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A B S T R A C T

Instantaneous phase of brain oscillations in electroencephalography (EEG) is a measure of brain state that is
relevant to neuronal processing and modulates evoked responses. However, determining phase at the time of a
stimulus with standard signal processing methods is not possible due to the stimulus artifact masking the future
part of the signal. Here, we quantify the degree to which signal-to-noise ratio and instantaneous amplitude of the
signal affect the variance of phase estimation error and the precision with which “ground truth” phase is even
defined, using both the variance of equivalent estimators and realistic simulated EEG data with known synthetic
phase. Necessary experimental conditions are specified in which pre-stimulus phase estimation is meaningfully
possible based on instantaneous amplitude and signal-to-noise ratio of the oscillation of interest. An open source
toolbox is made available for causal (using pre-stimulus signal only) phase estimation along with a EEG dataset
consisting of recordings from 140 participants and a best practices workflow for algorithm optimization and
benchmarking. As an illustration, post-hoc sorting of open-loop transcranial magnetic stimulation (TMS) trials
according to pre-stimulus sensorimotor μ-rhythm phase is performed to demonstrate modulation of corticospinal
excitability, as indexed by the amplitude of motor evoked potentials.

1. Introduction

Oscillatory activity at different frequencies is a prominent feature of
EEG recordings of brain activity (Buzsaki and Draguhn, 2004). The
functional role of brain oscillations is demonstrated in time–frequency
analysis of evoked EEG activity, averaged over many trials, showing
brain region specific changes in spectral power with different brain
states, such as those related to visual attention, memory retention, and
motor behaviour (Pfurtscheller and Lopes da Silva, 1999). Here, we focus
on single-trial single time-point analysis, where oscillations can be
characterized according to instantaneous amplitude (Freeman, 2004a)
and instantaneous phase (Freeman, 2004b) using the Hilbert transform
(Freeman, 2007) or, equivalently, Fourier or wavelet based analysis
(Bruns, 2004). The functional relevance of investigating single-trial
instantaneous phase is motivated by effects of cortical excitability
(Bergmann et al., 2012; Massimini et al., 2003; Thies et al., 2018; Zrenner
et al., 2018) and sensory threshold (Ai and Ro, 2014) and by its corre-
lation with the rhythmic neuronal activity of different circuits (Haegens
et al., 2011; Miller et al., 2012).

Standard signal processing methods require data before and after the

time of interest to determine instantaneous phase and amplitude of a
signal and are therefore “non-causal” (Fig. 1, bracket labeled “2”). In the
case of real-time phase estimation, or in post-hoc estimation of phase at
the time of a stimulus that affects the signal, such as a TMS pulse but also
in EEG potentials evoked from sensory stimulation (Dugue et al., 2011),
only data preceding the time of interest is available (Fig. 1, bracket
labeled “3”). In the case of causal phase estimation, we aim to construct
the best estimator of phase, approximating the measure that we would
have obtained with a non-causal estimator from the whole signal (Fig. 1,
bracket labeled “2”), if this were available, but using only data preceding
the time point of interest.

Except for the case of a synthetic signal, the only available benchmark
for any given causal estimator is simply non-causally estimated phase.
But how meaningful is this benchmark? Given that an EEG recording is
the result of global brain activity, any target oscillation of interest is
affected by other activity in the form of noise. In the limit, when there is
no oscillation of a given frequency present (no spectral peak above
background noise), the phase value determined by band-pass filtering
and Hilbert transformation is meaningless and the filtering process may
even introducing spurious results (Widmann et al., 2015). With regard to
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the theoretical minimum error variance of any estimator, this is
expressed as the Cram�er–Rao Lower Bound. If the properties of the signal
and noise are known, it can be derived analytically that error variance is
inversely proportional to signal-to-noise ratio (SNR) (Peleg and Porat,
1991).

Here, we investigate the practical limits of phase estimation methods
in general and how phase estimation error variance is affected by spectral
properties and single trial parameters. We propose a framework to
evaluate the accuracy of causal (using data preceding the timepoint of
interest only) phase estimation methods under different experimental
conditions and provide an open source software toolkit for causal esti-
mation of instantaneous phase, PHASTIMATE, implementing an
approach described previously (Chen et al., 2013; Zrenner et al., 2018).
Method parameters are optimized for the extraction of sensorimotor
μ-rhythm using a genetic algorithm. The utility of the scripts is demon-
strated by post-hoc sorting single trials of a dataset of motor evoked po-
tentials (MEP) according to pre-stimulus EEG μ-rhythm phase.

2. Methods

2.1. Subjects and data

This study analyses data from two different experiments. All experi-
ments were performed after obtaining written informed consent from the
participants in accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki) and having obtained approval from
the ethics committee of the University of Tübingen (application 716/
2014BO2).

To investigate of phase estimation accuracy, resting-state EEG is
analyzed from a total of 140 participants (53 male, 87 female, age 24� 5
years, all right-handed) that were screened for EEG–TMS experiments
between April 2018 and May 2019. There were no exclusion criteria

based on EEG. Four datasets were removed because no spectral peak
could be determined between 8 and 14 Hz, four additional datasets were
removed as a negative SNR was obtained after fitting and subtracting 1/f
noise, indicating that the noise removal failed (see supplementary data
for spectra of included and excluded subjects), yielding 132 included
datasets.

For the post-hoc sorting of MEPs according to pre-stimulus EEG phase,
data from a separate experiment is analyzed. In this experiment, 1150
TMS pulses were applied to the hand-knob area of the left motor cortex of
one healthy volunteer while simultaneously recording EEG as well as
evoked motor responses through electromyography (EMG) of the right
abductor pollicis brevis muscle.

EEG data was recorded with 64 channel EEG caps (Easycap GmbH,
Germany) and 24 bit EEG amplifiers (NeurOne Tesla, Bittium, Finland) in
DC mode at a sampling rate of 5 kHz (resting-state EEG experiment) and
10 kHz (MEPs experiment), respectively. In the MEP experiment, EMG
data was recorded using the bipolar input channels of the EEG amplifier,
EMG data was not downsampled. EEG data was spatially filtered with a
C3-centered Hjorth-style (Hjorth, 1975) Laplacian (using FC1, FC5, CP1,
and CP5 as surrounding electrodes) to isolate sensorimotor μ-rhythm,
and down-sampled to 1 kHz after application of a low-pass anti-aliasing
filter. The first 250 s of resting-state EEG data was extracted and stored in
a raw data file. In the post-hoc sorting of MEPs experiment, biphasic TMS
pulses (160 μs duration) were administered using a figure-of-eight coil
(PMD70-pCool coil with PowerMAG Research 100, MAG &More GmbH,
Germany) oriented perpendicular to the left precentral gyrus with the
second phase of the induced electric field in the posterior-anterior di-
rection. The stimulation intensity was 115% of resting motor threshold
(i.e., the stimulation intensity necessary to evoke MEPs exceeding 50 μV
amplitude with 50% probability), the inter-stimulus interval was 2.1 s on
average with a maximum jitter of �0.1 s.

2.2. Summary of data analysis pipeline

Spatial filtering and extraction of a 250 s resting-state EEG segment
yielded a one-dimensional data vector for each subject, which was
concatenated to form a 140 � 250,000 (subject � sample) raw data
matrix (available for download). The subsequent analysis followed the
following steps, as detailed below:

1. Spectral analysis was performed to determine the peak frequency and
SNR of sensorimotor μ-rhythm for each data record.

2. Each data record was divided into 500 overlapping epochs 2 s long.
Phase was determined at the center of each epoch non-causally (from
the whole epoch data) using different band-pass filter designs fol-
lowed by the Hilbert transform, and the uncertainty of this estimate
was quantified.

3. Phase was then estimated based on a window of data preceding the
center of each epoch only, using the PHASTIMATE method. For each
subject, parameters of the estimation method were optimized using a
genetic algorithm minimizing the circular deviation of the difference
between the causal and the non-causal phase estimate (across the 500
epochs, within each subject).

4. The PHASTIMATE script was applied again with different algorithm
parameter sets: parameters used previously (Zrenner et al., 2018), the
average of the optimized parameters across subjects, and the pa-
rameters optimized individually for each subject.

5. Phase accuracy was assessed under different conditions, specifically
SNR (as a subject-by-subject parameter) and fluctuations in instan-
taneous amplitude (as an epoch-by-epoch parameter).

Finally, the PHASTIMATE script is applied post-hoc to EEG–TMS–EMG
data to reproduce a previously reported relation between the pre-
stimulus μ-rhythm phase and the MEP amplitude. MATLAB code of
implementing the above analysis steps is available for download, with
dependencies for the signal processing toolbox and the optimization
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Fig. 1. Measures of phase, with the phase of interest at the center of an epoch of
data (dotted red line). (A) The oscillation of interest is not normally accessible as
a “clean” signal, except in the case of simulated data with a synthetic sinusoids,
in which case phase is known by definition (labeled 1, “true phase”). (B) 1/f
noise, adds irrelevant information to the signal of interest reducing estimator
precision. The relative spectral amplitude at the frequency of interest and the
amplitude of the sinusoid determines the signal-to-noise ratio. (C) The recorded
signal contains the oscillation of interest and noise. Phase of a signal not con-
taining a stimulation artifact can be estimated offline from data before and after
the timepoint of interest using band-pass filtering (labeled 2, “non-causal phase
estimate”), or causally, from the segment of data preceding the timepoint of
interest only with a real-time algorithm (labeled 3, “causal phase estimate”).
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toolbox, tested in Matlab R2017b (The MathWorks, Inc., MA, USA), and
generating all the figures included in this manuscript.

2.3. Spectral analysis

Spectral analysis was performed implementing the Welch method:
Data was segmented into 50% overlapping epochs of 2 s duration, which
were linearly detrended (de-mean), Hann-windowed, Fourier-trans-
formed, and averaged, resulting in an amplitude spectrum with 0.5 Hz
resolution. Peak frequency was determined in the range between 8 and
14 Hz, 1/f noise was estimated by fitting a straight line to the log–log
spectrum at fixed frequencies outside of known oscillations (0.5–7 Hz
and 35–65 Hz) in the least-squares sense. SNR was defined as the dif-
ference between peak spectral amplitude and fitted noise at that fre-
quency, on the log scale, in units of dB.

2.4. Non-causal phase estimation

To assess the performance of phase estimation at the edge of a win-
dow of data, a “benchmark” phase value is required. To this end, over-
lapping 2 s epochs of data were generated and phase was then
determined at the center of each epoch by applying a band-pass filter
followed by the Hilbert transform. In order to assess the reliability of the
phase estimate, a family of equivalent estimators was used (Sameni and
Seraj, 2017). Specifically, we defined 15 band-pass-filter designs
(Table 1), consisting of seven finite impulse response (FIR) filters and
eight infinite impulse response (IIR) filters. Passbands were centered on
the individual peak frequency resulting in a magnitude response after
zero-phase (forward and backward) filtering as shown in Fig. 3, panel A.
As each of these designs could be used to determine a benchmark phase
value with equal justification, we take the circular mean of the different
phase estimates. A high variance between the estimates would indicate
that it is not possible to determine a meaningful phase estimate for a
given epoch, even with non-causal methods.

2.5. Synthetic EEG data generation

To assess the efficacy of this “family of equivalent estimators”
approach, EEG data was simulated using synthetic sinusoids with known
phase with additive 1/f noise. Such realistic background EEG noise was
generated using the simulated EEG data generator toolbox1 which im-
plements the method of summing sinusoids of randomly varying fre-
quency and phase and scaling the amplitude of the sinusoid at each
frequency to match a physiological 1/f EEG power spectrum (Yeung
et al., 2004). The amplitude of the added 10 Hz sinusoid with known
randomized phase was scaled to achieve different SNR levels between 4
and 22 dB, 1000 epochs each 1.5 s long were generated for each SNR
level for subsequent non-causal phase estimation using the “family of
equivalent estimators” described above.

2.6. Causal phase estimation

The following is a brief description of the autoregressive forward
prediction approach for phase estimation (Chen et al., 2013) that was
applied in this study and is implemented by PHASTIMATE (Fig. 2). A
window of data extracted is band-pass filtered (forward and backward,
resulting in zero phase shift) with edges removed. The size of the data
window is a free parameter of the algorithm, typically containing 3–8
cycles of the oscillation of interest (for stable oscillations without phase
resetting, a longer window would be expected to perform better, for
oscillations with variable phase or phase reset, a shorter window would
be expected to perform better). The signal is then extended into the
future using autoregressive parameter estimation (Yule–Walker method)
and forward prediction to encompass the time point of interest. The
Hilbert transform is then applied to the resulting data segment yielding
the complex analytic signal, the angle of which corresponds to phase.

2.7. Algorithm parameter optimization

A genetic algorithm was used to determine individually optimal
values of the four parameters of the PHASTIMATE algorithm listed in
Table 2 that minimized the circular deviation of the difference between
the causal PHASTIMATE estimate and the non-causal benchmark,
determined as described above. The parameters were constrained to be
integers, phase was estimated from 500 overlapping epochs, and a ge-
netic algorithm population size of 100 competing parameter sets in each
generation was used with the optimization bounds shown in Table 2 and
with the additional constraint that the window size (in samples) needed
to be at least three times the filter order, the sampling rate being 1 kHz.

2.8. PHASTIMATE toolbox

PHASTIMATE is available as an open source toolbox and implements
the steps laid out in this report as a best-practice approach for experi-
mental studies investigating relationships between phase of an EEG
signal and evoked responses. (1) As a first step, the accuracy at which
phase can be determined with standard non-causal signal-processing
methods is estimated from EEG data without stimulation artifacts using
the family of equivalent estimators approach (Sameni and Seraj, 2017).
The function phastimate_truephase.m calculates estimator variance and
also generates the benchmark data required for Step 2. (2) In the second
step, the performance of the predictive estimator of choice is then
assessed from the same data. Algorithm parameters can be optimized
with phastimate_optimize.m using a genetic algorithm to minimize phase
error variance. (3) Steps 1 and 2 assess the accuracy at which phase can
be determined in principle and in practice in a given dataset. The pre-
dictive algorithm implemented in the script phastimate.m is then used for
trial sorting, optionally with the optimized parameter set determined in
Step 2 and only considering epochs where instantaneous amplitude is
high. The entire procedure is demonstrated in a main script (main_-
script.m) which runs through the analysis of the supplied sensorimotor
dataset performing the steps described above.

2.9. Circular statistics

Circular statistics formulas were adapted from the CircStat toolbox
(Berens, 2009), with circular variance used as a measure of circular
spread that is bounded between 0 and 1 (1-R, where R is the magnitude of
the resultant vector averaging all the normalized moments, bounded
between 0 and 1, and also known as phase locking value). Estimation
error deviation is reported as circular standard deviation
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 logð1� varianceÞp
) rather than precision (1/variance) or phase

locking value to ease interpretation.

Table 1
Summary of the filters applied to estimate phase with standard non-causal signal
processing methods.

Number of
filters

Filter
type

Design parameters

4 FIR Windowed sinc with order 2,3,4, and 5 times the peak
frequency period

3 FIR Least squares with order 3,4, and 5 times the peak
frequency period

3 IIR Butterworth with order 4, 8, and 12
3 IIR Chebyshev Type I with order 4, 6, and 8
2 IIR Elliptic filter with 20-dB and 40-dB attenuation

1 https://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator.
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2.10. Post-hoc sorting of trials according to pre-stimulus phase

EEG data in the 1 s preceding each TMS pulse was extracted, spatially
filtered, and down-sampled to 1 kHz. MEP amplitude was determined as
the peak to peak of the EMG recording in the period between 25 and 45
ms post-stimulus. For the sake of simplicity, no trials were discarded from
the 1150 available stimuli, neither based on EEG artifact criteria nor
based on EMG criteria such as pre-innervation.

We analyzed whether the MEP amplitudes were related to the

μ-rhythm phase at the time of the stimulation by applying circular-to-
linear regression analysis (Cox, 2006; Cremers et al., 2018; Kempter
et al., 2012), which is a sensitive method to find such relations (Zoefel
et al., 2019). The fitted regression model had the form a þ b cos(φ) þ c
sin(φ), where a, b, and c are the model parameters and φ is the phase.
Prior to the analysis, the MEP amplitudes were log-transformed to reduce
the skewness of the distribution. The forward-prediction phase-estima-
tion algorithm was used as implemented by PHASTIMATE on data
down-sampled to 1 kHz with the parameters derived from the

Fig. 2. Autoregressive forward prediction
method for phase estimation. (A) A window of
data extracted from a Laplacian montage
centered at the C3 electrode is band-pass
filtered. (B) The edges are removed and autore-
gressive parameters are determined. (C) The
signal is extended into the future to encompass
the time point of interest. (D) Hilbert transform
is applied to yield the complex analytic signal,
and thereby instantaneous phase and amplitude
at the time point of interest (Figure taken from
Zrenner et al., 2018).

Fig. 3. Non-causal phase estimation
error with synthetic EEG data. (A)
Magnitude responses of a set of 15 band-
pass filter designs after forward and
backward filtering used for phase esti-
mation. (B) Analysis of simulated EEG
data at 11 different levels of SNR be-
tween 4 and 22 dB, showing both the
circular deviation of the 15 estimators
(blue), and also the corresponding me-
dian absolute phase error of each esti-
mator (dashed grey lines) as well as the
median phase error when taking the
average of all estimators (red line). Note
that the phase error can only be deter-
mined because the data is synthesized
using a sinusoid of known phase
embedded in simulated 1/f noise; a
similar analysis is not possible with
physiological EEG data.
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optimization of the resting state EEG data (window length of 719 ms, FIR
filter with order 192, fixed pass-band of 8–13 Hz, edge 65 samples,
autoregressive model order 25, data segment length for Hilbert transform
128 samples). A significance value was obtained from an F-statistic
comparing regression model fit to a constant model. Power analysis was
performed at a significance value of 0.05 for between 20 and 200 samples
using 2000 repetitions of bootstrapping without replacement from the
available 1150 trials.

3. Results

3.1. Synthetic EEG data analysis

The simulated sinusoids in 1/f noise dataset with known “true” phase
enabled the result of the family of equivalent band-pass filter based es-
timators to be related to phase estimation error even at very low signal to
noise ratios. When the different estimators are in agreement (low vari-
ance), the median absolute phase error is low, which is the case when
SNR is high; when the different equivalent estimators are not in agree-
ment (high variance), the actual phase error of each individual estimator
is high, which is the case when the frequency of interest has a low SNR
(Fig. 3, panel B).

For this dataset, at a SNR of 6 dB with a circular deviation among
estimators of 10�, this still corresponded to a median absolute error of the
non-causal “benchmark” measure (circular mean phase of equivalent
estimators) with respect to true (synthetic) phase of 22� (Fig. 3 panel B).
Due to artifacts and noise characteristics in a given epoch of data

affecting all estimators similarly, a high correspondence among estima-
tors does not necessarily indicate accuracy – the estimators can all be
‘wrong’ in the same way.

3.2. Limits of phase determination

In accordance with the case of sinusoids with additive noise, where
estimator precision is proportional to SNR (Peleg and Porat, 1991), in the
dataset considered in this study, median circular deviation of non-causal
phase estimates decreased from 17.5� to 6.5� across participants as SNR
increased from 0 to 20 dB (Fig. 4, panel A) with a corresponding Pearson
correlation coefficient of R2 ¼ 0.74 (p ¼ 10�41). Within participants,
periods of low vs. high μ-rhythm amplitude increased estimator circular
deviation by ~20–30� between the lowest and highest amplitude quar-
tile, depending on SNR (Fig. 4, panel B).

3.3. Optimized real-time phase estimators

Instantaneous oscillatory phase of an EEG signal is not defined to
arbitrary precision and the above non-causal analysis may serve as both
an indication of the theoretical limit, as well as a benchmark against
which causal estimators that only have data before the time point of
interest can be optimized. These predictive algorithms can be employed
in real-time applications or when a stimulus artifact renders the signal
after the time of interest unusable.

The optimization of the PHASTIMATE parameters with a genetic al-
gorithm yielded an average optimized window size of 719 samples, filter
order 192, edge 65, and order of the autoregressive forward prediction of
25. The main difference between the parameters used previously
(Zrenner et al., 2018) and the results of the current analysis is the longer
window size and higher filter order (see Table 3). Note that we also had
an individualized filter passband of �1 Hz around the individual peak
frequency as opposed to the fixed 8–13 Hz passband used by Zrenner
et al. (2018).

The results of running PHASTIMATE with the two parameter sets of
Table 3 are shown in Fig. 5, both with filters having a fixed pass-band of
8–13 Hz and using filters with a �1-Hz pass-band around the individual
peak frequency. Increasing the window length of the data under
consideration from 500 to 719 ms (and changing the other parameters
according to Table 3) resulted in a median reduction of phase estimation

Table 2
Bounds within which the genetic algorithm could optimize the parameters of the
PHASTIMATE algorithm. The parameter values used previously in Zrenner et al.
(2018), are shown for comparison. These parameters apply to a sample rate of 1
kHz.

Parameter values in Zrenner
et al. (2018)

Optimization
bounds

Window size (samples) 500 400 .. 750
Filter order 128 100 .. 250
Number of samples removed
at edge

64 30 .. 120

Order of the autoregressive
model

30 5 .. 60

Fig. 4. Non-causal phase estimator variance with real EEG data. (A) Median circular deviation of “non-causal phase” estimates across 500 epochs of data and the SNR
for each of the 132 subjects. The line represents a linear fit to the data. (B) Median circular deviation for each participant in four subgroups of 125 epochs sorted
according to the estimated μ-rhythm amplitude (the blue and purple data points correspond to the group of the highest and lowest μ-rhythm amplitude, respectively).
The lines represent linear fits to the data of the subgroups.
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error deviation of ca. 5� (Fig. 5, panel B), the use of filters with indi-
vidualized passbands resulted in a modest improvement only when the
signal had a low SNR (Fig. 5, panel C). In comparison with the parameter
values used previously, the individually optimized parameters yielded an
average reduction of ca. 10–15� in error deviation.

As was the case for the spread of non-causal phase estimates (Fig. 4),
the estimation error of the predictive phase estimation method imple-
mented in PHASTIMATE was strongly affected by instantaneous ampli-
tude (Fig. 6): The quartile of epochs with the lowest μ-rhythm amplitude
had a median error deviation of ~70–100� depending on SNR, whereas
the quartile of epochs with the highest μ-rhythm amplitude had a median
error deviation of only ~20–50�.

3.4. Post-hoc sorting of trials according to pre-stimulus phase

MEP size is significantly larger when TMS is applied at the negative
peak of the oscillation vs. at the positive peak (Zrenner et al., 2018) in a

real-time closed-loop experiment. Here, the same question was addressed
through post-hoc sorting of trials, where TMS pulses were applied
open-loop, and therefore having a random μ-rhythm phase at the time of
the stimulus. Circular-to-linear regression analysis between the
forward-predicted phase as estimated with PHASTIMATE and the
log-transformed MEP amplitudes showed a highly significant correlation
with the sinusoidal model having a significantly better fit than a constant
model (p ¼ 10�32), and with the largest evoked responses coinciding
approximately to the trough of C3-centered μ-rhythm phase (Fig. 7, panel
A). A power analysis was performed (Fig. 7, panel B) showing that 75
trials would be the minimum required in this subject to demonstrate a
phase effect (power 80%, alpha 0.05).

4. Discussion

4.1. Relevance

An estimate of phase of a given oscillation, extracted by surface EEG,
at any particular point of time, is just a scalar in the range from�π toþπ.
Nevertheless, under the right conditions, this very crude measure of
instantaneous brain state predicts evoked responses (Fig. 7). In this study,
we considered the limits within which such a scalar state value may be a
meaningful measure of some aspect of brain state. Especially when
multiple spatially distributed measures of oscillatory phase serve as the
basis to derive more complex metrics such as cortical waves (Alexander
et al., 2013, 2015) or connectivity state (Stefanou et al., 2018), it is
important to understand the precision at which a phase measure can be
theoretically and practically determined given various conditions.

An estimate of oscillatory phase in EEG is also just an estimate of a
signal parameter in noise. A perhaps banal observation is that a signal
parameter can only be estimated if the signal is present and

Table 3
Optimized phase-estimation parameter values in 132 participants. The median
(and the interquartile range) of the individual optimal parameter values for
window size, filter order, number of samples removed at each edge, and the order
of the autoregressive model used for forward prediction are given along with the
parameter values used by Zrenner et al. (2018), the sampling rate being 1 kHz.

Parameter values used by
Zrenner et al. (2018)

Optimized
paramater values

Window size (samples) 500 719 (693–740)
Filter order 128 192 (158–229)
Number of samples
removed at edge

64 65 (53–81)

Order of the
autoregressive model

30 25 (17–34)

Fig. 5. Precision of the causal phase-estimation algorithm. (A) The median circular deviation of the phase estimates obtained with different autoregressive forward-
prediction algorithm parameter sets and of the corresponding phase estimates across 500 epochs of data and the SNR for each of the 132 subjects. The lines represents
linear fits to the data. The data correspond to a fixed filter with a passband of 8–13 Hz (solid line, markers visible) and an individualized filter with a passband of �1
Hz around the individual peak frequency (dotted line, markers not shown). (B) Histogram showing the phase estimation accuracy improvement when changing from
the 500 ms window to the 719 ms window parameter set (see Table 3) for both fixed 8–13 Hz and individualized passband filters. (C) Histogram showing the phase
estimation accuracy improvement when changing from fixed 8–13 Hz to individualized passband filters for both the 500 ms window and the 719 ms window
parameter set.
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distinguishable from the noise within which it is embedded. However, as
the analysis of the accuracy of non-causal phase estimates in synthetic
EEG data (Fig. 3, panel B) and the analysis of the variance of equivalent
estimators in real EEG data (Fig. 4, panel B) show, for datasets with low
SNR and during periods of low amplitude, even a non-causal phase es-
timate cannot be accurately determined, let alone be meaningfully
approximated with causal methods that use only data preceding the
timepoint of interest.

What does this mean for the design of closed-loop EEG studies? One
possibility is to include only subjects where the chosen spatial EEG filter
(in case of the sensorimotor μ-rhythm, typically a C3-centered Hjorth-
style Laplacian) yields a sufficient SNR to enable phase to be targeted
accurately. Alternatively, various approaches exist to calculate optimized

individual spatial filters based on anatomy and a dipole of interest (e.g.,
linearly constrained minimum variance beamforming) but with mixed
success (Madsen et al., 2019), based on behavioural tasks such as motor
imagery or fist clenching (e.g., common spatial patterns), or based on
spectral signal properties (e.g., spatial–spectral decomposition (Nikulin
et al., 2011; Schaworonkow et al., 2018), which may enable a signal of
interest to be extracted at sufficient SNR for phase detection in a larger
proportion of subjects.

4.2. Implications

However, given that the accuracy with which phase can be deter-
mined even in principle varies more strongly within subjects than

Fig. 6. The median circular deviation of
the phase estimates obtained with group
optimized algorithm parameters (window
length: 719 ms, filter order: 192, pass-
band: individual peak frequency �1 Hz,
edge: 64 samples, autoregressive model
order: 30, at a sample rate of 1 kHz) for
four subgroups of 125 epochs sorted ac-
cording to the estimated μ-rhythm ampli-
tude and the SNR for each of the 132
subjects. The lines represent linear fits to
the data of the subgroups. The plots on the
right visualize the overall error distribu-
tion including all trials in all subjects
within the respective amplitude subgroup.
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B Fig. 7. Results of the post-hoc analysis.
(A) MEP amplitude as a function of
estimated phase of sensorimotor
μ-rhythm as extracted by a C3 Hjorth-
style Laplacian at the time of stimula-
tion (note the logarithmic amplitude
axis). The solid sinusoid shows the
result of a circular regression fit. The
dotted sinusoid shows the pre-stimulus
phase corresponding to the horizontal
axis. The overlaid boxplots show the
median and interquartile range of the
data corresponding to 36�-wide bins.
Below, the average pre-stimulus EEG
signal in a 150 ms time window pre-
ceding the stimulus is shown for each
phase bin, with the post-stimulus arti-
fact as a grey rectangle. (B) Power
analysis at a significance value of 0.05
for between 20 and 200 samples using
2000 repetitions of bootstrapping
without replacement from the available
1150 trials. The dashed line indicates
that approx. 75 trials are required in
this subject for an 80% likelihood of
showing a significant phase effect.
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between subjects (Fig. 4, panel B), selecting the right moment to stimu-
late may be more important than selecting the right participant. Since
oscillatory power is task-dependent, another promising approach may be
to target phase during a task that amplifies the oscillation of interest (e.g.,
the relaxation of a clenched fist for the sensorimotor μ-rhythm). The
power of an oscillation of interest may be increased also through phar-
macological intervention (e.g., the GABA reuptake inhibitor tiagabine
increases oscillations in the alpha and beta band (Darmani et al., 2019).

An important constraint that arises from the decrease of phase tar-
geting accuracy during periods of low amplitude is that phase and
amplitude cannot be investigated independently. A comparison of phase-
dependent evoked responses at high amplitude with responses at low
amplitude would be confounded by the phase estimation accuracy being
significantly lower at low amplitude. When targeting a specific phase in
real-time, accuracy is improved by including an instantaneous amplitude
threshold in the trigger condition, but this will also lengthen the inter-
trigger-interval which will be influenced by slow fluctuations in spec-
tral amplitude thus providing indirect amplitude-based feedback to the
participant.

The purpose of this report is to provide a framework to verify that
phase can be meaningfully targeted within a given experimental condi-
tion. We make the PHASTIMATE scripts available as an open-source
toolbox to determine the limits of phase estimation and to facilitate the
design of experiments that optimize conditions for phase targeting. In
terms of best practice, we recommend the procedure laid out in this
manuscript as implemented in the example script: (1) Spectral analysis
enables the quality of the signal to be checked and the SNR to be esti-
mated, including the reporting of single subject spectra. (2) Variance of
phase estimates should be checked and reported (Sameni and Seraj,
2017) to establish the reliability of a non-causal estimator. (3) The per-
formance of a predictive (causal, pre-stimulus data only) phase estimator
can then be tested and optimized using EEG data without stimulation
artifacts. Care should be taken that the properties of the EEG signal used
to optimize the algorithm matches the properties of the signal used for
real-time triggering or post-hoc sorting (e.g., if an amplitude threshold is
used, amplitude should be matched in both datasets).

If the above tests yield satisfactory error variances, this provides
confidence that the selected experimental conditions (frequency of in-
terest, spatial filter, behavioural task) allow for meaningful phase tar-
geting. Phase effects at the single-trial level can then be investigated
using a post-hoc sorting approach as in the demonstration code gener-
ating Fig. 7. In terms of quantitative targets, based on the results of the
synthetic EEG data with the parameters used in this study, an SNR of �9
dBwould indicate a median error of 15� in the non-causal phase estimate,
which would typically be acceptable in a benchmark for the causal
estimator.

One further possible complication is the presence of multiple neigh-
boring spectral peaks within the frequency range of interest. This in-
dicates that a superposition of multiple oscillators from different sources
(for example, a 10 Hz peak originating in visual cortex, and a 12 Hz peak
originating in sensory cortex) is present in the signal, which results in a
compound phase value that depends on the relative amplitudes and is not
related to either signal. Here, it may be possible to design a EEG montage
(spatial filter) that is sensitive to the cortical region of interest while
attenuating specific regions generating an interfering oscillation (Hauk
and Stenroos, 2014), or to perform a behavioural intervention (e.g.
opening or closing of eyes).

4.3. Limitations

Although we believe the specific conceptual framework and the
PHASTIMATE code to be generally applicable to targeting brain oscilla-
tions with EEG, the specific parameter optimizations presented here do
not necessarily generalize beyond the sensorimotor μ-rhythm extracted
with a C3-centered Hjorth-style Laplacian. Longer time windows are not
expected to be generally better, especially if the oscillation of interest is

not stable. It would in any case be advisable to rerun the optimization
step with the specific signals of interest.

We also did not rigorously compare the effect of different filter de-
signs on PHASTIMATE performance and only report results for simple
FIR filters generated using a windowed sinc design method. Elsewhere,
elliptic IIR filters have been reported to perform well, but they did not
improve accuracy in initial tests using PHASTIMATE. It is nevertheless
possible that IIR filter designs exist that outperform the FIR filter used in
our study. The bound for the maximumwindow length was set to 750ms;
for many participants the genetic algorithm resulted in a window length
at the maximum bound. We nevertheless decided against increasing this
further since a longer time window would constrain the minimum inter
trigger interval.

Furthermore, our spectral analysis method is comparatively simple,
using the Welch method to generate the periodogram and fitting 1/f
noise using a straight line in the log–log scale at frequencies where no
physiological oscillations are expected. Due to the 2 s windows, our peak
frequency estimate has a 0.5 Hz resolution. Usingmore advanced spectral
analysis methods (such as the multi-taper method) and parametric
methods for fitting 1/f noise such as the algorithm implemented by the
“fitting of one-over-f” (FOOOF) toolbox (Haller et al., 2018) may result in
better peak frequency and SNR estimates but would likely not change the
qualitative results of this report.

In terms of the expected benefit of the genetic algorithm-based in-
dividual optimization, it should be noted that we are using the same
dataset for calibration and testing, which will likely overestimate the
benefit of the individual algorithm calibration. However, since we argue
that fluctuating signal properties (instantaneous amplitude, SNR, slow
drifts, presence of artifacts) have a far more important effect on the ac-
curacy of the causal estimate as compared to a tweaking of the algorithm
parameters, we believe that this analysis, which represents a “hypo-
thetical best case” is acceptable.

Finally, we did not consider the effect of eye blinks, muscle, or
movement artifacts in EEG beyond excluding a small number of subjects
with spectra containing noise to a degree where no μ-rhythm peak could
be found or 1/f noise fitting failed resulting in a negative SNR. Epochs
with artifacts would result in falsely high amplitude of the signal of in-
terest, and yet a low accuracy. We therefore expect automated artifact
rejection methods to improve phase accuracy.

4.4. Outlook

Whereas our focus was the calibration of causal phase estimators
using real EEG data, a further in-depth analysis of realistic synthetic EEG
data with known phase but different confounders would clearly be
merited. It would also be interesting to analyze a simple simulated case,
where the Cram�er–Rao Bound can be analytically derived from sinusoids
in 1/f noise, following a similar approach to the derivations considering
Gaussian noise (Peleg and Porat, 1991; Sameni and Seraj, 2017), which
would provide a theoretical upper limit to the performance of any esti-
mator. On the other hand, realistic head modeling would also enable
scenarios to be studied where multiple sources oscillating at similar
frequencies (e.g. occipital and somatosensory 8–13 Hz oscillations)
contribute to the recorded signal, enabling different spatial filter con-
figurations to be compared with respect to their ability to differentiate
the two sources.

Finally, a further expected benefit of the PHASTIMATE toolbox and
the large sensorimotor rhythm dataset is to facilitate the development of
improved real-time phase estimation algorithms by providing a common
benchmark. A similar class of algorithms using the Fourier transform
(Mansouri et al., 2017; Zrenner et al., 2015) or wavelets (Madsen et al.,
2018) that are mathematically analogous to the method implemented
here might be more efficient. A distinct class of approaches that makes
use of additional temporal information would use prior expectations
(e.g., peak frequency, shape of the oscillation) or the information from
previous time steps (e.g., by implementing a Kalman filter) to improve
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upon the algorithm tested here. Finally, the spatial dimension of the
oscillation is also expected to confer additional information based on
phase differences (Alexander et al., 2006) which should increase the
performance of a local estimate, but a spatial approach would be
considered out of scope of the current work and indeed, if the spatial
dimension is a relevant measure in a given experiment, this would
obviate the need to determine spatially localized phase.

Data availability

All data used in this report is available for download: https://gin.g-no
de.org/bnplab.

The PHASTIMATE toolbox and the analysis scripts used to generate
the figures in this report are available for download: https://github.com/
bnplab/phastimate.
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