3d points clouds in a virtual reality (VR) environment. Int. Arch. Photogram.,
Remote Sens. Spatial Inform. Sci. 42, 165–171.

Kobbelt, L., Botsch, M., 2004. A survey of point-based techniques in computer graphics.
Comput. Graph. 28 (6), 801–814.

Kovač, B., Žalik, B., 2010. Visualization of LIDAR datasets using point-based rendering
technique. Comput. Geosci. 36 (11), 1443–1450.

Kuder, M., Žalik, B., 2012. Web-based LiDAR visualization with point-based rendering. In:
2011 Seventh international conference on signal image technology & internet-based
systems. IEEE, pp. 38–45.

Kukko, A., Kaijaluoto, R., Kaartinen, H., Lehtola, V.V., Jaakkola, A., Hyyppä, J., 2017.
Graph SLAM correction for single scanner MLS forest data under boreal forest ca-
nopy. ISPRS J. Photogramm. Remote Sens. 132, 199–209. https://doi.org/10.1016/j.
isprsjprs.2017.09.006.

Kuhn, A., Mayer, H., 2015. Incremental division of very large point clouds for scalable 3d
surface reconstruction. In: Proceedings of the IEEE international conference on
computer vision workshops, pp. 10–18.

Lachat, E., Landes, T., Grussenmeyer, P., 2017. Performance investigation of a handheld
3D scanner to define good practices for small artefact 3D modeling. Int. Arch.
Photogram., Remote Sens. Spatial Inform. Sci. 42.

Labrie-Larrivée, F., Laurendeau, D., Lalonde, J.F., 2016. Depth texture synthesis for
realistic architectural modeling. In: 13th Conference on Computer and Robot Vision.
IEEE, Victoria, Canada, 1-3 June, pp. 61–68.

Lehtola, V.V., Kurkela, M., Hyyppä, H., 2014. Automated image-based reconstruction of
building interiors–a case study. Photogramm. J. Finland 24 (1), 1–13.

Lerma, J.L., Navarro, S., Cabrelles, M., Villaverde, V., 2010. Terrestrial laser scanning and
close range photogrammetry for 3D archaeological documentation: the Upper
Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 37 (3), 499–507.

Li, J., Yang, B., Cong, Y., Cao, L., Fu, X., Dong, Z., 2019. 3D forest mapping using a low-
cost UAV laser scanning system: investigation and comparison. Remote Sens. 11 (6),
717.

Lorensen, W.E., Cline, H.C., 1987. Marching cubes: A high resolution 3D surface con-
struction algorithm. In: Proc. 14th Ann. Conf. Computer Graphics and Interactive
Techniques (SIGGRAPH 87), ACM, Anaheim, CA, 27-31 July, pp. 163–169.

Maas, H.G., Vosselman, G., 1999. Two algorithms for extracting building models from
raw laser altimetry data. ISPRS J. Photogramm. Remote Sens. 54 (2–3), 153–163.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

388

http://www.ahn.nl/index.html
https://doi.org/10.1016/j.aei.2018.09.007
https://doi.org/10.1016/j.jobe.2018.04.027
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0035
https://cesium.com/cesiumjs/
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0050
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0050
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0050
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0055
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0055
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0060
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0060
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0060
https://doi.org/10.1080/13658816.2018.1549734
https://doi.org/10.1080/13658816.2018.1549734
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0070
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0070
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0070
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0070
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0075
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0075
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0080
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0080
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0080
https://doi.org/10.1016/j.isprsjprs.2018.01.013
https://doi.org/10.1007/s10586-017-1071-5
https://doi.org/10.3390/s8117323
https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://doi.org/10.1016/j.isprsjprs.2012.10.004
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0105
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0105
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0115
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0115
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0115
https://doi.org/10.1080/10494820.2013.815221
https://doi.org/10.1080/10494820.2013.815221
http://www.geoportal-th.de/de-de/downloadbereiche/downloadoffenegeodatenth%25C3%25BCringen/downloadh%25C3%25B6hendaten.aspx
http://www.geoportal-th.de/de-de/downloadbereiche/downloadoffenegeodatenth%25C3%25BCringen/downloadh%25C3%25B6hendaten.aspx
http://www.geoportal-th.de/de-de/downloadbereiche/downloadoffenegeodatenth%25C3%25BCringen/downloadh%25C3%25B6hendaten.aspx
https://doi.org/10.1111/phor.12231
https://doi.org/10.1007/s00371-012-0675-2
https://doi.org/10.1007/s00371-012-0675-2
https://doi.org/10.1016/j.isprsjprs.2010.09.006
https://doi.org/10.1016/j.isprsjprs.2010.09.006
https://doi.org/10.1177/0278364911434148
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.3390/f9010006
https://doi.org/10.1016/j.isprsjprs.2010.08.002
https://doi.org/10.1016/j.isprsjprs.2010.08.002
https://doi.org/10.3390/su9112006
https://doi.org/10.3390/ijgi8050221
https://doi.org/10.1080/10867651.1999.10487510
https://doi.org/10.1080/10867651.1999.10487510
https://doi.org/10.1016/j.rse.2011.10.008
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0205
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0205
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0210
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0210
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0210
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0215
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0215
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0220
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0220
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0225
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0225
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0225
https://doi.org/10.1016/j.isprsjprs.2017.09.006
https://doi.org/10.1016/j.isprsjprs.2017.09.006
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0235
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0235
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0235
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0240
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0240
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0240
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0245
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0245
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0245
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0250
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0250
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0260
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0260
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0260
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0265
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0265
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0265


https://doi.org/10.1016/S0924-2716(99)00004-0.
Marroquim, R., Kraus, M., Cavalcanti, P.R., 2008. Efficient image reconstruction for

point-based and line-based rendering. Comput. Graph. 32 (2), 189–203.
Martinez-Rubi, O., Verhoeven, S., Van Meersbergen, M., Van Oosterom, P., GonÁalves, R.,

Tijssen, T., 2015. Taming the beast: Free and open-source massive point cloud web
visualization. In proc. Capturing Reality Forum, The Survey Association, Salzburg,
Austria, 23-25 November.

Matikainen, L., Karila, K., Hyyppä, J., Litkey, P., Puttonen, E., Ahokas, E., 2017. Object-
based analysis of multispectral airborne laser scanner data for land cover classifica-
tion and map updating. ISPRS J. Photogramm. Remote Sens. 128, 298–313. https://
doi.org/10.1016/j.isprsjprs.2017.04.005.

Micheletti, N., Chandler, J.H., Lane, S.N., 2015. Investigating the geomorphological po-
tential of freely available and accessible structure-from-motion photogrammetry
using a smartphone. Earth Surf. Proc. Land. 40 (4), 473–486. https://doi.org/10.
1002/esp.3648.

National Land Survey of Finland, 2019,<https://tiedostopalvelu.maanmittauslaitos.fi/
tp/kartta?lang=en> (accessed on 14.3.2019).

Nebiker, S., Cavegn, S., Loesch, B., 2015. Cloud-Based geospatial 3D image spaces—a
powerful urban model for the smart city. ISPRS Int. J. Geo-Inf. 4 (4), 2267–2291.
https://doi.org/10.3390/ijgi4042267.

Nebiker, S., Bleisch, S., Christen, M., 2010. Rich point clouds in virtual globes–a new
paradigm in city modeling? Comput. Environ. Urban Syst. 34 (6), 508–517. https://
doi.org/10.1016/j.compenvurbsys.2010.05.002.

Nguyen, M.T., Nguyen, H.K., Vo-Lam, K.D., Nguyen, X.G., Tran, M.T., 2016. Applying
virtual reality in city planning. In: International Conference on Virtual, Augmented
and Mixed Reality. Springer International Publishing, pp. 724–735.

Nocerino, E., Menna, F., Remondino, F., Toschi, I., Rodríguez-Gonzálvez, P., 2017. June.
Investigation of indoor and outdoor performance of two portable mobile mapping
systems. In: Proc. Videometrics, Range Imaging, and Applications XIV. International
Society for Optics and Photonics. (Vol. 10332, p. 103320I).

Nüchter, Andreas, Lingemann, Kai, Hertzberg, Joachim, Surmann, Hartmut, 2007. 6D
SLAM—3D mapping outdoor environments. J. Field Robot. 24 (8–9), 699–722.
https://doi.org/10.1002/rob.20209.

OGC, 2019. 3D Tiles Specification 1.0. Retrieved from:< http://docs.opengeospatial.
org/is/18-053r2/18-053r2.html> (Accessed on 10.12.2019).

Oh, H., Yoon, S.Y., Shyu, C.R., 2008. How can virtual reality reshape furniture retailing?.
Cloth. Text. Res. J., vol. 26, 2, pp. 143–163. https://doi.org/10.
1177%2F0887302X08314789.

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R., Pfeifer, N., 2013. Georeferenced
point clouds: a survey of features and point cloud management. ISPRS Int. J. Geoinf.
2, 1038–1065. https://doi.org/10.3390/ijgi2041038.

Persad, R.A., Armenakis, C., 2017. Automatic co-registration of 3D multi-sensor point
clouds. ISPRS J. Photogramm. Remote Sens. 130, 162–186. https://doi.org/10.1016/
j.isprsjprs.2017.05.014.

Point Cloud Viewer and Tools,< https://www.assetstore.unity3d.com/en/#!/content/
16019> (accessed on 1.4.2019).

Point cloud plugin,< https://pointcloudplugin.com/> (accessed on 17.12.2019).
Poux, F. and Billen, R., 2019a. A Smart Point Cloud Infrastructure for intelligent en-

vironments. Laser scanning: an emerging technology in structural engineering.
Poux, F., Billen, R., 2019. Voxel-based 3D point cloud semantic segmentation: un-

supervised geometric and relationship featuring vs deep learning methods. ISPRS Int.
J. Geo-Inf. 8 (5), 213.

Poux, F., Neuville, R., Hallot, P., Billen, R., 2016. Smart point cloud: Definition and re-
maining challenges. ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci. 4
(W1), 119–127.

Preiner, R., Jeschke, S., Wimmer, M., 2012. Auto splats: dynamic point cloud visualiza-
tion on the GPU. EGPGV 139–148.

Reardon, S., 2012. A digital ark, come fire or flood. New Sci. 216 (2890), 22–23. https://
doi.org/10.1016/S0262-4079(12)62875-9.

Reger, G.M., Gahm, G.A., 2008. Virtual reality exposure therapy for active duty soldiers.
J. Clin. Psychol. 64 (8), 940–946. https://doi.org/10.1002/jclp.20512.

Richter, R., Discher, S., Döllner, J., 2015. Out-of-core visualization of classified 3d point
clouds. In: 3D Geoinformation Science. Springer International Publishing, pp.
227–242.

Rua, H., Alvito, P., 2011. Living the past: 3D models, virtual reality and game engines as
tools for supporting archaeology and the reconstruction of cultural heritage–the case-
study of the Roman villa of Casal de Freiria. J. Archaeol. Sci. 38 (12), 3296–3308.
https://doi.org/10.1016/j.jas.2011.07.015.

Rusinkiewicz, S., Levoy, M., 2000. QSplat: a multiresolution point rendering system for
large meshes. In: Proc. 27th annual conference on Computer graphics and interactive
techniques, pp. 343–352.

Saarinen, N., Vastaranta, M., Näsi, R., Rosnell, T., Hakala, T., Honkavaara, E., Wulder,
M.A., Luoma, V., Tommaselli, A.M., Imai, N.N., Ribeiro, E.A., 2018. Assessing bio-
diversity in boreal forests with UAV-based photogrammetric point clouds and hy-
perspectral imaging. Remote Sens. 10 (2), 338. https://doi.org/10.3390/
rs10020338.

Sainz, M., Pajarola, R., 2004. Point-based rendering techniques. Comput. Graph. 28 (6),
869–879. https://doi.org/10.1016/j.cag.2004.08.014.

Santana, J.M., Trujillo, A., Ortega, S., 2019. Visualization of large point cloud in unity.
Eurographics (Posters) 23–24.

Scheiblauer, C., Wimmer, M., 2011. Out-of-core selection and editing of huge point
clouds. Comput. Graph. 35 (2), 342–351.

Schütz, M., 2016. Potree: Rendering large point clouds in web browsers. Technische
Universität Wien, Wiedeń.

Schütz, M., Wimmer, M., 2015. High-quality point-based rendering using fast single-pass
interpolation. In: 2015 Digital Heritage, Vol. 1, pp. 369–372. IEEE.

Schütz, Markus, Krösl, Katharina, Wimmer, Michael, 2019. Real-time continuous level of
detail rendering of point clouds. 2019 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR). IEEE, pp. 103–110.

Scottish Remote Sensing Portal, 2019,< https://remotesensingdata.gov.scot/> (ac-
cessed on 14.3.2019).

Shi, W., Ahmed, W., Li, N., Fan, W., Xiang, H., Wang, M., 2019. Semantic geometric
modelling of unstructured indoor point cloud. ISPRS Int. J. Geo-Inf. 8 (1), 9. https://
doi.org/10.3390/ijgi8010009.

Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer, London.
Toschi, I., Ramos, M.M., Nocerino, E., Menna, F., Remondino, F., Moe, K., Poli, D., Legat,

K., Fassi, F., 2017. Oblique photogrammetry supporting 3D urban reconstruction of
complex scenarios. Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci. 42.

Tredinnick, R., Broecker, M., Ponto, K., 2015. Experiencing interior environments: New
approaches for the immersive display of large-scale point cloud data. Proc. IEEE
Virtual Reality (VR) 297–298.

Tschirschwitz, F., Büyüksalih, G., Kersten, T.P., Kan, T., Enc, G., Baskaraca, P., 2019.
Virtualising an ottoman fortress–laser scanning and 3d modelling for the develop-
ment of an interactive, immersive virtual reality application. Int. Arch. Photogram.,
Remote Sens. Spatial Inform. Sci., vol. 42, 2/W9.

Vaaja, M., Hyyppä, J., Kukko, A., Kaartinen, H., Hyyppä, H., Alho, P., 2011. Mapping
topography changes and elevation accuracies using a mobile laser scanner. Remote
Sens. 3 (3), 587–600. https://doi.org/10.3390/rs3030587.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D., Ravada,
S., Tijssen, T., Kodde, M., Gonalves, R., 2015. Massive point cloud data management:
design, implementation and execution of a point cloud benchmark. Comput. Graph.
49, 92–125. https://doi.org/10.1016/j.cag.2015.01.007.

Vincke, S., Hernandez, R.D.L., Bassier, M., Vergauwen, M., 2019. Immersive visualisation
of construction site point cloud data, meshes and BIM Models in a VR environment
using a gaming engine. Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci.-
ISPRS Arch. 42, 77–83.

Virtanen, J.P., Hyyppä, H., Kämäräinen, A., Hollström, T., Vastaranta, M., Hyyppä, J.,
2015. Intelligent open data 3D maps in a collaborative virtual world. ISPRS Int. J.
Geo-Inf. 4 (2), 837–857. https://doi.org/10.3390/ijgi4020837.

Virtanen, J.P., Kukko, A., Kaartinen, H., Jaakkola, A., Turppa, T., Hyyppä, H., Hyyppä, J.,
2017. Nationwide point cloud—the future topographic core data. ISPRS Int. J. Geo-
Inf. 6 (8), 243. https://doi.org/10.3390/ijgi6080243.

Vosselman, G., Maas, H.G., 2010. Airborne and Terrestrial Laser Scanning. CRC Press.
Wang, L., Xu, Y., Li, Y., 2017. Aerial LIDAR point cloud voxelization with its 3D ground

filtering application. Photogramm. Eng. Remote Sens. 83 (2), 95–107.
Weinmann, M., 2016. Reconstruction and analysis of 3D scenes: from irregularly dis-

tributed 3d points to object classes. Springer, 1st ed. 2016 edition, 233 pages.
Wirth, F., Quchl, J., Ota, J. and Stiller, C., 2019, June. PointAtMe: Efficient 3D Point

Cloud Labeling in Virtual Reality. In: 2019 IEEE Intelligent Vehicles Symposium (IV).
IEEE. https://doi.org/10.1109/IVS.2019.8814115, pp. 1693–1698.

Xu, C., Fréchet, S., Laurendeau, D., Mirallès, F., 2015. Out-of-core surface reconstruction
from large point sets for infrastructure inspection. In: Proc. IEEE 12th Conference on
Computer and Robot Vision (CRV), pp. 313–319.

Ye, M., Wei, S., Zhang, D., 2016. An Approach of Web-based Point Cloud Visualization
without Plug-in. In: IOP Conference Series: Earth and Environmental Science, 46(1).

Yu, A., Mei, W., 2019. Index model based on top-down greedy splitting R-tree and three-
dimensional quadtree for massive point cloud management. J. Appl. Remote Sens.,
vol. 13, 2, 028501. https://doi.org/10.1117/1.JRS.13.028501.

Yu, X., Litkey, P., Hyyppä, J., Holopainen, M., Vastaranta, M., 2014. Assessment of low
density full-waveform airborne laser scanning for individual tree detection and tree
species classification. Forests 5 (5), 1011–1031. https://doi.org/10.3390/f5051011.

Zeng, X., 2012. WebGL based LiDAR Point clouds visualization. J. Hunan Univ. Sci.
Technol., China 27 (4), 60–64.

Zhang, J., Huang, W., Zhu, X., Hwang, J.N., 2014. A subjective quality evaluation for 3D
point cloud models. In: Proc. 2014 International Conference on Audio, Language and
Image Processing, pp. 827–831.

Zhao, J., Wallgrün, J.O., LaFemina, P.C., Normandeau, J., Klippel, A., 2019. Harnessing
the power of immersive virtual reality-visualization and analysis of 3D earth science
data sets. Geo-spatial Inform. Sci. 1–14.

Zollhöfer, M., Stotko, P., Görlitz, A., Theobalt, C., Nießner, M., Klein, R., Kolb, A., 2018.
State of the Art on 3D reconstruction with RGB-D cameras. Comput. Graphics Forum
37 (2), 625–652.

J.-P. Virtanen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 375–389

389

https://doi.org/10.1016/S0924-2716(99)00004-0
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0280
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0280
https://doi.org/10.1016/j.isprsjprs.2017.04.005
https://doi.org/10.1016/j.isprsjprs.2017.04.005
https://doi.org/10.1002/esp.3648
https://doi.org/10.1002/esp.3648
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta%3flang%3den
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta%3flang%3den
https://doi.org/10.3390/ijgi4042267
https://doi.org/10.1016/j.compenvurbsys.2010.05.002
https://doi.org/10.1016/j.compenvurbsys.2010.05.002
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0320
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0320
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0320
https://doi.org/10.1002/rob.20209
http://docs.opengeospatial.org/is/18-053r2/18-053r2.html
http://docs.opengeospatial.org/is/18-053r2/18-053r2.html
https://doi.org/10.3390/ijgi2041038
https://doi.org/10.1016/j.isprsjprs.2017.05.014
https://doi.org/10.1016/j.isprsjprs.2017.05.014
https://www.assetstore.unity3d.com/en/%23!/content/16019
https://www.assetstore.unity3d.com/en/%23!/content/16019
https://pointcloudplugin.com/
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0365
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0365
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0365
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0370
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0370
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0370
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0375
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0375
https://doi.org/10.1016/S0262-4079(12)62875-9
https://doi.org/10.1016/S0262-4079(12)62875-9
https://doi.org/10.1002/jclp.20512
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0390
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0390
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0390
https://doi.org/10.1016/j.jas.2011.07.015
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0400
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0400
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0400
https://doi.org/10.3390/rs10020338
https://doi.org/10.3390/rs10020338
https://doi.org/10.1016/j.cag.2004.08.014
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0415
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0415
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0420
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0420
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0425
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0425
http://refhub.elsevier.com/S0924-2716(20)30069-1/optmOwxCTaz3e
http://refhub.elsevier.com/S0924-2716(20)30069-1/optmOwxCTaz3e
http://refhub.elsevier.com/S0924-2716(20)30069-1/optmOwxCTaz3e
https://remotesensingdata.gov.scot/
https://doi.org/10.3390/ijgi8010009
https://doi.org/10.3390/ijgi8010009
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0445
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0450
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0450
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0450
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0455
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0455
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0455
https://doi.org/10.3390/rs3030587
https://doi.org/10.1016/j.cag.2015.01.007
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0480
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0480
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0480
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0480
https://doi.org/10.3390/ijgi4020837
https://doi.org/10.3390/ijgi6080243
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0495
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0500
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0500
https://doi.org/10.3390/f5051011
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0535
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0535
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0545
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0545
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0545
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0550
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0550
http://refhub.elsevier.com/S0924-2716(20)30069-1/h0550

