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Abstract
The construction of lightweight structures poses new design challenges as a result of the different mechanics of deformation
experienced by thinner-plated structures. Because of a reduced bending stiffness, thin plates are particularly sensitive to
welding-induced distortions, which include a curvature, in addition to the axial and global angular misalignment observed
on thick plates. The curvature shape and amplitude determine a local angular misalignment at the welded joint, which causes
non-negligible secondary bending effects. Therefore, the commonly used stress magnification factors km solution for flat
plates need a further development to include the curvature effect. This study proposes new analytical formulations, which
extend the applicability of the existing solutions to the assessment of the structural stress of a curved thin plate under an axial
load. The improved formulations are consistent with the geometrical non-linear finite element analysis under compression
(up to ∼ 80% of the buckling limit) and tension (up to the yield strength). A sensitivity analysis is presented in order to
show the dominant role of the curvature effect in the estimation of the km factor. Regardless of the load applied, the presence
of the curvature causes a flat plate solution inaccuracy greater than 10% when the local angular misalignment is more than
1.25 times higher than the global angular misalignment in the case of a thin and slender structure.

Keywords Welding distortions · Angular misalignment · Stress magnification factor · Thin plate · Slenderness ·
Geometrical non-linearity

1 Introduction

Prompted by energy efficiency and fuel economy reasons,
the structural lightweight design for large-size structures
has been in the spotlight of the recent research in several
industrial fields. For instance, modern cruise ships have
been designed to accommodate an increased number of
cabins and open spaces, thus directing shipbuilding towards
new solutions in terms of space and weight in order to
increase the performance of the structure [1–5]. Thin-
walled structures represent an optimum solution to achieve
this design target. However, the implication of thinner
structures poses new design challenges in terms of structural
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durability. The fatigue strength assessment is one of
the key challenges, as thin structures show considerable
susceptibility to manufacturing- and assembly-induced
imperfections [6]. According to Remes et al. [4], a visible
detrimental effect on the fatigue life of thin-walled marine
structures is caused by welding. It has been demonstrated
that less severe distortions may be obtained by low-heat-
input welding methods such as laser-hybrid welding [1,
3, 7]. However, in general, the reduced bending stiffness
of thin and slender plates leads to complex distortion
shapes, and these geometrical imperfections cause a serious
increase in stress at fatigue-critical welded joints.

At present, the fatigue strength assessment of large
structures such as ships is carried out by using the structural
stress approach; see, e.g. [8–10]. The idealised 3D finite
element model of a structure is created without modelling
the distortions. Then the stress increase resulting from
welding-induced distortions is considered separately in the
computation of the stress magnification factor km. Different
fatigue design codes and recommendations such as the IIW
fatigue recommendations [9] classify the welding-induced
imperfections as axial e and angular α misalignment. The
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Fig. 1 Geometrical parameters
describing the welding-induced
imperfections [9]

(a) Axial misalignment e (b) Angular misalignment α

first is related to the plates’ offset, and the latter to a linear
lateral distortion y; see Fig. 1. This engineering approach
was developed for flat plates and it has been successfully
applied in the fatigue design of welded structures for several
decades. Nevertheless, current manufacturing technologies
such as laser-hybrid welding allow the welding of thinner
plates, i.e. plates less than 5 mm thick, for which the flat
plate assumption is violated. For thin (i.e. with a thickness
t < 5 mm) and slender plates (i.e. L/t > 20, with L as
the length between two supports), the distortion shape is
observed to be curved, as shown in Fig. 2 [1, 4]. Therefore,
the existing km factor formulations, derived according to the
flat distortion shapes, cannot properly apply to the fatigue
assessment of thin plates.

In recent years, a considerable research effort has been
devoted to developing a solid basis for the fatigue design of
thin plates in large welded structures. On the basis of the
experimental, numerical and theoretical analysis of small-
scale and full-scale specimens, the fatigue behaviour of
welded thin plates is better understood; see, e.g. [1–4, 7,
11, 12]. The curved distortion shape results in significant
secondary bending stress at the welded joint and thus
reduced fatigue strength. The special challenge is that
this secondary bending stress has a non-linear relationship
with the axial tensile load that is applied, as shown in
Fig. 3. The non-linearity is related to the straightening
effect, which causes the stress magnification factor km

to decrease under an increased tensile load. Thus, the
definition of the structural stress for welded thin plate
structures requires the consideration of the actual distortion
shape and geometrical non-linear finite element analysis
[3]. Additionally, the previous research pointed out the
dominant role of the local angular misalignment αL also in
the structural stress definition for full-scale structures, i.e.
stiffened plate structures [12]. This study also shows that
the simple half-sine function can be utilised in the geometry
modelling of curved distortion shapes. On the basis of these
findings, the development of an analytical km formulation
for curved thin plates is an attractive alternative in order to
avoid time-consuming finite element analyses.

The well-known non-linear analytical solutions for the
stress magnification factor as a result of the angular
misalignment were presented by Kuriyama et al. [13]. These
solutions were developed for flat plates and implemented in,
e.g. the IIW recommendations [9], and for pinned and fixed
boundary conditions (BCs) they assume the forms shown in
Eqs. 1 and 2.

km,angular = 1 + 3αl

2t

tanh
(

β
2

)

β
2

(1)

km,angular = 1 + 3αl

t

tanh (β)

β
(2)

Fig. 2 Welding-induced angular
misalignment for thick and thin
plates. Because of the curved
shape, the local angular
misalignment αL differs from
the global angular misalignment
αG, in the case of thin plates. [1]
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Fig. 3 Non-linear trend of the
stress magnification factor km

with respect to the nominal
stress. At the top right, the
structural stress extrapolation
for the weld toe is shown. [1]

β = 2l

t

√
3σm

E
(3)

In the above formulations, l, t and α are the length, the
thickness and the angular misalignment shown in Fig. 1b,
respectively; σm is the tensile membrane stress that is
applied; and E is the modulus of elasticity of the material
(which is assumed to be linear-elastic). On the basis of the
Euler-Bernoulli Theory, these equations were developed for
distorted plates presenting a linear geometry, i.e. a straight
and ideal beam. This model assumed that the welding-
induced distortion is part of the idealised model, meaning
that the secondary bending moment resulting from the linear
lateral sway (y in Fig. 1b) is considered in the computation.
As a result, the non-linear β-dependent coefficients in Eqs. 1
and 2 analytically describe the straightening effect caused
by tensile loads. Their derivation follows the definition of
the stress magnification factor km as the ratio between the
Hot-Spot structural stress and the nominal stress applied
to the structure, given that the developing deformation
is involved in the structure equilibrium equation. The
developing deformation is indeed included in terms of an
additional bending moment, which results from the load-
distortion interaction.

Recently, Shen et al. [14] have introduced a modified
stress magnification factor to include the magnitude and
shape curvature effect on welded thin plates. Relying
on the Toshio formula ([15]) and modelling the initial
curvature with a quadratic function, the proposed model
has been validated against finite element analysis for fixed
and simply supported BCs (see also [16]). A different
approach has been proposed by Zhou et al. [5], who studied

the butt weld-induced distortions of thin plates. The non-
linear imperfect beam problem is converted into a non-
linear perfect beam one. Specifically, angular and buckling
distortion modes, as well as global and local angular
distortions, have been modelled in terms of equivalent
dummy loads applied to a perfect, i.e. straight, beam.
The model is validated against numerical solutions, with
both tensile and compression loading conditions being
considered. These recent research studies provide valuable
development steps in improving the analytical solution of
the stress magnification factor for welded thin plates with
curved distortions.

Given the state of the art of research, there is a need
to establish an effective analytical model that is able
to describe the overall welding-induced curved distortion
effect on the stress state of a thin slender plate. This
includes not only a deeper study of the influence of
curvature, but also the selection of proper assumptions in
order to make the model clear, simple and as versatile
as possible. In the light of this consideration, this study
derives an analytical model, intended to condense the effects
of geometrical imperfections into the stress magnification
factor km. Given that the axial misalignment affects thick
and thin welded plates equally, the analysis focuses on
the effect of the angular misalignment in global and local
terms. Aiming at understanding the impact of the initial
curvature effect among the other factors, a model sensitivity
analysis is provided for tension and compression loading
conditions. The analytical model will rely on the von
Kármán Theory applied to an idealised structure solved
by means of the slope deflection method and the linear
superposition principle. The aim is to extend the validity
of the analytical model provided for flat plates (implied by,
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e.g. the IIW recommendations) to welded curved plates by
modelling a non-linear distortion. Thereby, the analytical
derivation presented in this paper is intended to bring the
currently recommended km solution for flat plates to an
improved form, which includes the initial curvature effect
into an additional higher order, i.e. non-linear, term. In this
paper, the existing stress magnification factor caused by
the angular misalignment (see Eqs. 1 and 2) is referred to
as km,glob, which refers to the onset of a global angular
misalignment between flat plates.

2Method

2.1 Analytical model for a curved beam and the
related km factor

The analytical model considers that a 1D beam element
represents the longitudinal direction of the welded thin
plate. The welded thin plate is assumed to have symmetric
distortions with respect to the welded seam (see Fig. 2).
Therefore, as a result of symmetry, only one side of the
welded plate is considered, as shown in Fig. 4. The distorted
shape is described by a half-sine curvature wc(x) with its
maximum amplitude a0 at mid-length and a linear lateral
sway ws(x), which causes a vertical offset y0 of the loaded
end opposite to the origin of the beam. The respective
functions are reported in Eqs. 4 and 5. In the analysis, the
distortion is modelled according to the optical geometry
measurements on fatigue test specimens of welded joints
from [1].

wc(x) = a0 sin
(πx

l

)
(4)

ws(x) = y0x

l
(5)

In the model, the local angle αL (see Fig. 4) is defined as in
Eq. 6.

αL = αa0 + αy0 (6)

The two angle components are shown in Eqs. 7 and 8.

αa0 = arctan

(
d

dx
a0 · sin

(πx

l

))
|x=0 = arctan

(a0π

l

)

(7)

αy0 = arctan

(
d

dx

y0x

l

)
|x=0 = arctan

(y0

l

)
. (8)

Thus, the local angle αL is equal to the global angle αG only
if the curvature amplitude a0 is equal to zero (i.e. for a flat
distorted shape).

A remote load P is applied at the end opposite to the weld
seam. Along with the boundary condition of the structure, it
is shown in Fig. 4. As a result of symmetry at the weld seam
location, this end is the fully fixed one. The loaded end has
fixed or pinned BCs.

The fixed (i.e. clamped) boundary condition reflects the
fatigue testing condition of small-scale specimens or the
case of a welded plate supported by a panel frame. In
these cases, the loaded end can be considered as clamped
against bending rotation. This common approach was also
considered by Lillimäe et al. [2]. However, on the basis of
previous studies of stiffened panel structures (e.g. [12]), any
boundary condition far away from the weld location does
not have a significant effect, meaning that the beam end
opposite to the weld location can be assumed to be a pinned
end, i.e. the bending rotation is left free. Thus, this study
assesses both the fixed and pinned beam configurations,
which, according to what is explained above, differ only
in terms of the bending rotation experienced at the loaded
end (i.e. = 0 for a fixed end and �= 0 for a pinned end),
while the deflection is left free. Given its slenderness, the
small-scale specimen or a plate strip taken from welded
thin plate structures could be treated as a 1D beam with
negligible shear effects. Therefore, the displacement field
from the classical Euler-Bernoulli Theory (EBT) applies
to such a problem. In order to include the effect of the
geometrical non-linearity, the von Kármán strain solution
for small displacement and moderate rotation is considered;

Fig. 4 Idealised beam model of
a welded distorted thin plate
under static load (P > 0)
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see, e.g. [18]. The principle of virtual displacement allows
the governing equations of motion to be computed by
also superimposing the initial shape onto the developing
deflection. As a result of the effect of the geometrical
non-linearity, the beam problem is statically indeterminate
and the slope deflection method is applied to achieve a
closed-form solution. Moreover, given the validity of the
superposition principle, a step-by-step process is used for an
easy approach in which the effects of the lateral sway and
the curvature are decoupled. The beam is considered to be
made of an isotropic homogeneous material with a modulus
of elasticity E. The material is assumed to remain elastic
since only small-scale yielding at the notch tip exists in the
high-cycle fatigue range. Below, the analytical solution is
formulated for tension loading and then also expanded for
compressive loading in Section 2.7.

2.2 Geometrical non-linearity formulation for
curved beam

On the basis of the Bernoulli-Navier hypotheses (see,
e.g. [18, 19]), the displacement field that describes the
mechanical behaviour of the beam is represented in Fig.
5 and expressed in Eq. 9. The beam displacement field
components (u1, u2, u3) respectively indicate the total
displacement in the (x, y, z) directions.

⎧⎨
⎩

u1(x) = u(x) − z dw
dx

u2(x) = 0
u3(x) = w(x)

(9)

In Eq. 9, z is the transverse coordinate measured from
the centroid of the cross-section and x is the longitudinal
coordinate. u is the axial displacement, while w is the
transverse displacement of a point on the x-axis with respect
to the centroid of the cross-section of the beam [18]. As
explained in the literature (e.g. [18, 19]), the axial strain
of the beam can be obtained by imposing the displacement

field onto the Green-Lagrange tensor component Eij =
1
2 (

∂uj

∂xk
+ ∂uk

∂xj
+ ∂um

∂xj

∂um

∂xk
), which, for a beam, reduces to the

axial strain E11 ≈ εxx in Eq. 10.

εxx = ∂u1

∂x1
+ 1

2

(
∂u3

∂x1

)2

=
[

du(x)

dx
+ 1

2

(
dw

dx

)2
]

− z
d2w(x)

dx2

= ε0xx + zε1xx (10)

The term in square brackets in Eq. 10 is the extensional
deformation, while the second term describes the bending
strain. The axial strain thus determined is known as the von
Kármán strain and properly accounts for small displacement
and moderate rotation. The related axial stress is determined
according to Hooke’s law in Eq. (11).

σxx(x) = Eεxx(x) (11)

By applying the principle of virtual displacement (see
Eq. 12) to the bending beam, the governing differential
equation of motion can be found. The procedure is shown
by [18, ch.5].

dWT OT = dWI + dWE

=
∫ l

0

[
Nxx

dδu

dx
+ dw

dx

dδw

dx
Nxx − d2δw

dx2
Mxx

]
dx

−Pδu(l) = 0 (12)

In Eq. 12, Nxx and Mxx are the internal axial force
and bending moment. They are defined positively as in
Fig. 6. In the figure and in the following derivation, they
are addressed as simply N and M , respectively. The x-
coordinate dependence is implied.

Since the virtual displacements δu and δw are indepen-
dent, it is possible to determine two governing equations of

Fig. 5 Euler-Bernoulli beam
axial displacement [18]
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Fig. 6 Ends and internal actions
on the simplified pre-deformed
Beam element

equilibrium for a beam that is only subjected to a tensile
point load P ; see Eq. 13.
{

δu : − dN
dx

= 0

δw : − d
dx

( dw
dx

N) − d2M

dx2
= 0

(13)

Focusing on the deflection of the beam, by integrating twice
and including the initial shape of the beam w0, the equation
becomes:−N(w+w0)−M+Ax+B = 0, where A and B are
the integration constants to be determined by applying the
model boundary conditions (BCs). In terms of nodal forces,
the BCs are shown in Eq. 14.

N(0) = −P V (0) = Va M(0) = Ma

N(l) = P V (l) = Vb M(l) = Mb (14)

In Section 2.3, these BCs are applied along with the null
nodal displacement at the beam ends in order to obtain the
governing ordinary differential equations (ODEs) of the two
beam models.

The ODEs are derived by applying the definition of the
bending moment in Eq. 15 to −N(w+w0)−M+Ax+B =
0.

M(x) =
∫

A

zσdA = −E

∫

A

εzdA = E

∫

A

z2

ρ
dA = EI

ρ

(15)

In Eq. 15, I = ∫
A

z2dA is the principal moment of inertia
of the cross-section of area A and the bending strain ε

is defined as the ratio
(

z
ρ

)
. ρ is the curvature radius of

the deflected axis as shown in Fig. 7. Such a radius is
linearised as in Eq. 16, where w′′ is the second derivative
of the deflection w with respect to the length coordinate x.
This approximation results in an error of about 1% if the
maximum of the first derivativew′ does not exceed 0.08, i.e.
less than 5◦ [17].
1

ρ
= w′′

(1 + w′2) 3
2

≈ w′′ (16)

Applying the approximation in Eq. 16, the differential
equation of bending for small deformations of a slender
beam is found in Eq. 17. Notice that this approximation
applies for tension loading condition, as the error reaches
inappropriate percentages only for very large distortions that
cause critical secondary bending effects to the structure.
However, it may significantly affect the accuracy of
the solution for compression loads, especially when the
structure approaches the buckling instability. For this
reason, some consideration about the validity of the
approximation is provided in Section 4.1.

M(x) = −EIw′′(x) (17)

On this basis, the geometrical non-linearity is considered
by the superposition of the effects in the lever arm
of the tensile load P . The superposition principle is
considered an approach that approximates well for beams
with small geometrical imperfections [19]. The slope
deflection method is a useful way to solve the indeterminate
problem, as suggested by Aristizabal-Ochoa [20] for a

Fig. 7 Bending of a straight bar according to the Bernoulli-Navier
Hypothesis. (Modified from [17])
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second-order analysis of an imperfect beam with semi-
rigid connections, subjected to a compressive axial load and
additional transverse actions. In [20], the solving method is
based on approximation with a sine Fourier series, which
has been shown to be sufficiently accurate to describe the
beam-column deflection under compression, i.e. for the
buckling analysis [19]. The initial deformation is modelled
as a sine series, and the lateral sway is addressed as well. In
[20], the initial imperfections result in additional transverse
loads proportional to the bending stiffness and magnitudes
of the imperfections of the beam-column, thus increasing
the lateral deflection and the effective bending loading
condition. The elastic bending connections at the two ends
a and b are modelled with the stiffness ka and kb in the
plane of bending of the beam. The stiffness indices in Eq. 19
vary between 0 and ∞, so they are replaced, for the sake
of convenience, with fixity factors (see Eq. 19) varying
between 0 (simple connection) and 1 (rigid connection). In
Eq. 18, EI is the flexural rigidity of the beam, while h

indicates its length, as in Fig. 8. The figure represents the
general model in the study conducted in [20].

R(a,b) = k(a,b)

EI
h

(18)

ρ(a,b) = 1(
1 + 3

R(a,b)

) (19)

In this study, ideal BCs are used, so that the fixity factor
for fixed bending rotation is equal to 1 (i.e. a fully rigid
connection), while the pinned end corresponds to 0 (i.e. a
non-rigid connection). The present case also neglects any
load other than the axial one and axial load eccentricities
addressed as ea and eb in the mentioned article.

2.3 Stability analysis of imperfect beams by using
the superposition principle

The procedure used to solve the beam stability analysis
consists of four main stages:

1. computation of deflection and slope deflection equa-
tions of the loaded beam with initial curvature;

2. computation of deflection and slope deflection equa-
tions of the loaded beam with linear lateral sway;

3. derivation of the total deflection and slope deflection
equations by linear superposition of the functions from
the previous steps;

4. determination of the unknowns of the problem (i.e.
computation of the final solution).

Any static analysis concerning the beam equilibrium refers
to Fig. 6 in order to fix a conventional system. In the figure,
the beam is displayed with the positive forces and moments
involved in its equilibrium condition.

Fig. 8 Structural model of an imperfect column with sidesway
partially inhibited and rotational end restraints. Eccentric axial loads
are applied to the column extremes. (Modified from [20])

Stage 1 The first stage requires consideration of the initial
curvature only, thus excluding the lateral sway
y0. Moreover, the selected BCs related to the
deflection of the model are introduced in the
second stage, while the curvature is considered on
a simply supported beam.

By imposing the BCs in Eq. 14 onto the
equilibrium −N(w+w0)−M +Ax+B = 0, and
using Eq. 17, the governing ODE can be obtained;
see Eq. 21. For a simply supported beam, Ma =
Mb = 0 and the beam ends have null deflection,
as indicated in Eq. 20. w1(x) is the deflection
resulting from the initial curvature of the loaded
beam.
{

w1(0) = 0
w1(l) = 0

(20)

w′′
1 (x) − k2w1 (x) = +k2a0 sin

(π x

l

)
(21)
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In Eq. 21, k replaces the quantity
√

P/EI . The
solution to this equation generally assumes the
form w1(x) = C sinh(kx) + D cosh(kx) +
b sin (πx/l), where C and D are constants. The
hyperbolic functions model the homogeneous
solution, while the harmonic one is the particular
solution resulting from the action of P on the
initial curvature. The solution to the ODE is
found by imposing the BCs related to the beam
deflection in Eq. 20. This implies C = D = 0,
while the coefficient b is found by substitution
of the particular solution into the differential
equation. The resulting deflection curve and slope
deflection equation resulting from the sinusoidal
initial curvature under tensile load P is finally
obtained; see Eq. 22.⎧⎨
⎩

w1(x) = − (kl)2a0
(kl)2+π2 sin

(
π x
l

)

w′
1(x) = − a0lπ k2

(kl)2+π2 cos
(

π x
l

) (22)

Stage 2 The second stage of the analysis addresses the
lateral sway imposed onto the cantilever beam.
As seen for the initially curved beam in Stage 1,
the resulting ODE is obtained by imposing the
BCs in Eq. 14 and the nodal deflection in Eq. 23.
The ODE is reported in Eq. 24. w2(x) is the
deflection of the beam with initial lateral sway,
under tension.{

w2(0) = 0
w2(l) = 
 − y0

(23)

w′′
2 (x)−k2w2 (x) = −Ma

EI
+ Ma + Mb − P(
 − y0)

EI l
x

(24)

The solution to the ODE assumes the form
w2(x) = C cosh(kx) + D sinh(kx) + Fx + G,
where C, D, F and G are the constants to be
found by imposing the deflection BCs above. The
deflection and slope deflection equations result as
in Eq. 25.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2(x) = −Ma cosh(kx)
P

+ Mb+Ma cosh(kl) sinh(kx)
P sinh(kl)

−
+ (Ma+Mb−P(
−y0))x

l
+ Ma

P

w′
2(x) = −Mak sinh(kx)

P
+ Mb+Ma cosh(kl)k cosh(kx)

P sinh(kl)
−

+Ma+Mb−P(
−y0)
l

(25)

From the total equilibrium equation of the beam
in Fig. 6, the term 
 is derived, as in Eq. 26.

Ma + Mb − Vbl − P(
) = 0 → 
 = Ma + Mb

P
,

(26)

where Va = Vb = 0 for both the models.
Stage 3 The principle of superposition is applied to

obtain the total deflection w(x), the slope
deflection w′(x) equations and the bending
moment distribution related to a distorted beam
column under tension; see Eqs. 27 and 28. In the
following equations, the term (kl) is replaced by
�, as also indicated by [20].
{

w(x) = w1(x) + w2(x)

w′(x) = w′
1(x) + w′

2(x)
(27)

The bending moment distribution over the beam
length is computed with reference to Eq. 17.

M(x) = Ma cosh(kx) − (Mb + Ma cosh(�)) sinh(kx)

sinh(�)
−

+ �2

�2 + π2

(π

l

)2
a0 sin

(πx

l

)
(28)

Stage 4 In order to determine the unknowns and solve
the problem, the slope deflection method is
applied: the slope BCs are imposed onto the
slope deflection equations computed at the beam
ends (i.e. θa and θb). At this stage, the term

 is substituted according to Eq. 26. Imposing
the slope BCs requires a separate derivation for
the two models with fixed and pinned boundary
conditions, which are respectively analysed in
Sections 2.5 and 2.6. The slope deflection
equations at the beam ends are obtained as in
Eq. 29.
{

θa = w′(0)
θb = w′(l) (29)

2.4 km factor derivation

The results from the stability analysis described above
lead to the analytical computation of the normal stress
distribution along the beam length as a function of the
coordinate x. According to the stress-strain constitutive law
(see Eq. 11), the structural stress includes a membrane (i.e.
axial) stress and a bending one as the related strain.

σstructural(x) = σm(x) + σb(x) (30)

The membrane stress σm and the bending stress σb are
defined as in Eq. 31.
{

σm(x) = P
bt
constant over beam thickness and length

σb(x) = M(x)z
I

(31)

From Eq. 31, it is clear that the bending moment distribution
determines the structural stress trend over the beam length.
Figure 9 represents an example of the top and bottom
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(a) Fixed end beam

(b) Pinned end beam

Fig. 9 Example of the normal structural stress distribution along the
beam length. Hot-spots result in the weld location at x = 0 m

surface stresses for the two configurations. The weld is
located to x = 0 m. It is pointed out that the critical stress,
i.e. the Hot-spot structural stress in Eq. 32, is experienced
at the location of the weld, on the top surface (z = t

2 ).
Figure 10 shows that the normal stress is linearly distributed
over the thickness, according to the basic hypothesis of the
theory, and reaches its peak on the top surface.

σHS = σm + σb (0) |z= t
2

= P

bt
+ Ma

I

t

2
(32)

Eventually, the computation of the stress magnification
factor followed by using its definition.

km = σHS

σm

(33)

2.5 Fixed-end configuration under tension

The step-by-step analytical derivation in Section 2.3 leads
to the computation of the slope deflection equations for the
fixed-end beam. The Stage 4 and the final km derivation are
presented below.

Stage 4 As suggested by [20], the slope deflection
equations at the beam end θa and θb are computed

and adapted into a matrix form; see Eq. 34.
⎧⎨
⎩

θa +
(

�2

�2+π2

)
πa0
l

+ y0
l

θb −
(

�2

�2+π2

)
πa0
l

+ y0
l

⎫⎬
⎭ =

[
S1 S2
S3 S4

] {
Ma

Mb

}

(34)

The terms S1(2,3,4) are defined below.

S1 = S4 = 1
EI
l

�

cosh(�)

sinh(�)

S2 = S3 = 1
EI
l

�

1

sinh(�)
(35)

In order to isolate the unknowns Ma and Mb, the inverse of
the coefficients matrix is computed. The resulting system is
shown in Eq. 37. The slope deflection method requires the
application of the slope BCs in Eq. 36, which for this case
are described in Eq. 36.
{

θa = w′(0) = 0
θb = w′(l) = 0

(36)

{
Ma

Mb

}
=

[
r s

s r

] ⎧⎨
⎩

(
�2

�2+π2

)
πa0
l

+ y0
l

−
(

�2

�2+π2

)
πa0
l

+ y0
l

⎫⎬
⎭ (37)

In Eq. 37, r and s correspond to the expressions in Eq. 38.

r = 1
EI
l

�

cosh(�)

sinh(�)

s = − 1
EI
l

�

1

sinh(�)
(38)

Equation (39) presents the final solution for the bending
moment experienced at the weld location. The formula is
simplified by applying the hyperbolic function properties.

Ma = �EI

l

[
tanh

(
�

2

)
y0

l
+ 1

tanh
(

�
2

)
(

�2

�2 + π2

)
πa0

l

]

(39)

km factor derivation The km factor derivation based on
Eqs. 32 and 33 and using I = bt3/12 in Eq. 39 is obtained
for the fixed-end configuration (see Eq. (41)). The term

� =
√

P
EI

l is replaced by β on the basis of the nomenclature
utilised by, e.g. the IIW recommendations; see Eq. 40.

β = 2l

t

√
3σm

E
(40)

km = 1 + 3y0
t

tanh
(

β
2

)

β
2

+ 6a0π

t

β

(π2 + β2) tanh
(

β
2

) (41)

For the sake of simplicity, in Section 4.2, the discussion
refers to β-dependent coefficients to recall the terms in
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Fig. 10 Structural stress
distribution over the beam
thickness at the weld location
(red line). The Hot-Spot
structural stress (HSS) is
experienced by the top surface

Eqs. 42 and 43.

C1f =
tanh

(
β
2

)

β
(42)

C2f = β

(π2 + β2) tanh
(

β
2

) (43)

These terms are multipliers of (6y0/t) and (6a0π/t),
respectively. These coefficients may also be called straight-
ening coefficients, since they quantify the non-linear
straightening experienced by the distorted beam under ten-
sion. In general (i.e. for any load applied), they weight the
lateral sway and initial curvature effects on the beam stress
state.

2.6 Pinned end configuration under tension

The computation below refers to the assumption of the
pinned-end beam.

Stage 4 In this case, the BCs to be applied at the beam
ends are indicated in Eq. 44.
{

θa = 0
Mb = 0

(44)

By applying the conditions in Eq. 44, the system of the two
slope deflection equations θa and θb is obtained. The slope
deflection equation at the beam end a (i.e. θa) allows its
only unknown Ma to be determined. Thereby, the problem
is solved, including the bending moment distribution shown
in Fig. 9b.

km factor derivation The km factor that is developed is
described by Eq. 45.

km = 1 + 6y0
t

tanh(β)

β
+ 6a0

t

πβ tanh(β)

(π2 + β2)
(45)

The related β-dependent coefficients are C1p and C2p.

C1p = tanh(β)

β
(46)

C2p = β tanh(β)

(π2 + β2)
(47)

2.7 Solution for compression

The equations derived to estimate the km factor under
tension allow for the stress computation in compression,
given that the force P is applied with a negative sign.
Analytically, having a negative force implies the definitions
in Eq. 48.

P < 0 ⇒ k∗ =
√

P

EI
= i

√ |P |
EI

= ik ⇒ �∗ = β∗

= i

(
2l

t

) √
3|σm|

E
= iβ (48)

Knowing also that tanh(β∗) = tanh(iβ) = i tan(β), Eq. 41
changes into Eq. 49.

km = 1 + 3y0
t

tan
(

β
2

)

β
2

+ 6a0π

t

β

(π2 − β2) tan
(

β
2

) . (49)

Similarly, Eq. 45 changes into Eq. 50.

km = 1 + 6y0
t

tan(β)

β
+ 6a0π

t

(−β tan(β))

(π2 − β2)
(50)

Under compression, the β-dependent coefficients (multipli-
ers of (6y0/t) and (6a0π/t)) are determined in Eqs. 51 and
52 for the fixed beam, and Eqs. 53 and 54 for the pinned
beam.

C1−
f =

tan
(

β
2

)

β
(51)
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C2−
f = β

(π2 − β2) tan
(

β
2

) (52)

C1−
p = tan(β)

β
(53)

C2−
p = −β tan(β)

(π2 − β2)
(54)

3 Sensitivity analysis of the curvature effect

3.1 Geometries and boundary conditions studied

The numerical analysis is carried out for varied geometrical
shapes in order to validate the km formulations that are
developed (see Eqs. 41, 45, (49) and (50)) and to study
the effect of a curved shape on the km factor, i.e. the Hot-
Spot structural stress that is experienced, as a function of
the nominal stress. The analysis is limited to the plate
specimens, i.e. beams. The beams are made of steel for
welded thin plates in ship decks with a modulus of elasticity
E = 206.8 GPa and Poisson’s ratio v = 0.3. During
the analysis, the beam cross-section dimensions and length
are varied. Based on small-scale, 3-mm-thick specimen
dimensions, a slenderness ratio of 42 and aspect ratio
(i.e. width-to-thickness ratio) of 6.67 are chosen.While, in
relation to ship deck plate dimensions, the slenderness and
aspect ratios selected are 300 and 100, with a thickness of
4 mm (see [1]). The analysis considers both tension and
compression. The load range for tension is from 1 to 300
MPa, while for compression the analysis is from 0 MPa to
the critical buckling load of the beam, i.e. the Euler load; see
Appendix about buckling limit calculations. Furthermore,
for compression loading, the variation in the slenderness
ratio is limited since high slenderness ratios (e.g. > 100)
do not allow for meaningful analyses because of the low
buckling limit. All the analyses include both the fixed and
pinned boundary conditions at the loaded beam end. The
influence of the distortion shape is analysed by varying the
angle ratio αL/αG between 1 and 40 under tension or 1 and
5 under compression. This allows slightly-to-heavily-curved
components to be analysed. On the evidence of previous
studies ([3, 12]), the local angle is likely to be less than 5◦.

In this study, a wider range is considered, thus enabling a
deeper study of the curvature effect. The lateral sway y0 is
kept constant and equal to 5 mm, as the terms accounting for
it in Eqs. 45 and 41 have already been validated earlier and
are commonly used, e.g. in the IIW recommendations [9].
The selection of 5 mm is based on the earlier experimental
measurements in [3].

3.2 Finite element analysis for validation

Finite element analysis is carried out for the selected
geometry configurations in order to validate the analytical
model and the related results. The geometry of the FE
models is designed on FEMAP (v11.4.1), and the ABAQUS
solver (v6.14-1) is used. Specifically, the modified RIKS
method is applied to run the static analysis for non-linear
geometries. Such analysis runs under the assumption of
large deflections and provides the behaviour of the structure
through linear extrapolation, also considering the non-
linearity caused by the change in the initial distortion due to
tension or compression load. ABAQUS default options are
used for the required analysis settings (see [21]). Thereby,
the convergence criteria for the analysis are a minimum arc
length increment of 10−5 and a maximum number equal
to steps of 100. Figure 11 shows the model for validation
under tension in case of slenderness ratio 300. The 1-D
beam element is subjected to a concentrated, constant force
P applied at the right-hand side, positive in the x-direction.
The BCs imposed onto the two beams are indicated in the
same figure. By reference to the displayed global coordinate
system, the component is clamped at its origin in x = 0 m
(i.e. the left-hand side), while the remaining nodes over its
length are constrained to guarantee a y-symmetry condition.
This implies that the displacement in the y-direction (TY)
and the rotations about the x- and z-axes (RX and RZ,
respectively) are fixed for both the models, as shown in
Fig. 11. In addition, the rotation about the y-axis (RY)
is zero at the loaded end for the fixed end configuration.
The FE mesh created for the beam with slenderness and
aspect ratios 300 and 100, respectively, consists of 600,
2-noded elements of type B31 with a length of 2 mm
each. A convergence analysis, based on the consistency of
the structural stress concentration at the weld location (i.e.
x = 0 m), shows that the analyses conducted with 2-mm-

Table 1 β-dependent coefficients

Coeffs. Tension Compression

Fixed Pinned Fixed Pinned

C1 C1f = tanh
(

β
2

)

β C1p = tanh(β)

β C1−
f = tan

(
β
2

)

β C1−
p = tan(β)

β
C2 C2f = β

(π2+β2) tanh
(

β
2

) C2p = β tanh(β)

(π2+β2) C2−
f = β

(π2−β2) tan
(

β
2

) C2−
p = −β tan(β)

(π2−β2)
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Fig. 11 FE model of the beam
under a tensile load P. The BCs
for the a fixed-end and b
pinned-end model are indicated

long elements agree with those using the element lengths 1
and 0.5 mm (the maximum percentage difference with the
finest mesh is below 0.04%). Before the analyses are run,
the nodal coordinates (x, y, z) of the model input files are
modified according to Eq. 55. Thus, the initial deflection of
the nodes represented in Fig. 11 (see curved line in black) is
measured with respect to the non-deformed beam axis (i.e.
the blue, straight line).

z = a0sin(
πx

l
) + y0x

l
(55)

The model analysed under compression is similarly
designed, given the specified dimensions and loads.
According to the same type of convergence analysis, the
small-scale model is meshed by using 125 B31 beam
elements with a length of 1 mm each. The smaller
dimensions of the beam allow such a mesh to provide a
more accurate solution without time-consuming simulations
through buckling instability.

4 Influence of curvature and geometrical
non-linearity

4.1 Effect of the geometrical non-linearity on the km
factor

The effect of the geometrical non-linearity is studied for
tension and compression loading. Figure 12 shows the stress

magnification factor km as a function of the applied tensile
nominal stress, i.e. the membrane stress, in the case of a
slenderness ratio of 300. The results are given for both
fixed and pinned boundary conditions, as well as different
distortion amplitudes, i.e. local angular misalignment
values. The comparison between the analytical model and
the FEA shows very similar results, having a maximum
difference below 2%. About the curvature approximation,
Eq. 16 is always valid (i.e. w′(x) ≤ 0.08), except when very
large angle ratios (e.g. 40) make the slope reach peaks of
about −0.18. Nevertheless, this results in small errors.

In the figure, the FEA results are plotted with points,
while the lines describe the results of the analytical km

models; see Eqs. 41 and 45. As shown in Fig. 12, a
high geometrical non-linearity effect is observed for all the
results. In the figure, the non-linearity of the relationship
between the structural and membrane stress (i.e. the
km factor) increases as the local angular misalignment
increases. This behaviour is the result of the straightening
effect, which significantly reduces the km factor, since the
initial distortion is reduced as a function of the increased
load. For high slenderness ratios, this straightening effect is
very important. For instance, the fixed beam experiences a
state of stress that results in a reduction of nearly 85% in
the km factor when the load stress applied σm varies from 1
to 300 MPa. The results in Fig. 12 also show a remarkable
increase in the km factor as a result of the presence of the
initial curvature. In general, it dominates the response of the
structure, while the lateral sway is relatively negligible. The

Weld World (2020) 64:729–751740



Fig. 12 Stress magnification
factor (km vs σm) as a function of
applied tensile membrane stress
for different local deformation
angles and boundary conditions
(fixed vs. pinned). αG ≈ 0, 25◦

results also show that the influence of the BCs on the slender
beam under tension is only visible for very low load levels.

The geometrical non-linear behaviour for compressive
loading is presented in Figs. 13 and 14. They show the
stress magnification factor km as a function of the applied
compressive nominal stress σm with a slenderness ratio
of 42. Both the fixed and pinned BCs are analysed by
varying the angle ratio αL/αG between 1 and 5. Similarly
to the tension loading, the geometrical non-linearity effect
is significant and the analytical results are consistent (i.e.
with less than a 2% error) with FEA solutions up to around
80% of the beam’s buckling load σcr . The critical buckling
loads are −97 and −24 MPa for fixed and pinned boundary
conditions, respectively. The departure observed between
analytical and numerical results close to the buckling load
suggests that the analytical model that is developed does not
apply when the beam approaches the instability. In order to
extend its validity range, the approximation of the curvature
in Eq. 16 should be relaxed. Indeed, for a beam with pinned
BCs and with a large angle ratio (e.g. ≥ 5), the slope over
the length of the beam can be higher than (±)0.2. As a
result, the approximation causes more than 10% error at
about 80% of the buckling load. Thereby, in case of very
large distortions and high loading condition, it must be taken
into account that the present model is not reliable.

In Figs. 13 and 14, the lines are obtained by using
the formulations in Eqs. 49 and 50. All the results refer
to the top surface of the beam. The geometrical non-
linear behaviour for compressive loading differs from
the behaviour for tension loading. Furthermore, under
compression, the fixed and pinned beams show different
behaviours. Figure 13 presents the non-linear increase of
km caused by an increasing compression load. Divergence
to +∞ indicates that an unstable condition is reached
close to the buckling limit of the beam, regardless of the
magnitude of the initial distortion. In fact, the curvature
has a greater impact away from the unstable region, where
larger local angular misalignment implies a greater km. On
the contrary, in Fig. 14, the influence of increased local
angular misalignment is not observable for compression
loads below about 20% of the buckling load. Above such a
load level, the geometrical non-linearity causes a non-linear
relationship between km and the nominal stress σm, and the
local curvature starts to affect the stress state magnification.
In this case, the straight beam (i.e. with αL/αG = 1)
undergoes the highest stress concentration. As the local
angle increases, the km factor decreases until the beam
experiences a change in the deformation mechanism, which
turns the top surface stress into tension (i.e. negative km

values). The analytical formulation in Eq. 50 also allows the

Fig. 13 Stress magnification
factor (km vs σm/σcr ) as a
function of applied compression
membrane stress percentage
with respect to the buckling
load, for different local angles.
Fixed end beam
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Fig. 14 Stress magnification
factor (km vs σm/σcr ) as a
function of applied compression
membrane stress percentage
with respect to the buckling
load, for different local angles.
Pinned end beam

structural stress estimation to accurately take into account
such complex phenomena.

4.2 Non-linear behaviour of the β-dependent
coefficients

As shown in Section 2.7, the non-linearity of the
formulations that were developed for the km factor is
analytically described by coefficients that depend on the
term β; see Eq. 40. These β-dependent coefficients are
shown in Table 1. Besides the non-linear dependency that
the coefficients show with β, as β itself is proportional to√

σm, the load applied is further responsible for non-linear
trends. Therefore, in order to understand the km non-linear
trend shown in Figs. 12, 13 and 14, a focus on how the
coefficients develop with the load variation is needed. This
allows the study of km not to depend on the magnitude of
the initial distortion.

From the analytical point of view, under tension, the β-
dependent coefficients converge to a single function (1/β),
which slowly decreases with an increasing load, as in
Figs. 15 and 16. This function can well approximate the β-
dependent coefficients for specific values of β, i.e. when the
slenderness l/t and/or applied membrane stress are high. In

fact, when β > 1 → tanh β → 1, then the coefficients can
be simplified as in Eqs. 56 and 57.

[
C1p; C1f

] →
(
1

β

)
(56)

[
C2p; C2f

] →
(

β
(π2 + β2)

)
≈

(
1

β

)
f orβ � π (57)

For instance, this convergence exists when the applied
tensile membrane stress is larger than 25 MPa for the
slenderness l/t = 300. At a low load, the coefficients
multiplying the amplitude of the initial curvature cannot
neglect the π2 at the denominator, so that the curvature
effect is reduced much more by the straightening with
respect to the lateral sway. Notice that for a membrane stress
lower than 1 MPa, if β < 1, the above approximations are
not valid. Actually, for β << 1, tanh β → β, so that the
coefficients tend to the values shown in Eq. 58.

C1p → 1 C1f → 1

2

C2p → 0 C2f → 2

π2
(58)

Regarding the compression loading condition, the β-
dependent coefficients C1−

p , C2p− and C1−
f diverge

Fig. 15 The β-dependent
coefficients as a function of the
applied tensile membrane stress
σm.l/t = 300
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Fig. 16 The β-dependent
coefficients as a function of the
applied tensile and compressive
membrane stress σm. l/t = 42

to +∞ or −∞, depending on the state of the stress
experienced at the top surface of the beam before buckling
instability is reached. The divergence occurs when the
argument of tan(x) reaches π/2, as those coefficients are
directly proportional to tan(x); see Table 1. C2−

f slowly

approaches 0, being C2−
f ∝ 1

tan(x)
.

The convergence trends explained above are visible in
Figs. 15 and 16. The figures present the coefficients as a
function of the applied nominal load σm for slenderness
ratios of 42 and 300, respectively. The latter only studies
tension loading conditions, as very high slenderness does
not allow for meaningful studies under compression. As
is observable from the figures and from the analytical
approximations, under tension loading, pinned and fixed
BCs result in different stress coefficients for β < 1.
Since β depends on both the slenderness ratio l/t and the
applied stress σm, it is noticeable that for high slenderness,
the effect of the boundary conditions already becomes
negligible around 5 MPa, and the convergence between
first- (C1x) and second-order (C2x) terms occurs at very
low tension loading (i.e. around 10 MPa), while for l/t =
42 these behaviours happen above 50 MPa. In general, an
increased tension loading condition is beneficial for the

distorted beam, if limited within its elastic strain field. In
compression, BCs visibly affect the structural stress when
the nominal applied load is not approaching the buckling
limit (around − 97 and − 24 MPa for fixed and pinned
beams, respectively).

4.3 Influence of the slenderness on β-dependent
coefficients

Figures 17 and 18 present the β-dependent coefficient
profiles as a function of the slenderness l/t (varying from
20 to 300) for unitary applied tension and compression. The
analytical considerations about the approximation of the
coefficients for β < 1 and β > 1 hold in this case, as well,
as the term β is directly proportional to l/t . The function
1/β is also plotted in Fig. 17, where it is pointed out that,
under a low load, such an approximation is valid only for the
C1p coefficient and high slenderness ratios. In tension, the
difference between the coefficients is reduced by increased
slenderness, meaning that the beam becomes more sensitive
to the straightening effect as its slenderness increases.
Considering that an increased load would only shrink the
vertical axis, for very slender beams, the straightening

Fig. 17 The β-dependent
coefficients as a function of
slenderness. Tension load (1
MPa)
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Fig. 18 The β-dependent
coefficients as a function of
slenderness. Compression load
(− 1 MPa)

effect is likely to dominate over the initial distortion,
regardless of its magnitude and topology. An exception
is the trend assumed by C2p, which increases with the
slenderness from a zero starting position. This indicates
that a curved, non-slender, pinned beam is not noticeably
affected by the amplitude of the initial curvature, which
starts actually worsening the stress state when l/t > 180.
An additional effect resulting from increased slenderness is
that the influence of the BCs is considerably reduced: from
a difference of 50% at l/t = 20, C1p and C1f end up at a
10% gap at l/t = 300. Similarly, the percentage difference
between C2p and C2f is around 80%.

Figure 18 for compression points out the early buckling
experienced by slender beams: a pinned beam does
not withstand − 1 MPa compression if its slenderness
overcomes 180; the fixed beam is stiffer overall, but even a
slightly higher load would cause C1−

f to diverge fast.

4.4 Influence of the curvature on the km factor

The influence of the curvature, i.e. the ratio of the angles,
is studied for tension and compression loading conditions.
The study considers a fixed amplitude for the global angle
αG, so as to highlight the effect of having a curvature (i.e. a
local angle αL) for the initial shape of the beam.

From the analytical point of view, according to Eqs. 6, 41
and 45 can be written as in Eqs. 59 and 60, respectively. As
it is known that tan(x) → x and αL = (αL/αG) · αG, the
formulations become linear functions of the local angle for a
given global angle, applied stress and structure dimensions.
For the sake of simplicity, the β-dependent coefficients are
not given in expanded form.

Fixed end: km = 1 + 6 tan(αG)
l

t
C1f + 6(tan(αL) − tan(αG))

l

t
C2f

→ km = 1 + 6αG

l

t
(C1f − C2f ) + 6(αL)

l

t
C2f (59)

P inned end : km = 1 + 6 tan(αG)
l

t
C1p + 6(tan(αL) − tan(αG))

l

t
C2p

→ km = 1 + 6αG

l

t
(C1p − C2p) + 6(αL)

l

t
C2p (60)

For compression loading, to understand the (km vs αL/αG)
relationship, the km factor formulations (see Eqs. 49 and 50)
can be expressed as functions of the angles, as shown for the
tensile case in Eqs. 59 and 60. In this case, the β-dependent
coefficients would be the ones indicated as C1−

f , C2−
f , C1−

p

and C2−
p .

In Fig. 19, the km factor is plotted with a varying
angle ratio αL/αG under unitary tension. Results related to
slenderness ratios of 42 (on the left) and 300, for both the
beam models, are considered. It stands out that increasing
the slenderness results in overall larger slopes and initial
values at a null local angle, while an increase in stress would
cause an effective reduction of the β-dependent coefficients
(see Figs. 16 and 15), thus lowering both the slope and the
km range in Fig. 19. The figure describes a positive growth
of the km factor for higher angle ratios. A strong increase
of l/t implies greater sensitivity to the onset of the initial
curvature, which graphically corresponds to steeper slopes
(the slope coefficients are < 1 for l/t = 42 and > 1 for
l/t = 300). A difference between boundary conditions is
also clearly visible in Fig. 20. Regardless of the slenderness,
when the distorted beam remains flat (i.e. αL/αG = 1), the
pinned boundary condition results in a slightly higher stress
concentration until an angle ratio of about 3 is reached.
This means that in the absence of curvature, the pinned
end gives less stiff behaviour, while the fixed end provides
better resistance to secondary bending effects. However, the
presence of the curvature implies higher reacting moments
for the fixed beam (i.e. higher Hot-Spot structural stress),
which starts to experience larger deformation as soon as
the local angle is big enough to dominate over the global
one in terms of secondary bending moments. This explains
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Fig. 19 The stress magnification factor (kmvsαL/αG) as a function of the angle ratio. Tension load (1 MPa)

the steeper slope observed for the fixed beam. Analytically,
recalling the behaviour of the β-dependent coefficients, it is
always true that C1p > C1f and C2f > C2p. Therefore,
looking at Eqs. 59 and 60, if the local angle is null, the
estimated km for the pinned beam is greater than the other
case, as (C1p − C2p) > (C1f − C2f ). Nevertheless, with
larger slope coefficients, the fixed beam soon experiences
higher stresses at the weld location.

In Fig. 20, the km factor is plotted with varying
angle ratios αL/αG under unitary compression. The results
relate to slenderness ratios of 42 and 150 for both the
beam models. Higher l/t values are not meaningful cases
under compression. Under compression (see Fig. 20), the
slenderness impact is the same as that observed in tension.
The slope and the initial value of the km factor increase for
a slender beam. However, the slope related to the pinned-
end configuration is negative, indicating that the onset of the
initial curvature modifies the distortion mechanism of the
top surface of the pinned beam. Moreover, when l/t = 150,
such a slope is larger than the one for the fixed-end beam.
Physically, this means that a slender fixed beam is less prone
to buckling, and thus to secondary bending effects under
compression (i.e. it is stiffer), than a slender pinned beam.

5 Discussion

The present investigation was focused on an analytical
derivation of stress magnification factors to extend the
existing design formulations for plate welding-induced
angular misalignment (see, e.g. [9]) to the evaluation of
the curvature effect. The structure took into account a
geometrical non-linearity, and it was limited to small strains
and moderate rotations, i.e. the von Kármán assumption was
utilised. Thus, the beam slope was assumed to be below
5◦, i.e. the curvature was approximated as the deflection
second derivative w′′. In the rest of the formulation, the
Euler-Bernoulli beam theory, valid for thin-beams (l/t >

10), was utilised. The derivation was carried out by
superimposing linear and trigonometric displacement fields
to derive the strains, stresses, stress resultants and the
equilibrium equations. This process maintains the existing
design formulations and introduces the curvature effect to
them through summation. As end flexibility can be included
into the derivation in terms of fixity factors [20], it can
be used to model various angular boundary conditions
present in thin-walled structures. The transparency of the
formulation allows the ease of further developments, e.g.

Fig. 20 The stress magnification
factor (kmvsαL/αG) as a
function of the angle ratio.
Compression load (− 1 MPa)
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Fig. 21 Comparison between the present analytical model and the for-
mulations provided in [5] and [14]. a Stress magnification factor as
a function of the compression load percentage with respect to the

buckling load (kmvsσm/σcr ) and b as function of the tension load
percentage with respect to the yielding strength (kmvsσm/σy). FEA
solutions from this study are plotted. l/t = 42 and αL/αG ∼ 5

for higher deformations and thicker beams with different
kinematics. The theory was validated with geometrical non-
linear finite element analyses and showed to have excellent
agreement with them. The comparison with other analytical
formulations, recently published by Zhou et al. [5] and Shen
et al. [14], is now presented. The main difference between
the present work and these two is in the modelling of the
curvature shape and in the solutions methods.

Shen et al. [14] has developed a solution based on
a polynomial quadratic function. In their solution, the
effects of linear lateral sway and curvature (i.e. global
and local angles) are coupled. Zhou et al. [5] modelled
the curvature effect by using notional (i.e. dummy) loads
on an ideal, straight beam, and describing the curvature
with the slopes at the beam ends. This allows to present
a versatile solution in terms of curvature shape, but it
also implies the coupling of global and local effects.
Differently, in the present formulation, the utilisation of
the superposition principle and the modelling of a half-sine
shape allow to decouple the global angular misalignment
from the curvature effect. This makes the use of design
equation easier, as we simply impose an additional term to

the exiting km formulations. The basis of our formulation,
i.e. the trigonometric description of the shape, originates
from the ultimate strength assessment of thin-walled
structures [22–24], in which the modelling of the von
Kármán strains through a trigonometric series is a common
approach. This series type of solution is also extendable for
more complicated initial deformation shapes. These three
different formulations also have differences in the resulting
km factors.

Figure 21 shows the compared results under (a)

compression and (b) tension load for a curved small-scale
specimen (l/t = 42, with t = 3 mm) with clamped
boundary conditions. The present formulation is referred
to as km,loc. Although the formulations are applied for
the same global and local angular misalignment, the km

factor by [5] and the present solution show a difference,
which is also due to the respective solution methods. In
fact, the modelling by dummy loads utilised by Zhou et al.
[5] leads to a solution composed by few additional terms
with respect to the present solution. Nevertheless, the
percentage difference is under 5% in compression and
gradually increases under tension, but staying below 7%, for

Fig. 22 Comparison between
the present analytical model and
the formulations provided in [5]
and [14]. Stress magnification
factor as function of the tension
load percentage with respect to
the yielding strength
(kmvsσm/σy). l/t = 300 and
αL/αG ∼ 5
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Table 2 Compared km,angular

factor formulations for tension
loading condition

Pinned BCs Fixed BCs

km,glob 1 + 6y
t

tanh(β)

β 1 + 3y
t

tanh( β
2 )

β
2

km,loc 1 + 6y0
t

tanh(β)

β + 6a0πβ tanh(β)

t (π2+β2) 1 + 3y0
t

tanh( β
2 )

β
2

+ 6a0πβ
t (π2+β2) tanh( β

2 )

increasing load. While these two formulations well estimate
the FEA results in compression up to around the 80% of
the buckling load of the structure (i.e. ∼ −97 MPa), the
km factor by [14] generally differs from the others by more
than 10%. On the contrary, under tension load, it slowly
converges toward the solution presented by Zhou et al. [5],
but the difference with km,loc remains around the 10%. In
this case, the present model only differs in the particular
solution of the ODE of motion that assumes the form of
the imposed initial shape. Notice that the FEA results are
exactly estimated by the present analytical model, but the
disagreement with respect to the other models is clearly due
to the said differences.
If the slenderness ratio is increased to 300, as shown in
Fig. 22, the km factor by Shen et al. [14] and the present
solution differ less than 5% once the tension load is higher
than 45 MPa (i.e. ∼ 12% of the yielding strength). In the
same figure, a percentage difference < 5% between km,loc

and the formulation by [5] occurs around 140 MPa (i.e.
∼ 40%).

The previous comparison justifies the choice of limiting
the analytical derivation for the improved km factor
estimation to a half-sine curvature that led to a reliable
analytical solution in which the global and local angular
misalignment effects are clearly decoupled. As shown
in Section 3, this simplicity in the formulation allows
for a systematic sensitivity analysis, which brings up the
role of each involved parameter. Furthermore, the derived
analytical solution is similar to the analytical factor for
angular misalignment between flat plates (i.e. km,glob). The
flat plate solution is extended by a second-order term to
consider the curvature for both pinned and fixed BCs; see

km,loc in Table 2. The same holds in compression, if the
km,glob formulations are modified with the same approach
followed in Section 2.7, i.e. by using the definitions in
Eq. 48. The flat and curved plate solutions that are compared
rely on the same basics, which include the initial distortion
and the developing deflection into the beam equilibrium.
However, the km,glob formulations are not intended to
describe the onset of a local angular misalignment as a
result of a curved shape. Referring to the formulations
derived for tension loads, as the β-dependent coefficients
are always positive (see Figs. 15 and 16), it is evident that
the km,glob results in an underestimation of the structural
stress for curved shapes, if α = αG as by definition.
In fact, the term that accounts for the initial curvature is
missing (see the framed terms in Table 2), meaning that
the angle portion αa0 defined in Eq. 7 is not included in
km,glob. This underestimation is expected to diminish for
a small amplitude of the initial curvature and when the β-
dependent coefficients C2f,p become smaller, i.e. for an
increasing straightening effect. As observed in Sections 4.2,
this happens at high loading conditions, especially for very
slender beams.

In order to understand to what extent the local angular
misalignment and the load that is applied make the km,glob

formulations unsuitable, the relative percent difference, or
error, between the two analytical approaches is reported as a
function of the angle ratio for slendernesses of 300, 42 and
20; see, respectively, Figs. 23, 24 and 25. The relative error
is computed as e = (km,loc−km,glob)/km,loc%. In the figure,
the data refers to distorted beams with αG ∼ 0, 24 and αG ∼
2◦ for slenderness ratios of 300 and 42, respectively. Both
these angles correspond to about a 5-mm-high lateral sway

Fig. 23 Percent error plotted as a function of the angle ratio (evsαL/αG) for a fixed and b pinned boundary conditions under tension load.
L/t = 300 and initial lateral sway y0 = 5 mm

Weld World (2020) 64:729–751 747



Fig. 24 Percent error plotted as a function of the angle ratio (evsαL/αG) for a fixed and b pinned boundary conditions under tension load.
L/t = 42 and initial lateral sway y0 = 5 mm

Fig. 25 Percent error plotted as a function of the angle ratio (evsαL/αG) for a fixed and b pinned boundary conditions under tension load.
L/t = 20 and initial lateral sway y0 = 5 mm

Fig. 26 Percent error plotted as a function of the angle ratio (evsαL/αG) for a fixed and b pinned boundary conditions under compression load.
L/t = 42 and lateral sway y0 = 5 mm
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Fig. 27 Percent error plotted as a function of the angle ratio (evsαL/αG) for a fixed and b pinned boundary conditions under compression load.
L/t = 20 and initial lateral sway y0 = 5 mm

y0. For l/t = 20 the global angle is kept to ∼ 2◦ , as for
l/t = 42, assuming that only the thickness increases up to∼
6 mm. Figures 23 and 24 show that whenever the amplitude
of the initial curvature a0 �= 0 (i.e. αL/αG �= 1), km,glob

cannot provide reliable results either for (a) fixed or (b)

pinned boundary conditions. In fact, the percent error shows
a very steep increase even at small angle ratios. Despite
the straightening effect, at high loading conditions, km,glob

still considerably underestimates the stress magnification
factor evaluated by using the derived km factors which have
been validated for curved shapes; with a tension load of
300 MPa, e >∼ 12% when the angle ratio is equal to 2
for both fixed and pinned configurations. This suggests that,
regardless of the load applied and the slenderness ratio, if
the initial curvature implies a non-negligible local angular
misalignment, the km,glob formulations need to be extended
to higher-order deformation shapes, i.e. curved shapes. An
exception can be made for a pinned beam under a very low
load; (see Figs. 24 and 25). This depends on the trend seen
for the coefficient C2f,p in Fig. 17.

Figures 26 and 27 show the percent error in the km

estimation using km,glob, for the compression loading
condition applied to (a) fixed and (b) pinned beams with
initial distortion. Slenderness ratios of 42 and 20 and αG ∼
2◦ are considered. Also in this case, the km,glob formulations
result unsuitable for the stress assessment of initially curved
shapes. The impact of the local angular misalignment on the
fixed beam is similar to the one observed for the tension
loading condition, i.e. km,glob greatly underestimates the
structural stress. The error overcomes 20% already under
−1 MPa and with an angle ratio lower than 2. In both
figures, the (a) fixed BCs show overlapping of the errors
related to −1, −5 and −10 MPa, while increasing the
load to −20 MPa results in reduced e values. The reason
is that, when approaching the buckling load, both the
formulations diverge to +∞ and become closer to each
other. However, this is not relevant, as the computed
error at a high compression load remains unacceptable
for engineering purposes. It can be concluded that, for

fixed BCs, it is not possible to neglect the presence of
the curvature shape. Differently, in Figs. 26b and 27b, for
the curved pinned beam, the km,glob formulation ends up
overestimating the stress magnification factor based on the
local angular misalignment. This occurs because the change
in the mechanical behaviour as a result of a pronounced
local angular misalignment (see Section 4.1) cannot be
described by km,glob. In fact, this trend is analytically related
to the coefficient C2−

p (see Eq. 54), which is missing
in the flat plate solution. Nevertheless, under a very low
compression load (i.e. −(1 − 5) MPa) the overestimation
remains below 10% for l/t = 42, meaning that the local
angle does not visibly affect the stress concentration at the
weld location, and both the formulations can be applied to
estimate the stress magnification factor at the weld location.
Analytically, this depends on the C2−

p coefficient trend,
which is close to 0 at a low compression load (i.e. soon
after a change in the mechanical behaviour of the beam);
see Fig. 16. As the slenderness ratio is reduced to 20, the
relevance of the initial curvature effect on a pinned beam
is greatly reduced and considerable errors occur only for
pronounced local angles (e.g. αL/αG ∼ 5), which, however,
are not likely to set on thicker and non-slender components.

Based on this comparison, whenever the initial distortion
includes a curvature, the fatigue assessment requires the
consideration of the non-linear geometry, with an exception
for pinned beams under low compression loads.

6 Conclusion

This study presented new analytical formulations for
estimating the stress magnification factors km resulting from
the angular misalignment under axial load, in which the
global effect is decoupled from the local effect of a curved
distortion shape. Based on the von Kármán assumption
applied to an Euler-Bernoulli beam, the analytical derivation
considered the curvature effect by linear superposition.
The formulations extend the existing solutions for flat
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plates by including an additional term that accounts for the
local angular misalignment. The theory was validated with
geometrical non-linear finite element analysis for pinned
and fixed BCs. Based on the present study, the following
conslusions can be drawn below.

The von Kármán assumption can properly describe the
secondary bending effect on curved plates. The use of a half-
sine deformation shape, the superposition principle and the
slope deflection method lead to concise formulations, which
are valid (i.e. under 2% error) as long as the component does
not approach plasticity, i.e. within its yielding strength and
the 80% of its buckling limit.

The local angular misalignment αL considerably affects
the response of the structure. The significance range (i.e.
with error > 10%) of the formulations that are presented
with respect to the flat plate solutions km,glob, requires that
angle ratio αL/αG > 1.75 in case of high slenderness
and tension load. At low load, the angle ratio already
becomes relevant at around αL/αG = 1.25. With reduced
slenderness, the km,glob formulations should not be applied
for curved plates, except when pinned BCs are assumed, and
the load is low (i.e. about from −5 to 1 MPa).

The non-linear relationship between km and the nominal
stress σm that is applied is evaluated by coefficients that
are non-linear in β (with β ∝ l/t and β ∝ √

σm). Under
tension, these coefficients describe the straightening effect,
which significantly benefits the effective fatigue strength,
especially for very slender structures. Although a high
tension load cannot fully recover the detrimental effect
due to the curvature, it makes the lateral sway and the
BCs effects negligible. On the contrary, under increasing
compression load, the BCs effect matters and the structure
undergoes increased structural stress, i.e. reduced fatigue
strength. Differently than the existing formulations, the
coefficients can also describe a change in the response of
the beam, when the compression applied turns into a tension
stress-state for the top surface.

Despite the improvement obtained on the existing flat
plate solutions, some aspects that may considerably affect
the state of stress of a welded thin plate in a stiffened
panel are still neglected. Thereby, although the half-sine
shaped 1D beam is a reliable idealisation for small-
scale specimens, further studies are needed to assess
the engineering relevance of the analytical model for
full-scale, thin-walled stiffened panels. Specifically, these
structures require the consideration of non-ideal rigidity
of the BCs. Furthermore, to enable an exact estimation
until the buckling instability, the assumption that the slope
generally stays below 5◦ should be relaxed. An additional
improvement would bring the study to the consideration
of the in-plane stress redistribution over the plate, which
results from the shear effects and the influence of the whole
stiffening frame of the panel.
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Appendix : Buckling limit computation

In compression, the loading condition is limited to the
buckling limits (i.e. the Euler loads) of the fixed and pinned-
end beams. From the literature (e.g. [17, 18]), the Euler load
is defined as in Eq. 61.

Pcr =
( π

Kl

)2
EI, (61)

where K is a coefficient that depends on the BCs. For
the specific condition in this study, the fixed end requires
K = 1, while K = 2 is applied for the cantilever beam.
In Eq. 61, E is the modulus of elasticity of the material,
I is the principal moment of inertia of the beam, defined
as I = bt3/12 for rectangular sections, and l is the beam
length. The same buckling limits are also obtainable by
analytical computation from Eqs. 49 and 50 by imposing
β/2 and β equal to π/2, respectively (see Eqs. 62 and 63).
In fact, this causes the tangent function to diverge to +∞,
thus describing the unstable condition of the beam under a
compression load.

β
2

= π

2
⇒ Pcr =

(
πt

2l

)2
Ebt

3
(62)

β = π

2
⇒ Pcr =

(
πt

4l

)2
Ebt

3
(63)

In the above equations, the term β is related to the applied
axial load by the expression:

β = 2l

t

√
3P

Ebt
, (64)

where t is the beam thickness and b its width. Considering
a beam 3-mm-thick model with l = 125 and b = 20 mm,
and selecting a linear elastic material with a modulus of
elasticity E = 206.8 GPa, the critical stress (σcr = Pcr/A)

is ∼ (−97) and ∼ (−24) MPa for a fixed and pinned-end
beam, respectively.
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Avi E (2019) Influence of weld-induced distortions on the
stress magnification factor of a thin laser-hybrid welded ship
deck panel. Trends in the Analysis and Design of Marine
Structures. In: Proceedings of the 7th International Conference on

Marine Structures (MARSTRUCT 2019). CRC Press, Dubrovnik,
pp 423–432

13. Kuriyama Y, Saiga Y, Kamiyama T, Ohno T (1971) Low-cycle
fatigue strength of butt welded joints with angular distortion.
International Institute of Welding (IIW). Tokyo, Japan. No. XIII-
621-71

14. Shen W, Qiu Y, Li C, Hu Y, Li M (2019) Fatigue strength
evaluation of thin plate butt joints considering initial deformation.
Int J Fatigue 125:85–96

15. Yada T (1966) On brittle fracture initiation characteristic
to welded structures (3rd report). Journal of Zosen Kiokai
1966(119):134–141

16. Shen W, Qiu Y, Xu L, Song L (2019) Stress concentration
effect of thin plate joints considering welding defects. Ocean Eng
184:273–288

17. Bazant ZP, Cedolin L (1991) Stability of structures: elastic,
inelastic, fracture, and damage theories. Oxford University Press,
Oxford Engineering Science Series, 26, New York, p 984

18. Reddy JN (2015) An introduction to nonlinear finite element
analysis: with applications to heat transfer, fluid mechanics, and
solid mechanics.OUP Oxford

19. Timoshenko SP, Gere JM (1961) Theory of elastic stability, 2nd
edn. McGraw-Hill, New York

20. Aristizabal-Ochoa JD (2010) Second-order slope–deflection
equations for imperfect beam–column structures with semi-rigid
connections. Eng Struct 32(8):2440–2454

21. Dassault Systems Simulia Corp. (2014) Abaqus analysis user’s
guide. Providence, RI, USA. http://dsk.ippt.pan.pl/docs/abaqus/
v6.13/index.html

22. Reddy JN (2006) Theory and analysis of elastic plates and shells,
2nd edn. Fla: CRC, Boca Raton

23. Steen E, Byklum E, Hellesland J (2008) Elastic postbuckling
stiffness of biaxially compressed rectangular plates. Eng Struct
30(10):2631–2643

24. Paik JK (2008) Some recent advances in the concepts of
plate-effectiveness evaluation. Thin-Walled Struct 46(7–9):1035–
1046

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Weld World (2020) 64:729–751 751

http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html

