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Abstract
The construction of lightweight structures poses new design challenges as a result of the different mechanics of deformation
experienced by thinner-plated structures. Because of a reduced bending stiffness, thin plates are particularly sensitive to
welding-induced distortions, which include a curvature, in addition to the axial and global angular misalignment observed
on thick plates. The curvature shape and amplitude determine a local angular misalignment at the welded joint, which causes
non-negligible secondary bending effects. Therefore, the commonly used stress magnification factors km solution for flat
plates need a further development to include the curvature effect. This study proposes new analytical formulations, which
extend the applicability of the existing solutions to the assessment of the structural stress of a curved thin plate under an axial
load. The improved formulations are consistent with the geometrical non-linear finite element analysis under compression
(up to ∼ 80% of the buckling limit) and tension (up to the yield strength). A sensitivity analysis is presented in order to
show the dominant role of the curvature effect in the estimation of the km factor. Regardless of the load applied, the presence
of the curvature causes a flat plate solution inaccuracy greater than 10% when the local angular misalignment is more than
1.25 times higher than the global angular misalignment in the case of a thin and slender structure.

Keywords Welding distortions · Angular misalignment · Stress magnification factor · Thin plate · Slenderness ·
Geometrical non-linearity

1 Introduction

Prompted by energy efficiency and fuel economy reasons,
the structural lightweight design for large-size structures
has been in the spotlight of the recent research in several
industrial fields. For instance, modern cruise ships have
been designed to accommodate an increased number of
cabins and open spaces, thus directing shipbuilding towards
new solutions in terms of space and weight in order to
increase the performance of the structure [1–5]. Thin-
walled structures represent an optimum solution to achieve
this design target. However, the implication of thinner
structures poses new design challenges in terms of structural
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durability. The fatigue strength assessment is one of
the key challenges, as thin structures show considerable
susceptibility to manufacturing- and assembly-induced
imperfections [6]. According to Remes et al. [4], a visible
detrimental effect on the fatigue life of thin-walled marine
structures is caused by welding. It has been demonstrated
that less severe distortions may be obtained by low-heat-
input welding methods such as laser-hybrid welding [1,
3, 7]. However, in general, the reduced bending stiffness
of thin and slender plates leads to complex distortion
shapes, and these geometrical imperfections cause a serious
increase in stress at fatigue-critical welded joints.

At present, the fatigue strength assessment of large
structures such as ships is carried out by using the structural
stress approach; see, e.g. [8–10]. The idealised 3D finite
element model of a structure is created without modelling
the distortions. Then the stress increase resulting from
welding-induced distortions is considered separately in the
computation of the stress magnification factor km. Different
fatigue design codes and recommendations such as the IIW
fatigue recommendations [9] classify the welding-induced
imperfections as axial e and angular α misalignment. The
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Fig. 1 Geometrical parameters
describing the welding-induced
imperfections [9]

(a) Axial misalignment e (b) Angular misalignment �

first is related to the plates’ offset, and the latter to a linear
lateral distortion y; see Fig. 1. This engineering approach
was developed for flat plates and it has been successfully
applied in the fatigue design of welded structures for several
decades. Nevertheless, current manufacturing technologies
such as laser-hybrid welding allow the welding of thinner
plates, i.e. plates less than 5 mm thick, for which the flat
plate assumption is violated. For thin (i.e. with a thickness
t < 5 mm) and slender plates (i.e. L/t > 20, with L as
the length between two supports), the distortion shape is
observed to be curved, as shown in Fig. 2 [1, 4]. Therefore,
the existing km factor formulations, derived according to the
flat distortion shapes, cannot properly apply to the fatigue
assessment of thin plates.

In recent years, a considerable research effort has been
devoted to developing a solid basis for the fatigue design of
thin plates in large welded structures. On the basis of the
experimental, numerical and theoretical analysis of small-
scale and full-scale specimens, the fatigue behaviour of
welded thin plates is better understood; see, e.g. [1–4, 7,
11, 12]. The curved distortion shape results in significant
secondary bending stress at the welded joint and thus
reduced fatigue strength. The special challenge is that
this secondary bending stress has a non-linear relationship
with the axial tensile load that is applied, as shown in
Fig. 3. The non-linearity is related to the straightening
effect, which causes the stress magnification factor km

to decrease under an increased tensile load. Thus, the
definition of the structural stress for welded thin plate
structures requires the consideration of the actual distortion
shape and geometrical non-linear finite element analysis
[3]. Additionally, the previous research pointed out the
dominant role of the local angular misalignment αL also in
the structural stress definition for full-scale structures, i.e.
stiffened plate structures [12]. This study also shows that
the simple half-sine function can be utilised in the geometry
modelling of curved distortion shapes. On the basis of these
findings, the development of an analytical km formulation
for curved thin plates is an attractive alternative in order to
avoid time-consuming finite element analyses.

The well-known non-linear analytical solutions for the
stress magnification factor as a result of the angular
misalignment were presented by Kuriyama et al. [13]. These
solutions were developed for flat plates and implemented in,
e.g. the IIW recommendations [9], and for pinned and fixed
boundary conditions (BCs) they assume the forms shown in
Eqs. 1 and 2.

km,angular = 1 + 3αl

2t

tanh
�

�
2

�

�
2

(1)

km,angular = 1 + 3αl

t

tanh (�)

�
(2)

Fig. 2 Welding-induced angular
misalignment for thick and thin
plates. Because of the curved
shape, the local angular
misalignment αL differs from
the global angular misalignment
αG, in the case of thin plates. [1]

Weld World (2020) 64:729–751730



Fig. 3 Non-linear trend of the
stress magnification factor km

with respect to the nominal
stress. At the top right, the
structural stress extrapolation
for the weld toe is shown. [1]

� = 2l

t

�
3σm

E
(3)

In the above formulations, l, t and α are the length, the
thickness and the angular misalignment shown in Fig. 1b,
respectively; σm is the tensile membrane stress that is
applied; and E is the modulus of elasticity of the material
(which is assumed to be linear-elastic). On the basis of the
Euler-Bernoulli Theory, these equations were developed for
distorted plates presenting a linear geometry, i.e. a straight
and ideal beam. This model assumed that the welding-
induced distortion is part of the idealised model, meaning
that the secondary bending moment resulting from the linear
lateral sway (y in Fig. 1b) is considered in the computation.
As a result, the non-linear �-dependent coefficients in Eqs. 1
and 2 analytically describe the straightening effect caused
by tensile loads. Their derivation follows the definition of
the stress magnification factor km as the ratio between the
Hot-Spot structural stress and the nominal stress applied
to the structure, given that the developing deformation
is involved in the structure equilibrium equation. The
developing deformation is indeed included in terms of an
additional bending moment, which results from the load-
distortion interaction.

Recently, Shen et al. [14] have introduced a modified
stress magnification factor to include the magnitude and
shape curvature effect on welded thin plates. Relying
on the Toshio formula ([15]) and modelling the initial
curvature with a quadratic function, the proposed model
has been validated against finite element analysis for fixed
and simply supported BCs (see also [16]). A different
approach has been proposed by Zhou et al. [5], who studied

the butt weld-induced distortions of thin plates. The non-
linear imperfect beam problem is converted into a non-
linear perfect beam one. Specifically, angular and buckling
distortion modes, as well as global and local angular
distortions, have been modelled in terms of equivalent
dummy loads applied to a perfect, i.e. straight, beam.
The model is validated against numerical solutions, with
both tensile and compression loading conditions being
considered. These recent research studies provide valuable
development steps in improving the analytical solution of
the stress magnification factor for welded thin plates with
curved distortions.

Given the state of the art of research, there is a need
to establish an effective analytical model that is able
to describe the overall welding-induced curved distortion
effect on the stress state of a thin slender plate. This
includes not only a deeper study of the influence of
curvature, but also the selection of proper assumptions in
order to make the model clear, simple and as versatile
as possible. In the light of this consideration, this study
derives an analytical model, intended to condense the effects
of geometrical imperfections into the stress magnification
factor km. Given that the axial misalignment affects thick
and thin welded plates equally, the analysis focuses on
the effect of the angular misalignment in global and local
terms. Aiming at understanding the impact of the initial
curvature effect among the other factors, a model sensitivity
analysis is provided for tension and compression loading
conditions. The analytical model will rely on the von
Kármán Theory applied to an idealised structure solved
by means of the slope deflection method and the linear
superposition principle. The aim is to extend the validity
of the analytical model provided for flat plates (implied by,
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e.g. the IIW recommendations) to welded curved plates by
modelling a non-linear distortion. Thereby, the analytical
derivation presented in this paper is intended to bring the
currently recommended km solution for flat plates to an
improved form, which includes the initial curvature effect
into an additional higher order, i.e. non-linear, term. In this
paper, the existing stress magnification factor caused by
the angular misalignment (see Eqs. 1 and 2) is referred to
as km,glob, which refers to the onset of a global angular
misalignment between flat plates.

2Method

2.1 Analytical model for a curved beam and the
related km factor

The analytical model considers that a 1D beam element
represents the longitudinal direction of the welded thin
plate. The welded thin plate is assumed to have symmetric
distortions with respect to the welded seam (see Fig. 2).
Therefore, as a result of symmetry, only one side of the
welded plate is considered, as shown in Fig. 4. The distorted
shape is described by a half-sine curvature wc(x) with its
maximum amplitude a0 at mid-length and a linear lateral
sway ws(x), which causes a vertical offset y0 of the loaded
end opposite to the origin of the beam. The respective
functions are reported in Eqs. 4 and 5. In the analysis, the
distortion is modelled according to the optical geometry
measurements on fatigue test specimens of welded joints
from [1].

wc(x) = a0 sin
�πx

l

�
(4)

ws(x) = y0x

l
(5)

In the model, the local angle αL (see Fig. 4) is defined as in
Eq. 6.

αL = αa0 + αy0 (6)

The two angle components are shown in Eqs. 7 and 8.

αa0 = arctan

�
d

dx
a0 · sin

�πx

l

��
|x=0 = arctan

�a0π

l

�

(7)

αy0 = arctan

�
d

dx

y0x

l

�
|x=0 = arctan

�y0

l

�
. (8)

Thus, the local angle αL is equal to the global angle αG only
if the curvature amplitude a0 is equal to zero (i.e. for a flat
distorted shape).

A remote load P is applied at the end opposite to the weld
seam. Along with the boundary condition of the structure, it
is shown in Fig. 4. As a result of symmetry at the weld seam
location, this end is the fully fixed one. The loaded end has
fixed or pinned BCs.

The fixed (i.e. clamped) boundary condition reflects the
fatigue testing condition of small-scale specimens or the
case of a welded plate supported by a panel frame. In
these cases, the loaded end can be considered as clamped
against bending rotation. This common approach was also
considered by Lillimäe et al. [2]. However, on the basis of
previous studies of stiffened panel structures (e.g. [12]), any
boundary condition far away from the weld location does
not have a significant effect, meaning that the beam end
opposite to the weld location can be assumed to be a pinned
end, i.e. the bending rotation is left free. Thus, this study
assesses both the fixed and pinned beam configurations,
which, according to what is explained above, differ only
in terms of the bending rotation experienced at the loaded
end (i.e. = 0 for a fixed end and �= 0 for a pinned end),
while the deflection is left free. Given its slenderness, the
small-scale specimen or a plate strip taken from welded
thin plate structures could be treated as a 1D beam with
negligible shear effects. Therefore, the displacement field
from the classical Euler-Bernoulli Theory (EBT) applies
to such a problem. In order to include the effect of the
geometrical non-linearity, the von Kármán strain solution
for small displacement and moderate rotation is considered;

Fig. 4 Idealised beam model of
a welded distorted thin plate
under static load (P > 0)
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see, e.g. [18]. The principle of virtual displacement allows
the governing equations of motion to be computed by
also superimposing the initial shape onto the developing
deflection. As a result of the effect of the geometrical
non-linearity, the beam problem is statically indeterminate
and the slope deflection method is applied to achieve a
closed-form solution. Moreover, given the validity of the
superposition principle, a step-by-step process is used for an
easy approach in which the effects of the lateral sway and
the curvature are decoupled. The beam is considered to be
made of an isotropic homogeneous material with a modulus
of elasticity E. The material is assumed to remain elastic
since only small-scale yielding at the notch tip exists in the
high-cycle fatigue range. Below, the analytical solution is
formulated for tension loading and then also expanded for
compressive loading in Section 2.7.

2.2 Geometrical non-linearity formulation for
curved beam

On the basis of the Bernoulli-Navier hypotheses (see,
e.g. [18, 19]), the displacement field that describes the
mechanical behaviour of the beam is represented in Fig.
5 and expressed in Eq. 9. The beam displacement field
components (u1, u2, u3) respectively indicate the total
displacement in the (x, y, z) directions.

�
�

	

u1(x) = u(x) − z dw
dx

u2(x) = 0
u3(x) = w(x)

(9)

In Eq. 9, z is the transverse coordinate measured from
the centroid of the cross-section and x is the longitudinal
coordinate. u is the axial displacement, while w is the
transverse displacement of a point on the x-axis with respect
to the centroid of the cross-section of the beam [18]. As
explained in the literature (e.g. [18, 19]), the axial strain
of the beam can be obtained by imposing the displacement

field onto the Green-Lagrange tensor component Eij =
1
2 (

∂uj

∂xk
+ ∂uk

∂xj
+ ∂um

∂xj

∂um

∂xk
), which, for a beam, reduces to the

axial strain E11 ≈ εxx in Eq. 10.

εxx = ∂u1

∂x1
+ 1

2

�
∂u3

∂x1

�2

=



du(x)

dx
+ 1

2

�
dw

dx

�2
�

− z
d2w(x)

dx2

= ε0xx + zε1xx (10)

The term in square brackets in Eq. 10 is the extensional
deformation, while the second term describes the bending
strain. The axial strain thus determined is known as the von
Kármán strain and properly accounts for small displacement
and moderate rotation. The related axial stress is determined
according to Hooke’s law in Eq. (11).

σxx(x) = Eεxx(x) (11)

By applying the principle of virtual displacement (see
Eq. 12) to the bending beam, the governing differential
equation of motion can be found. The procedure is shown
by [18, ch.5].

dWT OT = dWI + dWE

=
� l

0



Nxx

dδu

dx
+ dw

dx

dδw

dx
Nxx − d2δw

dx2
Mxx

�
dx

−Pδu(l) = 0 (12)

In Eq. 12, Nxx and Mxx are the internal axial force
and bending moment. They are defined positively as in
Fig. 6. In the figure and in the following derivation, they
are addressed as simply N and M , respectively. The x-
coordinate dependence is implied.

Since the virtual displacements δu and δw are indepen-
dent, it is possible to determine two governing equations of

Fig. 5 Euler-Bernoulli beam
axial displacement [18]
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Fig. 6 Ends and internal actions
on the simplified pre-deformed
Beam element

equilibrium for a beam that is only subjected to a tensile
point load P ; see Eq. 13.
�

δu : − dN
dx

= 0

δw : − d
dx

( dw
dx

N) − d2M

dx2
= 0

(13)

Focusing on the deflection of the beam, by integrating twice
and including the initial shape of the beam w0, the equation
becomes:−N(w+w0)−M+Ax+B = 0, where A and B are
the integration constants to be determined by applying the
model boundary conditions (BCs). In terms of nodal forces,
the BCs are shown in Eq. 14.

N(0) = −P V (0) = Va M(0) = Ma

N(l) = P V (l) = Vb M(l) = Mb (14)

In Section 2.3, these BCs are applied along with the null
nodal displacement at the beam ends in order to obtain the
governing ordinary differential equations (ODEs) of the two
beam models.

The ODEs are derived by applying the definition of the
bending moment in Eq. 15 to −N(w+w0)−M+Ax+B =
0.

M(x) =
�

A

zσdA = −E

�

A

εzdA = E

�

A

z2

ρ
dA = EI

ρ

(15)

In Eq. 15, I = �
A

z2dA is the principal moment of inertia
of the cross-section of area A and the bending strain ε

is defined as the ratio
�

z
ρ

�
. ρ is the curvature radius of

the deflected axis as shown in Fig. 7. Such a radius is
linearised as in Eq. 16, where w′′ is the second derivative
of the deflection w with respect to the length coordinate x.
This approximation results in an error of about 1% if the
maximum of the first derivativew′ does not exceed 0.08, i.e.
less than 5◦ [17].
1

ρ
= w′′

(1 + w′2) 3
2

� w′′ (16)

Applying the approximation in Eq. 16, the differential
equation of bending for small deformations of a slender
beam is found in Eq. 17. Notice that this approximation
applies for tension loading condition, as the error reaches
inappropriate percentages only for very large distortions that
cause critical secondary bending effects to the structure.
However, it may significantly affect the accuracy of
the solution for compression loads, especially when the
structure approaches the buckling instability. For this
reason, some consideration about the validity of the
approximation is provided in Section 4.1.

M(x) = −EIw′′(x) (17)

On this basis, the geometrical non-linearity is considered
by the superposition of the effects in the lever arm
of the tensile load P . The superposition principle is
considered an approach that approximates well for beams
with small geometrical imperfections [19]. The slope
deflection method is a useful way to solve the indeterminate
problem, as suggested by Aristizabal-Ochoa [20] for a

Fig. 7 Bending of a straight bar according to the Bernoulli-Navier
Hypothesis. (Modified from [17])

Weld World (2020) 64:729–751734



second-order analysis of an imperfect beam with semi-
rigid connections, subjected to a compressive axial load and
additional transverse actions. In [20], the solving method is
based on approximation with a sine Fourier series, which
has been shown to be sufficiently accurate to describe the
beam-column deflection under compression, i.e. for the
buckling analysis [19]. The initial deformation is modelled
as a sine series, and the lateral sway is addressed as well. In
[20], the initial imperfections result in additional transverse
loads proportional to the bending stiffness and magnitudes
of the imperfections of the beam-column, thus increasing
the lateral deflection and the effective bending loading
condition. The elastic bending connections at the two ends
a and b are modelled with the stiffness ka and kb in the
plane of bending of the beam. The stiffness indices in Eq. 19
vary between 0 and ∞, so they are replaced, for the sake
of convenience, with fixity factors (see Eq. 19) varying
between 0 (simple connection) and 1 (rigid connection). In
Eq. 18, EI is the flexural rigidity of the beam, while h

indicates its length, as in Fig. 8. The figure represents the
general model in the study conducted in [20].

R(a,b) = k(a,b)

EI
h

(18)

ρ(a,b) = 1
�
1 + 3

R(a,b)

� (19)

In this study, ideal BCs are used, so that the fixity factor
for fixed bending rotation is equal to 1 (i.e. a fully rigid
connection), while the pinned end corresponds to 0 (i.e. a
non-rigid connection). The present case also neglects any
load other than the axial one and axial load eccentricities
addressed as ea and eb in the mentioned article.

2.3 Stability analysis of imperfect beams by using
the superposition principle

The procedure used to solve the beam stability analysis
consists of four main stages:

1. computation of deflection and slope deflection equa-
tions of the loaded beam with initial curvature;

2. computation of deflection and slope deflection equa-
tions of the loaded beam with linear lateral sway;

3. derivation of the total deflection and slope deflection
equations by linear superposition of the functions from
the previous steps;

4. determination of the unknowns of the problem (i.e.
computation of the final solution).

Any static analysis concerning the beam equilibrium refers
to Fig. 6 in order to fix a conventional system. In the figure,
the beam is displayed with the positive forces and moments
involved in its equilibrium condition.

Fig. 8 Structural model of an imperfect column with sidesway
partially inhibited and rotational end restraints. Eccentric axial loads
are applied to the column extremes. (Modified from [20])

Stage 1 The first stage requires consideration of the initial
curvature only, thus excluding the lateral sway
y0. Moreover, the selected BCs related to the
deflection of the model are introduced in the
second stage, while the curvature is considered on
a simply supported beam.

By imposing the BCs in Eq. 14 onto the
equilibrium −N(w+w0)−M +Ax+B = 0, and
using Eq. 17, the governing ODE can be obtained;
see Eq. 21. For a simply supported beam, Ma =
Mb = 0 and the beam ends have null deflection,
as indicated in Eq. 20. w1(x) is the deflection
resulting from the initial curvature of the loaded
beam.
�

w1(0) = 0
w1(l) = 0

(20)

w′′
1 (x) − k2w1 (x) = +k2a0 sin

�π x

l

�
(21)
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In Eq. 21, k replaces the quantity
√

P/EI . The
solution to this equation generally assumes the
form w1(x) = C sinh(kx) + D cosh(kx) +
b sin (πx/l), where C and D are constants. The
hyperbolic functions model the homogeneous
solution, while the harmonic one is the particular
solution resulting from the action of P on the
initial curvature. The solution to the ODE is
found by imposing the BCs related to the beam
deflection in Eq. 20. This implies C = D = 0,
while the coefficient b is found by substitution
of the particular solution into the differential
equation. The resulting deflection curve and slope
deflection equation resulting from the sinusoidal
initial curvature under tensile load P is finally
obtained; see Eq. 22.
�
�

	
w1(x) = − (kl)2a0

(kl)2+π2 sin
�

π x
l

�

w′
1(x) = − a0lπ k2

(kl)2+π2 cos
�

π x
l

� (22)

Stage 2 The second stage of the analysis addresses the
lateral sway imposed onto the cantilever beam.
As seen for the initially curved beam in Stage 1,
the resulting ODE is obtained by imposing the
BCs in Eq. 14 and the nodal deflection in Eq. 23.
The ODE is reported in Eq. 24. w2(x) is the
deflection of the beam with initial lateral sway,
under tension.
�

w2(0) = 0
w2(l) = 
 − y0

(23)

w′′
2 (x)−k2w2 (x) = −Ma

EI
+ Ma + Mb − P(
 − y0)

EI l
x

(24)

The solution to the ODE assumes the form
w2(x) = C cosh(kx) + D sinh(kx) + Fx + G,
where C, D, F and G are the constants to be
found by imposing the deflection BCs above. The
deflection and slope deflection equations result as
in Eq. 25.

�
����

���	

w2(x) = −Ma cosh(kx)
P

+ Mb+Ma cosh(kl) sinh(kx)
P sinh(kl)

−
+ (Ma+Mb−P(
−y0))x

l
+ Ma

P

w′
2(x) = −Mak sinh(kx)

P
+ Mb+Ma cosh(kl)k cosh(kx)

P sinh(kl)
−

+Ma+Mb−P(
−y0)
l

(25)

From the total equilibrium equation of the beam
in Fig. 6, the term 
 is derived, as in Eq. 26.

Ma + Mb − Vbl − P(
) = 0 → 
 = Ma + Mb

P
,

(26)

where Va = Vb = 0 for both the models.
Stage 3 The principle of superposition is applied to

obtain the total deflection w(x), the slope
deflection w′(x) equations and the bending
moment distribution related to a distorted beam
column under tension; see Eqs. 27 and 28. In the
following equations, the term (kl) is replaced by
�, as also indicated by [20].
�

w(x) = w1(x) + w2(x)

w′(x) = w′
1(x) + w′

2(x)
(27)

The bending moment distribution over the beam
length is computed with reference to Eq. 17.

M(x) = Ma cosh(kx) − (Mb + Ma cosh(�)) sinh(kx)

sinh(�)
−

+ �2

�2 + π2

�π

l

�2
a0 sin

�πx

l

�
(28)

Stage 4 In order to determine the unknowns and solve
the problem, the slope deflection method is
applied: the slope BCs are imposed onto the
slope deflection equations computed at the beam
ends (i.e. θa and θb). At this stage, the term

 is substituted according to Eq. 26. Imposing
the slope BCs requires a separate derivation for
the two models with fixed and pinned boundary
conditions, which are respectively analysed in
Sections 2.5 and 2.6. The slope deflection
equations at the beam ends are obtained as in
Eq. 29.
�

θa = w′(0)
θb = w′(l) (29)

2.4 km factor derivation

The results from the stability analysis described above
lead to the analytical computation of the normal stress
distribution along the beam length as a function of the
coordinate x. According to the stress-strain constitutive law
(see Eq. 11), the structural stress includes a membrane (i.e.
axial) stress and a bending one as the related strain.

σstructural(x) = σm(x) + σb(x) (30)

The membrane stress σm and the bending stress σb are
defined as in Eq. 31.
�

σm(x) = P
bt

constant over beam thickness and length
σb(x) = M(x)z

I

(31)

From Eq. 31, it is clear that the bending moment distribution
determines the structural stress trend over the beam length.
Figure 9 represents an example of the top and bottom
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(a) Fixed end beam

(b) Pinned end beam

Fig. 9 Example of the normal structural stress distribution along the
beam length. Hot-spots result in the weld location at x = 0 m

surface stresses for the two configurations. The weld is
located to x = 0 m. It is pointed out that the critical stress,
i.e. the Hot-spot structural stress in Eq. 32, is experienced
at the location of the weld, on the top surface (z = t

2 ).
Figure 10 shows that the normal stress is linearly distributed
over the thickness, according to the basic hypothesis of the
theory, and reaches its peak on the top surface.

σHS = σm + σb (0) |z= t
2

= P

bt
+ Ma

I

t

2
(32)

Eventually, the computation of the stress magnification
factor followed by using its definition.

km = σHS

σm

(33)

2.5 Fixed-end con�guration under tension

The step-by-step analytical derivation in Section 2.3 leads
to the computation of the slope deflection equations for the
fixed-end beam. The Stage 4 and the final km derivation are
presented below.

Stage 4 As suggested by [20], the slope deflection
equations at the beam end θa and θb are computed

and adapted into a matrix form; see Eq. 34.
�
�

	
θa +

�
�2

�2+π2

�
πa0
l

+ y0
l

θb −
�

�2

�2+π2

�
πa0
l

+ y0
l

�
�

�
=



S1 S2
S3 S4

� �
Ma

Mb

�

(34)

The terms S1(2,3,4) are defined below.

S1 = S4 = 1
EI
l

�

cosh(�)

sinh(�)

S2 = S3 = 1
EI
l

�

1

sinh(�)
(35)

In order to isolate the unknowns Ma and Mb, the inverse of
the coefficients matrix is computed. The resulting system is
shown in Eq. 37. The slope deflection method requires the
application of the slope BCs in Eq. 36, which for this case
are described in Eq. 36.
�

θa = w′(0) = 0
θb = w′(l) = 0

(36)

�
Ma

Mb

�
=



r s

s r

�
�
�

	

�
�2

�2+π2

�
πa0
l

+ y0
l

−
�

�2

�2+π2

�
πa0
l

+ y0
l

�
�

�
(37)

In Eq. 37, r and s correspond to the expressions in Eq. 38.

r = 1
EI
l

�

cosh(�)

sinh(�)

s = − 1
EI
l

�

1

sinh(�)
(38)

Equation (39) presents the final solution for the bending
moment experienced at the weld location. The formula is
simplified by applying the hyperbolic function properties.

Ma = �EI

l




tanh

�
�

2

�
y0

l
+ 1

tanh
�

�
2

�
�

�2

�2 + π2

�
πa0

l

�

(39)

km factor derivation The km factor derivation based on
Eqs. 32 and 33 and using I = bt3/12 in Eq. 39 is obtained
for the fixed-end configuration (see Eq. (41)). The term

� =
�

P
EI

l is replaced by � on the basis of the nomenclature
utilised by, e.g. the IIW recommendations; see Eq. 40.

� = 2l

t

�
3σm

E
(40)

km = 1 + 3y0
t

tanh
�

�
2

�

�
2

+ 6a0π

t

�

(π2 + �2) tanh
�

�
2

� (41)

For the sake of simplicity, in Section 4.2, the discussion
refers to �-dependent coefficients to recall the terms in
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Fig. 10 Structural stress
distribution over the beam
thickness at the weld location
(red line). The Hot-Spot
structural stress (HSS) is
experienced by the top surface

Eqs. 42 and 43.

C1f =
tanh

�
�
2

�

�
(42)

C2f = �

(π2 + �2) tanh
�

�
2

� (43)

These terms are multipliers of (6y0/t) and (6a0π/t),
respectively. These coefficients may also be called straight-
ening coefficients, since they quantify the non-linear
straightening experienced by the distorted beam under ten-
sion. In general (i.e. for any load applied), they weight the
lateral sway and initial curvature effects on the beam stress
state.

2.6 Pinned end con�guration under tension

The computation below refers to the assumption of the
pinned-end beam.

Stage 4 In this case, the BCs to be applied at the beam
ends are indicated in Eq. 44.
�

θa = 0
Mb = 0

(44)

By applying the conditions in Eq. 44, the system of the two
slope deflection equations θa and θb is obtained. The slope
deflection equation at the beam end a (i.e. θa) allows its
only unknown Ma to be determined. Thereby, the problem
is solved, including the bending moment distribution shown
in Fig. 9b.

km factor derivation The km factor that is developed is
described by Eq. 45.

km = 1 + 6y0
t

tanh(�)

�
+ 6a0

t

π� tanh(�)

(π2 + �2)
(45)

The related �-dependent coefficients are C1p and C2p.

C1p = tanh(�)

�
(46)

C2p = � tanh(�)

(π2 + �2)
(47)

2.7 Solution for compression

The equations derived to estimate the km factor under
tension allow for the stress computation in compression,
given that the force P is applied with a negative sign.
Analytically, having a negative force implies the definitions
in Eq. 48.

P < 0 ⇒ k∗ =
�

P

EI
= i

� |P |
EI

= ik ⇒ �∗ = �∗

= i

�
2l

t

� �
3|σm|

E
= i� (48)

Knowing also that tanh(�∗) = tanh(i�) = i tan(�), Eq. 41
changes into Eq. 49.

km = 1 + 3y0
t

tan
�

�
2

�

�
2

+ 6a0π

t

�

(π2 − �2) tan
�

�
2

� . (49)

Similarly, Eq. 45 changes into Eq. 50.

km = 1 + 6y0
t

tan(�)

�
+ 6a0π

t

(−� tan(�))

(π2 − �2)
(50)

Under compression, the �-dependent coefficients (multipli-
ers of (6y0/t) and (6a0π/t)) are determined in Eqs. 51 and
52 for the fixed beam, and Eqs. 53 and 54 for the pinned
beam.

C1−
f =

tan
�

�
2

�

�
(51)
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C2−
f = �

(π2 − �2) tan
�

�
2

� (52)

C1−
p = tan(�)

�
(53)

C2−
p = −� tan(�)

(π2 − �2)
(54)

3 Sensitivity analysis of the curvature effect

3.1 Geometries and boundary conditions studied

The numerical analysis is carried out for varied geometrical
shapes in order to validate the km formulations that are
developed (see Eqs. 41, 45, (49) and (50)) and to study
the effect of a curved shape on the km factor, i.e. the Hot-
Spot structural stress that is experienced, as a function of
the nominal stress. The analysis is limited to the plate
specimens, i.e. beams. The beams are made of steel for
welded thin plates in ship decks with a modulus of elasticity
E = 206.8 GPa and Poisson’s ratio v = 0.3. During
the analysis, the beam cross-section dimensions and length
are varied. Based on small-scale, 3-mm-thick specimen
dimensions, a slenderness ratio of 42 and aspect ratio
(i.e. width-to-thickness ratio) of 6.67 are chosen.While, in
relation to ship deck plate dimensions, the slenderness and
aspect ratios selected are 300 and 100, with a thickness of
4 mm (see [1]). The analysis considers both tension and
compression. The load range for tension is from 1 to 300
MPa, while for compression the analysis is from 0 MPa to
the critical buckling load of the beam, i.e. the Euler load; see
Appendix about buckling limit calculations. Furthermore,
for compression loading, the variation in the slenderness
ratio is limited since high slenderness ratios (e.g. > 100)
do not allow for meaningful analyses because of the low
buckling limit. All the analyses include both the fixed and
pinned boundary conditions at the loaded beam end. The
influence of the distortion shape is analysed by varying the
angle ratio αL/αG between 1 and 40 under tension or 1 and
5 under compression. This allows slightly-to-heavily-curved
components to be analysed. On the evidence of previous
studies ([3, 12]), the local angle is likely to be less than 5◦.

In this study, a wider range is considered, thus enabling a
deeper study of the curvature effect. The lateral sway y0 is
kept constant and equal to 5 mm, as the terms accounting for
it in Eqs. 45 and 41 have already been validated earlier and
are commonly used, e.g. in the IIW recommendations [9].
The selection of 5 mm is based on the earlier experimental
measurements in [3].

3.2 Finite element analysis for validation

Finite element analysis is carried out for the selected
geometry configurations in order to validate the analytical
model and the related results. The geometry of the FE
models is designed on FEMAP (v11.4.1), and the ABAQUS
solver (v6.14-1) is used. Specifically, the modified RIKS
method is applied to run the static analysis for non-linear
geometries. Such analysis runs under the assumption of
large deflections and provides the behaviour of the structure
through linear extrapolation, also considering the non-
linearity caused by the change in the initial distortion due to
tension or compression load. ABAQUS default options are
used for the required analysis settings (see [21]). Thereby,
the convergence criteria for the analysis are a minimum arc
length increment of 10−5 and a maximum number equal
to steps of 100. Figure 11 shows the model for validation
under tension in case of slenderness ratio 300. The 1-D
beam element is subjected to a concentrated, constant force
P applied at the right-hand side, positive in the x-direction.
The BCs imposed onto the two beams are indicated in the
same figure. By reference to the displayed global coordinate
system, the component is clamped at its origin in x = 0 m
(i.e. the left-hand side), while the remaining nodes over its
length are constrained to guarantee a y-symmetry condition.
This implies that the displacement in the y-direction (TY)
and the rotations about the x- and z-axes (RX and RZ,
respectively) are fixed for both the models, as shown in
Fig. 11. In addition, the rotation about the y-axis (RY)
is zero at the loaded end for the fixed end configuration.
The FE mesh created for the beam with slenderness and
aspect ratios 300 and 100, respectively, consists of 600,
2-noded elements of type B31 with a length of 2 mm
each. A convergence analysis, based on the consistency of
the structural stress concentration at the weld location (i.e.
x = 0 m), shows that the analyses conducted with 2-mm-

Table 1 �-dependent coefficients

Coeffs. Tension Compression

Fixed Pinned Fixed Pinned

C1 C1f = tanh
�

�
2

�

� C1p = tanh(�)

� C1−
f = tan

�
�
2

�

� C1−
p = tan(�)

�

C2 C2f = �
(π2+�2) tanh

�
�
2

� C2p = � tanh(�)

(π2+�2) C2−
f = �

(π2−�2) tan
�

�
2

� C2−
p = −� tan(�)

(π2−�2)
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Fig. 11 FE model of the beam
under a tensile load P. The BCs
for the a fixed-end and b
pinned-end model are indicated

long elements agree with those using the element lengths 1
and 0.5 mm (the maximum percentage difference with the
finest mesh is below 0.04%). Before the analyses are run,
the nodal coordinates (x, y, z) of the model input files are
modified according to Eq. 55. Thus, the initial deflection of
the nodes represented in Fig. 11 (see curved line in black) is
measured with respect to the non-deformed beam axis (i.e.
the blue, straight line).

z = a0sin(
πx

l
) + y0x

l
(55)

The model analysed under compression is similarly
designed, given the specified dimensions and loads.
According to the same type of convergence analysis, the
small-scale model is meshed by using 125 B31 beam
elements with a length of 1 mm each. The smaller
dimensions of the beam allow such a mesh to provide a
more accurate solution without time-consuming simulations
through buckling instability.

4 Influence of curvature and geometrical
non-linearity

4.1 Effect of the geometrical non-linearity on the km
factor

The effect of the geometrical non-linearity is studied for
tension and compression loading. Figure 12 shows the stress

magnification factor km as a function of the applied tensile
nominal stress, i.e. the membrane stress, in the case of a
slenderness ratio of 300. The results are given for both
fixed and pinned boundary conditions, as well as different
distortion amplitudes, i.e. local angular misalignment
values. The comparison between the analytical model and
the FEA shows very similar results, having a maximum
difference below 2%. About the curvature approximation,
Eq. 16 is always valid (i.e. w′(x) ≤ 0.08), except when very
large angle ratios (e.g. 40) make the slope reach peaks of
about −0.18. Nevertheless, this results in small errors.

In the figure, the FEA results are plotted with points,
while the lines describe the results of the analytical km

models; see Eqs. 41 and 45. As shown in Fig. 12, a
high geometrical non-linearity effect is observed for all the
results. In the figure, the non-linearity of the relationship
between the structural and membrane stress (i.e. the
km factor) increases as the local angular misalignment
increases. This behaviour is the result of the straightening
effect, which significantly reduces the km factor, since the
initial distortion is reduced as a function of the increased
load. For high slenderness ratios, this straightening effect is
very important. For instance, the fixed beam experiences a
state of stress that results in a reduction of nearly 85% in
the km factor when the load stress applied σm varies from 1
to 300 MPa. The results in Fig. 12 also show a remarkable
increase in the km factor as a result of the presence of the
initial curvature. In general, it dominates the response of the
structure, while the lateral sway is relatively negligible. The
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