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We present an approach for generating local numerical basis sets of improving accuracy for first-
principles nanoplasmonics simulations within time-dependent density functional theory. The method
is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but
computationally demanding due to the semi-core d-electrons that affect their plasmonic response.
The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated
Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to
the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving
accuracy up to the complete basis set limit and demonstrate that the performance of the basis
sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with
various exchange-correlation functionals. This work promotes the use of the local basis set approach
of controllable accuracy in first-principles nanoplasmonics simulations and beyond. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4913739]

I. INTRODUCTION

Plasmonics attracts increasing interest due to its techno-
logical relevance in numerous applications, such as biochem-
ical sensing,1 sub-wavelength light manipulation,2 and photo-
voltaics.3 Plasmon resonances in metal nanoparticles can
be qualitatively understood by classical electromagnetism,
but the accurate description of nanometer-size particles or
systems with features in the subnanometer range requires
more elaborate approaches. In these systems, the plasmonic
response is affected by quantum effects, such as electron spill-
out at the surface and electron tunneling.4 A number of recent
studies have demonstrated that the regime where these effects
start to play a role is experimentally accessible.5–9

To study quantum effects in the plasmonic response
computationally, one often resorts to time-dependent den-
sity functional theory10 (TDDFT) simulations. Qualitative
understanding on the quantum effects in nanostructures can
be obtained within the jellium approximation,11–14 but it
cannot capture the important atomic structure effects.15 In
addition, the jellium model only describes simple metals
such as sodium, where the optical response is determined by
the valence s-electrons. However, the experimentally relevant
materials for plasmonics are usually coinage metals: copper
(Cu), silver (Ag), and gold (Au).5–9,16,17 In these metals, in
addition to the outermost s-electrons, also the semi-core d-
electrons participate in the response. Although the effects due
to the d-electrons can be accounted for in an approximate

a)Electronic mail: tuomas.rossi@alumni.aalto.fi
b)Electronic mail: susi.lehtola@alumni.helsinki.fi

manner in the jellium model,18 first-principles models are
necessary to obtain accurate results.

Coinage metal systems have been studied through numer-
ous TDDFT simulations, including metal nanoparticles of
different shapes,19–26 nanoalloys,27–31 protected metal clus-
ters,32–36 and nanoparticle dimers.37 However, TDDFT simula-
tions for these systems are computationally demanding. Even
though the calculations can be speeded up with the frozen-core
approximation, coinage metals require explicit calculation
of the semi-core d-electrons in addition to the s-electrons,
resulting in 11 electrons per atom in calculations, in contrast
to, e.g., sodium where it usually suffices to treat only the
single 3s-electron per atom. Consequently, simulated systems
have typically been restricted to the maximum size range
of 100–200 coinage metal atoms,19–23,27–33,35–37 with a few
studies presenting larger systems, such as a Au263 nanorod,26 a
Ag272 nanoshell,24 and a thiolate-protected Au314.34 The calcu-
lations have employed either real-space grid codes26–28,33–36

or the linear combination of atomic orbitals (LCAO) ap-
proach.19–24,29–32,37 Recently, a new LCAO-TDDFT imple-
mentation was developed,25 allowing to push the accessible
system size close to the classical limit (Ag561 presented in
Ref. 25).

A serious problem of the LCAO approach is that it is
prone to errors due to basis set incompleteness—a problem
which can be straightforwardly tackled in the real-space grid
methods. Nevertheless, this issue has not been extensively
discussed in previous nanoplasmonics studies using the LCAO
approach. Instead, a reasonable accuracy of the results has
been checked by calculations of test systems with larger basis
sets of the available basis set series19,20,24 or by comparing to
real-space grid results.25

0021-9606/2015/142(9)/094114/9/$30.00 142, 094114-1 © 2015 AIP Publishing LLC
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The basis set issue is complicated by the fact that conven-
tional basis sets are typically optimized for ground-state
energy calculations.38 For other properties, such as dipole
moments, excited states, or plasmonic charge density oscil-
lations, these basis set series are not expected to yield
quickly converging results.39–43 In the case of photoabsorption
spectra, the accurate description of the dipole moment of the
excited states is essential. This necessitates inclusion of diffuse
functions (i.e., functions with large spatial extent) in the basis
set. Diffuse functions are not present in the energy-optimized
basis sets because of their minor contribution to the ground-
state energy of electrically neutral systems, but they can be
generated into these basis sets by, e.g., minimizing the energy
of anions.38 Alternatively, unoccupied atomic orbitals can be
included in the basis set, which has been found to improve the
description of the photoabsorption of metal nanoparticles.25,44

However, these approaches are not guaranteed to be optimal
for extending the basis sets beyond conventional ground-state
energy calculations.

In the present work, we show that efficient basis sets
specifically optimized for describing the plasmonic opti-
cal response can be systematically generated using the
completeness-optimization (CO) approach.41 CO is a black-
box procedure for generating basis sets for any property at
any level of theory. It has been previously used to generate all-
electron Gaussian-type orbital (GTO) basis sets for calculating
magnetic41,45–50 and magneto-optic51–57 properties as well as
the electron momentum density.42,58 In this work, we present
a straightforward extension of the CO formalism to semi-
numerical basis sets by combining numerical atomic orbitals
(NAOs) with truncated numerical Gaussian-type orbitals
(NGTOs). The NGTOs are selected by a recently developed
automatic CO procedure42,43 to augment NAO basis sets
with the necessary diffuse and polarization functions. We
demonstrate the applicability of the scheme for describing
collective plasmonic excitations in coinage metal clusters.
We optimize the basis sets to reproduce the photoabsorption
spectra of homoatomic dimers and show that the generated
basis sets are transferable to larger nanoparticles and to
different chemical environments in nanoalloys, as well as to
different exchange-correlation (xc) functionals.

The paper is organized as follows. In Sec. II, we give an
overview of the used methodologies—TDDFT, LCAO, and
CO. In Sec. III, we describe our implementation, and in Sec.
IV, we demonstrate the performance of the basis set generation
and test the transferability of the generated basis sets. We
conclude the study in Sec. V.

II. METHODS

A. Time-dependent density functional theory

TDDFT is a well-established formulation of the time-
dependent many-body Schrödinger equation in terms of the
time-dependent electron density.10 The theory is usually
applied within the Kohn–Sham (KS) description of density
functional theory (DFT),59,60 which models the interacting
many-electron system as a non-interacting system in an effec-
tive potential. In this approach, the complicated many-body

interactions are described by the so-called xc functional.
The time-dependent xc functionals are usually treated in the
adiabatic limit, i.e., an instantaneous time-dependent density
is used as input for the ground-state functional.61

The dynamical response, and in particular, the photoab-
sorption spectrum of a given system, can be calculated in two
formally different but equivalent manners within the TDDFT
framework. First, it can be obtained from the time-dependent
dipole moment that is recorded during the explicit real-time
propagation of the KS-orbitals that have been excited from
the ground state by a δ-pulse perturbation.62 Second, the
excitations of the system can be calculated by formulating
the linear density response to an external perturbation in the
frequency space, yielding the Casida matrix equation.63

In this work, we use both the time-propagation and Casida
schemes for calculating photoabsorption spectra. We employ
the open source GPAW program64–69 in TDDFT calculations.
GPAW uses the projector augmented wave (PAW) method70

for freezing the inert core electrons and for obtaining smooth
pseudo-wave functions in the vicinity of the nuclei. The
simulations explicitly include only the outermost electrons,
i.e., for the coinage metals, the semi-core d-electrons, and
the valence s-electrons (11 electrons per atom in total). The
element-specific PAW transformations are constructed at the
scalar-relativistic level of theory. Thus, relativistic effects,
especially important for gold,71 are included implicitly in
the calculations through the PAW transformation. For the
present study, GPAW has the advantage that it can describe
wave functions either on a real-space grid64,65 or within the
LCAO approach.25,66 In both modes, uniform real-space grids
are used for representing electron densities and potentials.
These two modes of operation share a significant portion of
computational framework within the program, which allows
us to compute grid-based spectra and LCAO spectra with
minimal sources of differences apart from the representation
of the wave functions.

B. Linear combinations of atomic orbitals

In the LCAO approach, the single-electron KS wave
function is expressed as

|ψ⟩ =
atoms
a

Na
ν=1

caν |χaν⟩, (1)

where caν are the expansion coefficients for basis functions
|χaν⟩ centered on the atom a, Na denoting the amount of basis
functions on that atom. In a coordinate system centered on the
atom a, an associated basis function is written as a product of
a radial function φa

nl
(r) and a spherical harmonic Ylm(θ,ϕ),

⟨r|χaν⟩ = χaν(r) = φanνlν(r)Ylνmν(θ,ϕ). (2)

Above, ν is a symbolic index over the combinations of nν, lν,
and mν. In this work, radial functions are taken to be either
NAOs or NGTOs as described in Sec. III.

The main advantage of the LCAO approach is that a
sufficiently accurate description of the wave function can
often be achieved with a small number of basis functions. In
addition, in the case of truncated basis functions, the number
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of overlapping basis functions is usually small, which enables
efficient computations. The main drawback of the LCAO
approach is that it is prone to errors due to the incompleteness
of the basis set. Thus, it is important to use basis sets that are
flexible enough for describing wave functions accurately in
the regions that are essential for the property in question.

C. Completeness-optimization

CO is a general approach for generating optimal basis sets
for any chosen property.41 The method is based on the concept
of the completeness profile40 that is defined as

Yl(α) =
N

µ,ν=1

⟨gl(α)|χµ⟩S−1
µν⟨χν |gl(α)⟩, (3)

where |χν⟩ are the basis functions, S−1
µν is the (µ, ν) element

of the inverse overlap matrix orthonormalizing the basis,
and gl(α) is a primitive test function usually taken to be a
normalized Gaussian primitive gl(α) ∝ r le−αr

2
Ylm(θ,ϕ). For

basis functions of the form of Eq. (2), the inner product
⟨gl(α)|χν⟩ ∝ ⟨r lαe−αr

2|φnνlν⟩δlαlνδmαmν. Thus, each value of
the angular momentum l yields a different completeness
profile Yl(α), whereas all m values of a given l yield the same
profile.

The profile essentially measures the validity of the
resolution of the identity operator

N
µ,ν=1

|χµ⟩S−1
µν⟨χν | ≈ I, (4)

which would be exact for a complete basis set (CBS). Corre-
spondingly, the completeness profile satisfies 0 ≤ Yl(α) ≤ 1.

The idea in CO is to generate a basis set that has Yl(α) ≈ 1
within the intervals [αmin

l
,αmax

l
] that are important for the

property in question. This is accomplished by optimizing the
parameters of the basis functions so thatYl is maximized within
the intervals. The number of basis functions needed for this
depends on the tolerance τl for deviations from unity in Yl
within the intervals.41–43 The task of a practical CO algorithm
is to find the optimal limits of the intervals, while keeping
Yl(α) ≈ 1 within the intervals.

In this work, we use Gaussian basis functions charac-
terized by their exponents α and employ the automatic CO
procedure42,43 implemented in the open source ERKALE
program.72,73 The procedure is based on systematic trial and
error searches for determining the CBS limit of the property, as
well as the CBS itself. The algorithm is divided in two phases.
First, in the extension phase, the CBS is found by progressively
extending the basis set with the most important functions until
the property is converged. Each addition of a basis function
corresponds to an extension of the intervals [αmin

l
,αmax

l
] or

decrease of the tolerance τl. Second, in the reduction phase,
the least important basis functions are repeatedly pruned from
the basis, shrinking the αl intervals or increasing τl. During
the optimization, the relative importance of the addition or
removal of a basis function is determined by a user-defined
error metric. In every step of the algorithm, the exponents of
the Gaussian basis functions are determined by maximizing

the completeness profile Yl within the current αl interval. As
a result of the reduction phase, a systematic sequence of basis
sets of decreasing size and accuracy is obtained.

III. IMPLEMENTATION

A. Application of the completeness-optimization
in nanoplasmonics

The CO routine43 has a general interface for basis set
generation. We have written a wrapper program that imple-
ments this interface and calls the GPAW program68 for pho-
toabsorption spectrum calculations. The practical workflow
between the programs is as follows. The optimization routine
forms trial GTO basis sets and feeds them to the wrapper. The
wrapper transforms the GTO sets into NGTOs, prepares the
input for GPAW, and submits the GPAW calculations. Once the
GPAW jobs have completed, the wrapper reads in the results
and returns them to the optimization routine, which interprets
them through the error metric and uses the information to
update the basis set and generate new trials.

The error metric for determining the effect of modifying
the basis set is defined as follows. The error ϵ of a
photoabsorption cross-section σabs(ω) from the corresponding
reference spectrum σref

abs(ω) (given by an earlier CO step) is
defined as

ϵ = min
δ



( ωmax

ωmin

|σabs(ω − δ) − σref
abs(ω)|2dω

)1/2

( ωmax

ωmin

|σref
abs(ω)|2dω

)1/2

+ e(δ/γ)
2 − 1



, (5)

where ωmin and ωmax are the cut-off energies, (e(δ/γ)2 − 1) is a
penalty term for a constant energy shift δ in the spectrum, and γ
describes the stiffness of the penalty function. The error metric
also depends implicitly on the parameters used to broaden
the discrete TDDFT spectrum to model the finite lifetime of
excitations as well as temperature effects and instrumental
resolution. Without explicitly allowing an energy shift δ in the
definition, the error measure would be much more sensitive
to offsets in energy than to changes in intensity. The energy
shift δ is penalized through the penalty term, in which the
parameter γ provides a sliding scale to balance the sensitivity
of the measure between energy and intensity. With γ → 0+,
the penalty term becomes extremely stiff and δ = 0 always
minimizes the error metric, in which case the metric becomes
the usual normalized L2 measure. The error metric is also
used for benchmarking the quality of the obtained basis sets.
In this case, the reference spectrum is obtained from a real-
space grid calculation. However, it is emphasized that during
the optimization, the grid reference is not employed by any
means.

A practical issue concerning the extension of the CO
routine to the frozen-core approximation is that the CO routine
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was initially designed for all-electron calculations. In the
present work, the basis sets only represent the outermost s- and
d-electrons of the coinage metal atoms, as the core electrons
are described implicitly. Thus, the assumptions made for the
composition of the basis set in the all-electron case43 have
been relaxed here, allowing for a non-monotonic amount of
GTOs on consecutive angular momentum shells during basis
set reduction.

B. NAO + NGTO basis sets

The benefit of NAOs is that they are not restricted to be
of any analytical form. Thus, they should excel in the highly
structured atomic core region, which is only slightly affected
by the surrounding chemical environment. Although the PAW
transformation results in a smoother pseudo-wave function in
this region, the NAOs are still pre-eminent for describing the
atomic ground state.

While the generation of minimal-basis NAOs is straight-
forward, the case for polarization and multiple-ζ functions is
not as clear. NAOs do not hold advantages for these functions,
as the forms of the functions are not generally known and
the polarization changes from one system to the other. NAO
polarization and multiple-ζ functions are typically generated
from gas-phase atomic wave functions by splicing the radial
function74 and/or by including bound unoccupied orbitals, but
also other systematic approaches for generating NAO basis
sets have been developed.75–78 Here, (N)GTOs have a definite
advantage, as systematic sets of functions of any angular
momentum can easily be generated. In the default basis sets of
GPAW, NGTOs are employed in addition to numerical orbitals
and splicing.66

We employ the following strategy for basis set generation.
NAOs are used to represent the atomic ground state, for which
they hold the definitive advantage. This minimal basis is then
augmented with NGTOs that are generated by the CO routine,
adding the desired polarization and diffuse functions.

The CO routine treats analytical GTOs, whereas in this
work, numerical basis functions are used. Thus, the analytical
GTOs are smoothly truncated to NGTOs in the wrapper
program by a second-order polynomial so that the radial part
becomes

G(r) = Ar l
�
e−αr

2 − (a − br2)�, (6)

where A is a normalization constant, and the constants a and b
are chosen so that G(rc) = G′(rc) = 0 at the cut-off radius rc.79

The cut-off radius is determined by requiring that the NGTO
differs point-wise from the exact GTO ∝ r le−αr

2
at most by

10−3 a.u.−3/2. This strict criterion distorts the Gaussian shape
negligibly, but, on the other hand, leads to large rc values,
which has a detrimental effect on the computational cost.

Because of the negligible difference between GTOs and
NGTOs, the analytical form is used in the optimization
of the Gaussian primitives, i.e., in the maximization of
completeness profile Eq. (3) determining the exponents of the
primitives. Additionally, the underlying NAOs are neglected
in Eq. (3). Although NAOs (and truncated NGTO forms)
could be straightforwardly included in the optimization of the
completeness profile (Eq. (3)), the effects due to the explicit

account of the NAOs at this stage are expected to be small due
to the different asymptotic forms of NAOs and GTOs. The
incorporation of the underlying NAO basis set is done in the
wrapper program so that its presence is invisible to the CO
routine, and the major effect of NAOs rises implicitly through
the spectrum calculation.

The following ad hoc restrictions are imposed for the
allowed NGTOs. At least 90% of the norm of the function
must be within a sphere of radius 6 Å around the nucleus
and at most 90% of the norm may be within 0.6 Å.80 The
first condition results in the rejection of extremely diffuse
functions that would require impractically large simulation
grids and which would cause severe numerical problems
due to linear dependencies in extended systems. The second
condition ensures that even the tightest functions can be
faithfully mapped to the real-space grid used to describe
their contributions to the electron density. However, tight
functions are not usually needed anyhow because of the PAW
transformation.

C. Numerical parameters

The CO was started from an initial NAO + NGTO basis
set composed of three radial functions on the s-, p-, and d-
shells, totaling 27 basis functions per atom. The initial GTO
basis set was energy-optimized43 for the gas-phase atom in
question. The value γ = 0.4 eV was used in the error metric
(Eq. (5)) during the CO, and the spectra were broadened with
Gaussians using a full width at half-maximum (FWHM) of
0.47 eV. The FWHM and γ parameters used in the CO were
determined by trial and error to obtain a suitable balance
between the energy and intensity sensitivities. The parameters
were not specifically optimized, and other values that achieve
a proper balance are expected to yield similar results. For
the integration limits, ωmin = 0 eV was used, and ωmax was
set to 5.2 eV, 5.4 eV, and 6.7 eV for Cu2, Ag2, and Au2,
respectively. The ωmax limits were estimated from the grid-
reference calculations so that spurious box-state transitions are
excluded. The same parameters are also used in Sec. IV A
for calculating the errors with respect to the grid reference.
The extension phase was terminated when the error between
consecutive spectra was smaller than 0.011. The maximum
angular momentum in the basis set was set to l = 3, allowing
for s-, p-, d-, and f-type GTOs to be generated by the
algorithm. The effect of higher-l basis functions is expected
to be insignificant.

The LCAO spectra of homoatomic dimers were calcu-
lated within Casida’s linear-response TDDFT formalism63

by including the full eigenstate spectrum corresponding to
the finite basis set and averaging over the longitudinal and
transversal components. Other systems and all grid references
were calculated with time-propagation TDDFT62 using a
weak δ-pulse and a time step of 10 as. The Perdew-Burke-
Ernzerhof (PBE) xc functional81,82 in the adiabatic limit was
used in all the calculations, unless otherwise stated. All the
calculations were done as spin-paired. The following GPAW-
specific parameters were used. LCAO mode: grid spacing
h = 0.3 Å and minimal vacuum size around the system dvac
= 6 Å. Grid mode: h = 0.25 Å and dvac = 8 Å. The accuracy
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of the Hartree potential evaluation within the simulation
cell was improved by employing multipole corrections to
the potential.83 The grid mode uses the real-space grid for
describing the wave functions, which explains the smaller h
and larger dvac values needed for converged results. In the
LCAO mode, the numerical basis functions are described on
their specific radial grids, and the uniform real-space grid is
used only for representing the density and potentials.66

In the transferability tests (see Secs. IV B–IV D), the
spectra were convoluted by a Gaussian broadening with
FWHM = 0.20 eV. The value γ = 0.25 eV was used in the
error metric to obtain a reasonable energy/intensity sensitivity.
These parameters yield the same error for a spectrum shift of
0.1 eV and an intensity change by 20% for a test spectrum
with a single absorption peak. The integration limits in the
error metric were set toωmin = 0 eV andωmax = 5 eV to probe
the visible–near-UV region of spectrum.

IV. RESULTS

A. Generation of basis sets

The basis sets were generated independently for Cu,
Ag, and Au by using the photoabsorption spectrum of
the corresponding homoatomic metal atom dimer as the
completeness-optimization target. The dimer bond lengths
were optimized with GPAW by using the default dzp basis sets
and the PBE functional. The obtained bond lengths for Cu2,
Ag2, and Au2 are 2.23 Å, 2.58 Å, and 2.55 Å, respectively. The
used values agree well with the experimental values, 2.22 Å,
2.53 Å, and 2.47 Å, respectively.84

The progression of the CO procedure for the silver dimer
is illustrated in Fig. 1 for different choices of the underlying
NAO basis sets. In the extension phase, the error in the LCAO
calculation decreases rapidly. Once the CBS limit has been
reached, the least-important primitives are pruned out one by
one in the reduction phase. During many sequential steps, the
reduction-phase basis sets yield more accurate results with

FIG. 1. The progression of the CO procedure for Ag2 during the extension
and reduction phases as illustrated by the error with respect to the grid-
calculated reference spectrum (Eq. (5)). Different underlying NAO basis sets
are used: (1) “none”: only NGTOs, (2) “sz”: single-ζ basis of 4d and 5s
orbitals, (3) “szsvp”: single-ζ basis of 4d, 5s, and 5p orbitals, (4) “dzdvp”:
double-ζ basis of 4d, 5s, and 5p orbitals. The cyan circles mark the NAO-only
basis sets.

less basis functions than the ones from the extension phase.
The progression of the algorithm is not completely monotonic,
because the optimized property is not variational.43

For the rest of the work, we focus on the NAO-sz + NGTO
basis sets.85 Then, only a minimal NAO basis set is included,
so that CO produces all the polarization functions necessary
for describing the chemical ground-state environment as well
as the excited state characteristics. Contrary to NAO-only
basis sets, the NAO-sz + NGTO basis sets are completely
general. The occupied orbitals used in the NAO-sz basis can
be generated for any element, whereas the first unoccupied
orbitals may not be bound, in which case they cannot be
directly included. Additionally, the comparison between “sz”
and “szsvp” reduction series in Fig. 1 indicates that the use of
the unoccupied p-orbital in the NAO basis does not result in a
large difference, at least for the silver dimer.

Furthermore, the NAO-sz + NGTO basis sets are expected
to be numerically efficient. We note from Fig. 1 that these
basis sets indeed perform better than either the NAO-dzdvp
+ NGTO sets or the pure NGTO sets. The reasons are that the
NAO-dzdvp basis sets contain extra NAO functions, which are
not free to be optimized by the CO method, and that the pure
NGTO basis sets do not have the advantage of the minimal
NAO-sz basis sets. However, the NAO basis sets depend on the
used xc functional whereas the pure NGTO basis sets could
be more transferable across different functionals. Still, the
underlying NAOs can be easily changed with the functional.
This approach is presented in Sec. IV D.

To illustrate the generated basis sets, we present two
NAO-sz + NGTO basis sets for Cu, Ag, and Au in Fig. 2. The
basis sets with N = 17 are expected to yield decently accurate
results (see Fig. 1) and the N = 36/N = 37 ones are close

FIG. 2. NAO-sz+NGTO basis sets generated by the CO algorithm. Basis
sets with 17 and 36 or 37 functions for Cu, Ag, and Au are shown.
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to the CBS limit. Henceforth, we refer to the N = 17 basis
sets as “CO-1” and the N = 36/N = 37 basis sets as “CO-2.”
The similarity of the basis sets across the studied elements is
evident. In the CO-1 basis sets, the NAO-sz basis is augmented
by two diffuse p-type NGTOs and a single d-type NGTO. In
the CO-2 case, additional NGTOs are included on all shells.
The Gaussian exponents of the NGTOs are similar across all
studied elements, which is expected due to their closely related
chemical characteristics. Yet, even though the shown basis sets
are similar for all elements, the whole basis set series are not
the same, as functions are pruned out in different orders in the
reduction phase. For example, there is no N = 36 basis set for
silver. Note also that the most diffuse p-type NGTOs are at the
constraint limit imposed for NGTOs (see Sec. III B).

B. Transferability of basis sets to larger clusters

The usefulness of basis sets depends on their transfer-
ability to different chemical environments. Here, we consider
the transferability of the basis sets obtained in Sec. IV A
to larger systems by using homoatomic icosahedral clusters
of 13, 55, and 147 atoms as test cases. The clusters were
constructed by adding icosahedral Mackay layers one by
one around a central atom. The structures were relaxed
with GPAW by using the default dzp basis sets and the
PBE functional, but their icosahedral symmetries were not
significantly disturbed.85

We show in Fig. 3 the error in the photoabsorption spectra
(Eq. (5)) for the clusters. We observe a nearly monotonic
increase in the accuracy with increasing basis set size. The
magnitude of the error is similar between different elements,
and the error tends to decrease when the system size increases.

In Fig. 3, we also show for comparison the errors of the
GPAW default dzp basis set and the NAO-dzdvp basis set that
has been used in a previous study.25 The default dzp basis set is
unsuitable for describing the response, which is due to its lack
of diffuse p-functions.25 The NAO-dzdvp basis set provides an
equivalent or better accuracy than the NAO-sz + NGTO basis
set of similar size. However, in contrast to the NAO-only basis
sets, the basis sets generated in the present work allow for
further, systematic improvements in accuracy beyond that of
the NAO-only basis sets.

The insets in Fig. 3 illustrate how the spectra look for the
55-atom clusters calculated with basis sets of different sizes.
We observe that all the spectral features are mostly correct
with the basis sets of 17 or more functions per atom. The
CO-1 spectra suffer from a blue-shift of 0.1–0.2 eV and the
largest improvement in the spectrum when growing the size
of the basis set comes from a red-shift towards the converged
spectrum. The CO-2 basis sets of Cu and Ag are already at the
CBS limit, as the positions of the spectral peaks coincide with
the grid references within 0.05 eV. For Au, the convergence
is slow after N ≈ 24, but also there the CO-2 spectrum is near
the grid reference except for a few details.

C. Transferability of basis sets to nanoalloys

Now, we consider the transferability of the basis sets
that were optimized for homoatomic dimers to heterogeneous

FIG. 3. Transferability of the generated NAO-sz+NGTO basis sets to icosa-
hedral homoatomic coinage metal clusters of 13, 55, and 147 atoms. The
off-line filled markers indicate results calculated with the GPAW default dzp
(N = 15) and NAO-dzdvp basis sets (N = 18). The straight gray line is drawn
to ease the visual comparison. The insets present photoabsorption spectra
of 55-atom clusters calculated with basis sets of increasing size. The grid
reference (thin black line) and the LCAO spectrum with the default dzp basis
(dotted line) are also shown in the insets.

metal clusters, where the chemical environments are different
from the homogeneous systems. As test systems, we take
the core-shell clusters Ag13Cu42, Cu13Ag42, Ag13Au42, and
Au13Ag42, which consist of icosahedral 13-atom cores and
single 42-atom Mackay layers around the cores, as well as two
icosahedral alloys, Cu14Ag20Au21 and Cu18Ag17Au20, which
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FIG. 4. Transferability of the basis sets to alloy clusters. The gray shading is
applied to the grid-reference spectra.

were generated by random substitution of atoms in the 55-atom
icosahedral geometry. The clusters were relaxed analogously
to the homoatomic clusters in Sec. IV B.85

The photoabsorption spectra of the alloy clusters are
shown in Fig. 4. The CO-2 spectra are again in an excellent
agreement with the grid reference. The smaller CO-1 basis set
results in a 0.1–0.2 eV blue-shift of the spectra. Due to the
lower symmetry and breaking of degeneracies, the disordered
clusters have fewer sharp spectral features than the core-shell
clusters. This is also reflected in that only small differences
between the CO-1 and CO-2 spectra can be seen.

The spectra calculated with the default dzp basis sets
are also shown in Fig. 4. As in the case of homoatomic
clusters, these basis sets are unable to sufficiently describe
the photoabsorption spectra. The trends in the results obtained
with the NAO-dzdvp basis sets (not shown) are similar to those
in the homoatomic case.

D. Transferability of basis sets to different xc
functionals

Different xc functionals yield different shapes of the KS-
orbitals. We studied how the generated NGTOs transfer across
various xc functionals. The basis sets were constructed by
augmenting the NAO-sz basis set corresponding to the chosen
functional with the PBE-optimized NGTOs without any further
modification. We used the Ag55 cluster as the test system.
The results for the local density approximation (LDA),86–88 the
Becke-Lee-Yang-Parr (BLYP) functional,89–91 and the solid-
state modification of the Gritsenko-van Leeuwen-van Lenthe-
Baerends potential (GLLB-SC)92,93 are shown in Fig. 5, where
also the PBE results of Fig. 3 are repeated for reference. While
the LDA, PBE, and BLYP functionals predict similar spectra,

FIG. 5. Transferability of the PBE-optimized basis sets to different xc func-
tionals. Results for Ag55 are shown. The GLLB-SC spectrum has been mul-
tiplied by a factor of 0.5. The gray shading is applied to the grid-reference
spectra.

the GLLB-SC spectrum has a distinct shape and stronger inten-
sity. This is due to the d-electron screening in coinage metals
that is captured correctly by the GLLB-SC functional.25,94,95

The default dzp basis sets, shown for comparison in Fig. 5,
reproduce the strong intensity difference between the GLLB-
SC and the other functionals but are inadequate to describe
the detailed structure of the spectra, failing to agree with the
grid references. In contrast, the CO-1 basis sets mostly capture
the detailed differences between the xc functionals, and the
accuracy of the CO-1 basis sets is similar with all the stud-
ied functionals. The CO-2 results are again in an excellent
agreement with the grid references in all cases. Altogether, the
results illustrate notable transferability of the PBE-optimized
CO basis sets to diverse xc functionals.

E. Computational performance

A major advantage of LCAO calculations is that their
computational cost is smaller than that of, e.g., real-space grid

FIG. 6. Time-propagation run-time of the generated basis set series, shown
for the Ag55 and Ag147 clusters calculated with 48 and 96 processors (cores).
The run-time of the default dzp basis set is shown for comparison. The
run-times have been normalized to the run-times of the corresponding grid
references calculated with the indicated number of processors.
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calculations. However, the advantage decreases if large basis
sets must be used. To understand this important issue, we
discuss the effect of basis set size on the computational cost.
Fig. 6 presents the time-propagation run-times of the generated
basis sets as calculated for the Ag55 and Ag147 clusters with 48
and 96 processors (cores).96 Depending on the case, enlarging
the basis set from CO-1 to CO-2 (i.e., from N = 17 to N = 37)
increases the computational cost by a factor of 2 to 5.

The CO-2 calculations are still 5 to 8 times faster than
the grid-reference calculations, while the differences between
the results are minimal as observed in Secs. IV A–IV D. The
calculations with the decently accurate CO-1 basis set are 10
to 40 times faster than the corresponding grid calculations.97

In the Ag147 cluster, the speed-ups are in most cases larger than
in the smaller Ag55 system. This is because the studied systems
are relatively small for the LCAO mode but relatively large for
the grid mode, i.e., when doubling the number of processors
from 48 to 96, the grid mode has excellent scaling, whereas
for the LCAO mode, the benefit from the larger number of
processors is minor, especially for the small Ag55. Thus, the
speed-up factors are expected to be even higher when the
system size is further increased and the LCAO mode is able
to fully take advantage of all the available processors.25

In addition to the number of basis functions, the compu-
tational performance is greatly affected also by the spatial
extent of the basis functions. The default dzp basis set does
not include diffuse functions that are important for describing
the plasmonic response, leading to smaller run-time than the
CO basis sets of similar size. Within the generated basis
set series, the effect of basis function extent is seen as a
staircase-like behavior in Fig. 6. For example, the addition
of the f-type NGTO (i.e., 7 additional basis functions per
atom) increases the computational time only slightly, because
the added functions are short-ranged. On the other hand, the
addition of the diffuse s- or p-type NGTO (i.e., 1 or 3 basis
functions per atom, respectively) affects the computational
time more clearly due to the functions’ overlap with functions
on nearby atoms. This effect is pronounced in the larger 147-
atom cluster. More aggressive truncation of the NGTOs might
yield better computational performance, but to ensure minimal
deterioration in the accuracy, it may require re-optimization of
the basis sets with the truncation explicitly taken into account
in the CO routine.

V. CONCLUSIONS

In this work, we have addressed the issue of basis
set completeness in time-dependent density functional the-
ory calculations. We have presented the extension of the
completeness-optimization paradigm to the generation of
hybrid NAO + NGTO basis sets and used it to parametrize
high-accuracy basis sets for nanoplasmonics calculations. We
have demonstrated the performance of the scheme for the
coinage metals Cu, Ag, and Au, which are experimentally
interesting but computationally challenging due to their semi-
core d-electrons that need to be modeled in simulations. We
have shown that the generated basis sets are transferable to
simulations of various metal nanoparticles and nanoalloys as
well as to diverse xc functionals.

The results presented in this work are already promising,
but further improvements of the scheme are still possible. For
instance, the error metric used in the present work may not be
optimal. The metric does not discriminate between different
excitations, looking only at the aggregate intensity. This may
result in spuriously small error values due to interference of
different excitations. The use of an error metric that examines
the convergence of the excitations one by one might yield even
better basis set series.

Another approach deserving further development would
be to revise the reference systems against which the basis sets
are optimized. In the present work, accurate and systematically
improving basis sets were obtained by optimizing the basis
sets for homoatomic metal atom dimers. The generated sets
were demonstrated to be transferable to larger as well as
heterogeneous systems. However, it might be interesting to
optimize basis sets for extended systems, instead. In a dimer,
both atoms are “on the surface,” which results in the generation
of diffuse functions to model the exponentially decaying
density tails. In the solid state, there is no exponential decay,
and diffuse functions are often unnecessary. Nevertheless, our
results indicate that the dynamical response is sufficiently
captured already by the dimer for plasmonics calculations in
larger nanoparticles.

The main advantage of the LCAO approach is that satis-
factory results can be obtained much faster than with,
e.g., grid-type approaches. The main problem of the LCAO
approach with NAOs (compared to GTO basis sets of quantum
chemistry) has been the scarcity of systematically better basis
sets. This issue has been addressed in the present work.

Although used here for nanoplasmonics, the complete-
ness-optimization approach is completely general, being
applicable to any property at any level of theory, also beyond
DFT (see, e.g., Refs. 43 and 58). For this reason, we expect
this approach to be widely useful in materials modeling
by electronic structure methods, allowing for large-scale
simulations with better control on their accuracy.
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