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A B S T R A C T

Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection
and support for labour intensive surveying activities. From a forest monitoring perspective, there are several
technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles
(UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation
using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1
laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that
was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the
UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on
two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees),
respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of
individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree
attributes were compared against highly accurate field reference data that was acquired semi-manually with a
multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the
sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had
a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corre-
sponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves
extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV
laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both
plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the
stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions.
Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be
detected with the stem-based method, we developed a separate work flow capable of detecting trees with oc-
cluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in
the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV
laser scanner is the short period of time required for data collection, currently demonstrated to be much faster
than the time required for field measurements and TLS. The quality of the measurements acquired with the
under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for sup-
porting fast and accurate forest resource inventories.
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1. Introduction

Due to the growing demand of forests for various ecosystem ser-
vices, there is an increasing need for accurate and fast forest field in-
ventories. Even though the technological aspects of forest inventories
have been advanced remarkably using remote sensing during the last
decades, operational inventories still rely mainly on manual measure-
ments of field plots. These field plots are used for the calibration of
airborne or space-borne remote sensing data using the relationship
between these data and the forest attributes measured in the plot.
Automation of the field plot collection is needed due to the high cost
and labour related to manual measurements.

Conventional field plot measurements are implemented using cali-
pers, measuring tapes and hypsometers. Moreover, the consistency and
accuracy of these measurements is variable (Luoma et al., 2017; Wang
et al., 2019a). Some of the most common plot level metrics for in-
dividual trees include diameter at breast height (DBH) and tree height
(H), which inform about the maturity of wood and the share of struc-
tural timber. Another common stem metric is the stem curve or taper
(the rate at which stem diameter changes as the function of stem
height) that relates to growth rate, earlywood/latewood ratio and
maturity of wood, as described in Lindström (2007). These metrics
together with species information are essential for forest industry. Stem
volume is, then, typically derived using an allometric model based on a
measurement of the DBH, possibly the diameter at a height of 6 m, and
the tree height. Such an approach leads to an accuracy ranging from
10% to 15% for the individual stem volume. This accuracy level has
been reached with remote sensing techniques only when using multi-
scan terrestrial laser scanning and the best state-of-the-art algorithms
(Liang et al., 2018a). The main drawbacks of TLS are e.g.: (1) the oc-
clusion problem hindering the completeness of tree digitization and (2)
the limited efficiency and mobility of the TLS system setup (Wang et al.,
2019b). Thus, new methods for field measurements need to be devel-
oped.

In this paper, we propose to employ under-canopy unmanned air-
borne vehicle (UAV) laser scanning to pave the way for autonomous
forest inventory as introduced by Jaakkola et al. (2017). As a relatively
new technology, the history of using under-canopy UAV laser scanning
for making direct DBH measurements is short. Vandapel et al. (2005)
initially proposed the idea of a UAV flying under the canopy by com-
puting a network of free space bubbles forming safe paths within en-
vironments cluttered with tree trunks, branches, and dense foliage
measured earlier from above the canopy. Aiming to reduce operator
dependencies, Vian and Przybylko (2012) patented a remote sensing
sensor system associated with the unmanned aerial vehicle capable to
generate obstacle information and tree measurement information.
Chisholm et al. (2013) implemented a UAV lidar for forest surveys
along the road side to measure tree diameters directly, flying the UAV
around a 20 m × 20 m patch of roadside trees. They developed post-
processing software to estimate the DBH of 12 trees that were detected
by the LiDAR resulting in 73% of trees (DBH > 20 cm) detected and
measured with a relative root-mean-squared error (RMSE) of 25.1%
(about 10 cm).

Thus far, almost all of the research on UAV laser scanning has
concerned above-canopy flying UAVs. First miniUAV-based laser
scanners were developed in early 2010. Jaakkola et al. (2010) designed
the first mini-UAV laser scanner and assessed the accuracy and feasi-
bility of the method for tree measurements. They found that the stan-
dard deviation of individual tree heights was approximately 30 cm.
They also demonstrated a method to derive the biomass change of
coniferous trees from a multitemporal point cloud with a coefficient of
determination of 0.92. Wallace et al. (2012) employed a similar system,
and concluded that the standard deviation of tree height measurements
decreased from 0.26 m to 0.15 m, when the point density was increased
from 8 pts/m2 to approximately 50 pts/m2. In Wallace et al. (2014),
above-canopy UAV laser scanning data was used to correctly detect

91% of the trees. Additionally, they were able to derive the crown area
with an error below 3.3 m2 for approximately 90% of the trees.

Unfortunately, DBH, unlike the crown size or tree height, is difficult
to measure directly from above the canopy with a good accuracy, thus
necessitating the use of functions that relate crown size and tree height
to DBH (e.g. Hyyppä et al., 2001). However, there are a few studies that
have measured DBH directly from dense airborne laser scanning (ALS)
point clouds collected from above the canopy. Jaakkola et al. (2017)
were the first to directly measure DBH directly from above the canopy,
followed by Brede et al. (2017) and Wieser et al. (2017). Using a Ve-
lodyne-16 sensor, Jaakkola et al. (2017) obtained 6.5 cm as the RMSE
of the direct DBH measurement. Using RiCOPTER, Brede et al. (2017)
obtained 4.2 cm and Wieser et al. (2017) 2 cm for the RMSE of DBH.
Harikumar et al. (2017) used long-range airborne laser scanner data
and found 5.7 cm as the RMSE of the stem diameters.

Obtaining high-quality direct measurements from the stems using
above-canopy laser scanning requires expensive sensors, since the point
spacing and beam size should be small to allow for the accurate mea-
surement of the stem, but both of these properties deteriorate as a
function of range. Such sensors and platforms, such as RiCOPTER, are
currently at the level of 300 k€ in costs, whereas under-canopy laser
scanners can be based on those that are to be developed for autonomous
driving (e.g. Velodyne VLP-16 laser scanner) and currently cost ap-
proximately few thousands of euros. These sensors are expected to drop
in price to some hundreds of euros, as a result of mass production.

However, under-canopy UAV laser scanning suffers from the low
quality of the GNSS (Global Navigation Satellite System) signal and
therefore, accurate positioning of the scanner requires the use of si-
multaneous localization and mapping (SLAM) algorithm as in the case
of ground-based mobile laser scanning techniques (e.g., Tang et al.,
2015; Qian et al., 2017; Kukko et al., 2017; Pierzchała et al., 2018).
Nowadays, SLAM technology has already been integrated into some
commercial laser scanners, such as Kaarta Stencil, GeoSLAM Horizon
and Zebedee systems. In recent years, several innovative methods have
been proposed in order to further reduce the effects of positioning er-
rors affecting SLAM corrected point clouds. Liang et al. (2014c) used a
multipass-corridor-mapping method to alleviate the problems arising
from the positioning errors propagating in time. Forsman et al. (2016)
determined the DBH of trees by extracting consecutive points forming
circular arcs instead of analyzing the point cloud as a whole. Čerňava
et al. (2019) used the iterative closest point algorithm to match points
reflected from the same tree at different times in order to improve the
modeling accuracy of the stems. Holmgren et al. (2019) applied tree
spine calibration based on the Kalman filter to reduce the distortion of
the stems in the point cloud. Recently, Hyyppä et al. (2020) showed
that an arc-based stem detection algorithm combined with an iterative
arc matching algorithm could be used to extract the stem curves of trees
from an MLS point cloud with an RMSE of approximately 5% in easy
and medium-difficult boreal forests.

In this paper, we used an under-canopy flying UAV laser scanner
with an integrated SLAM system to collect high-quality point cloud data
for two test sites located in the boreal forest zone. The under-canopy
flying UAV was manually piloted with the help of video goggles re-
ceiving a live video feed from a camera mounted on the UAV. The
objective of this paper is to demonstrate that under-canopy UAV laser
scanning can generate high quality point clouds, from which automatic
algorithms can derive the stem curves of trees with a high precision
(RMSE ≈ 5%) in boreal forest stands classified as sparse and ob-
structed. Additionally, we demonstrate that the stem volume of in-
dividual trees can be estimated with a high precision (RMSE ≈ 5%) by
combining the stem curves extracted from the under-canopy UAV laser
scanning data and tree heights extracted from above-canopy UAV laser
scanning data. We compared the estimated individual stem curves and
volumes against highly accurate field reference data acquired semi-
manually with multi-scan TLS. Furthermore, we describe a novel tree
detection algorithm that enables the detection of trees whose stems are
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severely occluded. In this research, we also discuss the future oppor-
tunities for robotic-assisted surveying, with insights expected beyond
the forest measurement example presented here.

2. Materials and methods

2.1. Test sites

In this study, the under-canopy and above-canopy UAV measure-
ments were carried out on two 32 m × 32 m test sites both located in a
boreal forest in Evo, Finland (61.19°N, 25.11°E) and illustrated in
Figs. 1(a) and (b). These two test sites were employed to (1) test the
feasibility of the concept in varied forest stand conditions; and (2) to
include a sufficient number of trees for verification of the developed
methods. The complexity of the forest on the two test sites had been
assessed a priori by experts based on the stem density of the plot, the
species composition of the vegetation, the visibility of the stems, and
the size distribution of trees, following the approach described, e.g., in
Liang et al. (2018b).

The first test site had been classified as a sparse plot (called as ”easy
plot” in Liang et al., 2018b) due to a low stem density, the sparsity of
understory vegetation, and the homogeneity of trees. On this test site,
over 90% of the 42 trees are pines (Pinus sylvestris L.), whereas the
remaining three trees are spruces (Picea abies L. Karst.). The second,
obstructed test site belongs to the difficulty category ”medium” ac-
cording to Liang et al. (2018b) due to moderate understory vegetation,
larger variations in the tree sizes and a more varied tree species dis-
tribution as can be seen from Table 1. In addition to pines, the ob-
structed plot includes 5 birches (Betula pendula Roth and Betula pub-
escens Ehrh.) with somewhat non-circular stems and 8 spruces that are
characterized by a poor stem visibility due to the high number of
branches. More detailed statistics of the test sites are provided in
Table 1.

2.2. Data acquisition using under-canopy UAV laser scanning

A hexacopter drone, Tarot 960 (Tarot Aviation Technology co., LTD,
Wenzhou, China), with a payload capacity of 4 kg and a flight time of
20 min was used for the under-canopy UAV flights carried out in early

June 2019. The UAV used Pixhawk autopilot with Arducopter firm-
ware. The laser scanner was mounted horizontally to the bottom of the
UAV with only some occlusion from the vertical landing gear tubes at
the sides of the UAV. For piloting the UAV, an analogue video camera
and a 5.8 GHz radio transmitter were installed to the front of the UAV.
The video was transmitted to video goggles and the UAV was manually
piloted using the live video feed from the onboard camera. This type of
piloting is called first person view (FPV) flying. A spotter was present
during the flights next to the pilot to monitor the surroundings as the
pilot had no direct line of sight with the UAV. During the flights the
study area was covered as well as possible, as straight flight lines were
not possible and some areas were impassable with the UAV. The flight
together with the on-site preparations lasted for approximately
10–15 min on each of the sample plots. The trajectory of the UAV flight
on the sparse test site is illustrated in Fig. 2.

The scanner attached to the UAV was a Kaarta Stencil SLAM-system
(Kaarta, Pittsburgh, Pennsylvania, USA) based on a Velodyne VLP-16
laser scanner (Velodyne Lidar, San Jose, California, USA) mounted on
an aluminium platform together with the operating computer. The laser
scanner ( = 903 nm) had 16 laser profiles with an angular resolution of
2 degrees resulting in a vertical field of view of± 15 degrees. Due to the
rotation of the laser profiles, the scanner had a horizontal field of view
of 360 degrees. According to the manufacturer, the maximum range of
the scanner is 100 meters and the ranging accuracy is±3 cm. Due to the
long range of the scanner, the obtained point cloud covered an area
larger than the 32 m × 32 m test site. The resulting point density within
the actual plot was ×1.3 104 pts/m2 in the sparse plot and ×2.4 104 pts/
m2 in the obstructed plot. The sampling frequency of the scanner
(300 kHz) was used to obtain approximate time stamps for each of the
points in the point cloud. The settings for data collection and SLAM
processing were set according to the manufacturer’s recommendations
in a forest environment. Fig. 3(a) illustrates the raw point cloud of the
obstructed plot obtained with the laser scanner mounted on the under-
canopy flying UAV. Note that the tree tops are not accurately captured
in the point cloud due to the narrow field of view of the scanner.

2.3. Data acquisition using above-canopy UAV laser scanning

In order to conduct high quality tree height measurements needed

Fig. 1. (a) An overview of the sparse plot. The figure also shows the UAV that was manually piloted with the help of video goggles receiving a live video feed from the
onboard camera of the UAV. (b) The obstructed plot viewed from the onboard camera of the UAV.

Table 1
Descriptive statistics of the two forest stands including trees exceeding 5 cm in DBH. The standard deviations of tree height and DBH are reported within the
parenthesis.

Test site Number of trees Stem density Average DBH Average tree height Tree species distribution

(stems/ha) (cm) (m) Pines (%) Spruces (%) Birches (%)

Sparse 42 410 25.9 ±( 5.2) 21.4 ±( 2.8) 92.9 7.1 0.0
Obstructed 43 420 27.0 ±( 10.1) 22.2 ±( 6.0) 69.8 18.6 11.6
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for the stem volume computation, we analyzed additional above-ca-
nopy UAV laser scanning measurements collected on the same sites.
The above-canopy flights were conducted in September 2017, using the
RiCOPTER (Riegl GmbH, Horn, Austria) that was equipped with a Vux-
1 (Riegl GmbH, Horn, Austria) UAV LiDAR sensor, an inertial mea-
surement unit (IMU) and a GNSS unit. Thus, there was practically one
growing season difference between the above-canopy and under-ca-
nopy UAV flights. The data was collected at 50 meters above the ground
with multiple overflights from different directions. The scanner was
operated with 550 kHz laser pulse rate, 120 degrees field-of-view and
106 scan lines per second, resulting in 0.07 degrees measurement re-
solution in each line. The typical flying speed was 2–4 m/s, which
produced a point spacing of 3.3 cm in a scan line and 2–4 cm in the
flying direction on the ground.

Due to the high overlap between different flight lines, the point
density increased vastly, resulting in point densities in the range of
4000–18,000 points/m2 at the sample plots. As can be seen from
Fig. 3(b), the point cloud acquired using the above-canopy flying UAV
captures accurately both the canopy and the ground level, which en-
ables measuring the tree heights with a high precision. Note that the
geometric accuracy of the stems in the data was limited due to the
occlusion from the upper canopies. As was reported in Liang et al.
(2019), the relative RMSE of the DBH derived from such data was as
high as 15% in sparse forest plots.

2.4. Reference measurements of stem curve, tree height and stem volume

In order to obtain accurate reference measurements of the stem
curves, a multi-scan TLS point cloud of the test sites was analyzed semi-
manually. The TLS measurements had been carried out in the summer
of 2014. To extract the stem curves, trees were first manually detected
from the multi-scan TLS point cloud. Subsequently, circles were fitted
to the manually identified stem points at the heights of 0.65 m, 1.3 m,
2.0 m, 3.0 m and thereafter at every subsequent 1 m up to the max-
imum measured height of the stem. Note that this process yields as
precise reference results for the stem diameter at different heights as is
possible without using a logging machine that requires damaging and
felling the trees (see, e.g. Liang et al., 2014b).

Since the multi-scan TLS measurements were conducted in 2014,
i.e., 5 years before the under-canopy UAV measurements, the reference
stem curves had to be calibrated by performing field measurements in
the summer of 2019 in order to account for the 5-year growth of the
trees. By measuring the diameter at breast height for each tree with a
tape measure, we were able to determine an approximation for the tree
specific diameter growth during the 5-year period. In the calibrated
stem curves, the 5-year growth of the DBH was added to the reference
diameters at all heights. Naturally, this calibration process did not take
into account a possible change in the shape of the tree. The tree dia-
meters had grown on average by roughly 1.8 cm during the period.

The reference tree heights required for the stem volume computa-
tion were obtained with ordinary field measurements conducted using a

Fig. 2. (a) Top view of the trajectory of the under-canopy flying UAV (white line) in the sparse plot. The red dashed line shows the boundary of the 32 m × 32 m test
site. (b) Side view of the trajectory (black line) in the sparse plot.

Fig. 3. (a) SLAM-corrected point cloud of the obstructed plot obtained using the laser scanner mounted on the under-canopy flying UAV. The solid black line
illustrates the trajectory of the UAV. (b) Raw point cloud of the obstructed plot acquired with the scanner mounted on the above-canopy flying UAV.
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hypsometer. These measurements were carried out in the summer of
2019. The reference values for the stem volume were then estimated by
utilizing both the reference stem curves and the reference heights in a
manner similar to that proposed by Hyyppä et al. (2020). First, we
fitted a parabolic function

= +R z a h z a h z( ) ( ) ( ),1 1
2

2 (1)

and a square root function

=R z b h z( )2 1 (2)

to the reference radii R at different heights z. Note that the fitting
functions equal zero at the reference height h of the tree. After de-
termining the parameters a a b{ , , }1 2 1 by ordinary least squares regres-
sion, the reference stem volume V was determined by computing the
average of the volume estimates provided by the fits as

= + =V R z z R z z R z z
2

( ) d ( ) d ( ) d ,
h h h

0 1
2

0 2
2

0 eff
2

(3)

where = +R z R z R z( ) ( ) ( ) /2eff 1
2

2
2 is the effective radius corre-

sponding to the volume estimate.
This process was used to determine the reference stem volumes

since the fitting functions approximate well the shape of the stem curve
at heights above the reference measurements. Importantly, the risk of
over-fitting is also small despite the missing diameter measurements
close to the tree top thanks to the low number of fitting parameters. In
Hyyppä et al. (2020), it was estimated that this fitting process can es-
timate the total stem volume with an error below 5%.

3. Applied algorithms for the extraction of DBH, stem curve and
stem volume

In this section, we present the algorithms that were employed to
extract the DBH and stem curve for trees with partly visible stems from
the point cloud obtained with under-canopy UAV laser scanning. The
algorithm used for robust stem point detection is completely novel, but
the arc matching process used for improving the stem modeling accu-
racy is based on the workflow proposed by Hyyppä et al. (2020). Ad-
ditionally, we propose a novel algorithm for tree detection that is
capable of detecting trees with both visible and occluded stems. Finally,
we describe a method used to extract the tree heights from the above-
canopy UAV laser scanning data and the process that was used to
predict the stem volumes based on the stem curve and tree height in-
formation. Note that all the methods presented in the following sub-
sections are automatic and do not require any manual processing of the
data apart from the heuristic choice of the parameters of the algorithms.
See Fig. 4 for a simplified flow chart of the data processing workflow.

We stress that the parameters of the algorithm have not been opti-
mized but instead they have been chosen heuristically based on, e.g.,
the point density of the point clouds, the ranging accuracy of the
scanner, the average diameter of the trees on the test sites, and the
desired quality of the arcs to be extracted. In appendix A, we present a
sensitivity analysis for the parameters of the algorithm showing that the
algorithm is robust against reasonable changes in the parameter values.

3.1. Digital terrain model and preliminary segmentation

As a pre-processing step, we removed clearly outlying data points in
the z direction from both above and below the point cloud using a
simple point density criterion. Subsequently, a digital terrain model
(DTM) was generated for each of the test sites. The DTM creation began
by dividing the xy plane into pixels of size 50 cm × 50 cm for the sparse
test site and into pixels of size 70 cm × 70 cm for the obstructed test
site. Furthermore, the z direction was divided into height intervals of
width 1.0 m for both the sparse and the obstructed site. For each pixel,
we computed the total number of points within each height interval.
Subsequently, the ground level in each pixel was obtained by

computing the average z coordinate of the data points located in the
lowest height interval containing at least 1% of the total number of
points within the pixel. The final DTM was obtained after Gaussian
smoothing. Using the DTM, the z coordinates of all the data points were
normalized by subtracting away the ground level at the point location.

Subsequently, we divided the point cloud into smaller segments by
applying the watershed algorithm for the canopy height model that had
been generated based on the maximum z coordinates within each pixel.
This preliminary segmentation was performed in order to markedly
reduce the running time of the clustering algorithm used for the stem
detection described in the next section. Additionally, we used a few of
the watershed segments to fine-tune the heuristically chosen parameter
values of the stem curve extraction algorithm.

3.2. Algorithm for stem detection and stem curve extraction from the under-
canopy UAV laser scanning data

Our first goal in the stem curve extraction algorithm was to identify
points that had been reflected from the tree trunks. When identifying
stem points, we needed to take into account the positioning errors that
resulted from the movement of the laser scanner. Namely, we observed
that the positioning error of the scanner was still on the order of 10 cm
or above although we used the integrated, high-quality SLAM-system of
the Kaarta Stencil-1 scanner in the data collection.

To overcome the problems arising from the positioning errors, we
used an arc-based approach together with an arc matching algorithm
that was first proposed by Hyyppä et al. (2020). Since the study by
Hyyppä et al. (2020) was based on a 2D laser scanner, we had to de-
velop a novel and robust algorithm capable of finding arcs corre-
sponding to stems from a point cloud collected with a 3D laser scanner.
As a first step of our arc finding algorithms, we used a time-based
clustering method that resembles the approach adopted by Čerňava
et al. (2019). Namely, we divided the time into short intervals and
grouped the data points based on their time stamps. The duration of
each time interval was chosen to be 1 s since the SLAM-system was
observed to work very precisely at this time scale. Additionally, we
divided the z axis into height intervals with a width of 0.4 m starting
from 1 m above the ground. Note that we only considered points that
were located at least 1 m above the ground level in order to avoid
points reflected from the understory vegetation or ground.

Then, we applied the following arc extraction procedure for data
points belonging to a certain height and time interval. First, we pro-
jected the data points to the xy plane and applied a well-optimized
implementation of the density-based clustering for applications with
noise (DBSCAN) (Ester et al., 1996) in order to group the points into
clusters. In the DBSCAN clustering, a point was regarded as a core point
of a cluster if there were at least =minPts 121 points within a range of
= 7.51 cm from the point. The point number threshold minPts1 was

chosen based on the typical DBH of trees and the quality criteria used in
the arc finding (see the end of this subsection). In order to achieve fast
running times, we used a well-parallelized quadratic implementation of
DBSCAN for small data sets with less than 3000 points, and a sub-
quadratic implementation based on kd trees for large data sets. Fig. 5(a)
illustrates the effect of DBSCAN clustering for a simulated data set.

To further filter out noise points present in the clusters, we applied
robust circle fitting using the random sample concensus (RANSAC)
framework (Fischler and Bolles, 1981) for each of the clusters sepa-
rately. For each cluster, we randomly chose three points through which
a circle was fitted. After fitting the circle we computed the number of
inliers, i.e., the number of points located at most at a distance of

=d 3.0in cm from the fitted circle. The process was repeated for several
times and the circular fit with the most inliers was regarded as the final
fit. If the number of inliers corresponding to the final fit was at least

= 70in % of all the points in the cluster, the fit was accepted and the
outlying points were deleted from the cluster. Otherwise, the fit and the
corresponding cluster were rejected from further analysis. Note that the
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number of iterations in the RANSAC loop was obtained with the fol-
lowing equation

=N log(1 0.99)
log(1 )

,RANSAC
in
3 (4)

where log refers to the natural logarithm. This number of RANSAC
iterations ensured that we obtained at least one set of 3 three inlying

points with a probability of 99% assuming that the inlier ratio equaled
in. The effect of the RANSAC-based circle fitting and outlier removal is
illustrated in Fig. 5(b).

Importantly, it is possible that there still remained noise points close
to the edges of the clusters even after performing the DBSCAN algo-
rithm and the RANSAC-based circle fitting procedure as illustrated in
Fig. 6(a). Such noise points can arise from the presence of branches or

Fig. 4. Flow chart illustrating the steps of the data processing workflow.

Fig. 5. (a) A few arcs and some noise points used to illustrate the working principle of the arc extraction algorithm that we applied for points belonging to a certain
height interval and time interval. The colors indicate the results of the DBSCAN clustering step, in which we have used the parameter values = 0.075 m and

=minPts 12. (b) The same points after performing robust, RANSAC-based circle fitting using 3 cm as the inlier threshold and 0.7 as the lowest acceptable inlier ratio.
Note that there are still a few noise points present close to the edges of the clusters 1 and 2.
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measurement errors, and they can have a large impact on the circle
fitting if they are not removed (Forsman et al., 2016; Forsman et al.,
2018). Therefore, we tried to filter out such noise points by applying the
following arc division algorithm for each of the clusters separately:

1. We fitted a circle to the data points within a single cluster using the
hyper-accurate circle fit (Al-Sharadqah and Chernov, 2009) in order
to find the center x y( , )0 0 of the circular fit as illustrated in Fig. 6(a).

2. Subsequently, we calculated the angles between neighboring points
as compared with the circle center. The neighboring points with
angles larger than = 10max were signed into different sub-clus-
ters (=sub-arcs). This process is illustrated in Figs. 6(b-c).

Note that it is useful to rotate the points such that the center of mass
vector of the cluster aligns with the x axis due to the discontinuity of the
atan2 function. To refine the clustering even further, we applied the arc
division algorithm iteratively for 5 times.

In order to determine which clusters correspond to tree trunks, we
checked the features of the clusters against the following heuristically
chosen quality criteria after fitting a circle to the data points using the
hyper-accurate fit. We accepted a cluster if.

1. It contained at least =N 50min points.
2. The standard deviation of the radial residuals was below = 1.5R
cm.

3. The radius of the fitted circle was larger than =R 4min cm but
smaller than =R 40max cm.

4. The central angle corresponding to the arc exceeded
= =0.6 rad 108min . Note that the central angle of the arc can-

didate can be conveniently estimated after rotating the center of
mass of the data points to align with the x axis as in the arc division
algorithm.

Having extracted arcs for all the time and height intervals, we
clustered the extracted arc centers using the DBSCAN algorithm in the
xy plane in order to group the arcs into trees. In our implementation, we
used the parameter values =minPts 52 and = 252 cm. This implies that
a particular tree was detected only if our arc extraction algorithm found
at least 5 good quality arcs corresponding to the tree. Note that our arc
extraction algorithm typically found 100–1000 arcs for a single tree
indicating that the thresholdminPts2 was chosen low enough. Note also
that the neighborhood radius 2 was chosen to equal the typical DBH of
trees since the typical DBH sets an approximate lower bound for the
inter-tree distance. Additionally, we required that the arcs of a single

Fig. 6. (a) Simulated data points belonging to the first cluster of the data set originally shown in Fig. 5. The dashed black line shows the circular fit obtained with the
hyper-accurate circle fit algorithm, whereas the black arrow depicts the center of mass of the data points as compared with the center of the fitted circle (red cross).
(b) The same points as in panel (a) but rotated such that the vector connecting the circle center and the center of mass is aligned with the x axis. In order to find the
noise points close to the edges of the arc, we first sort the points based on the angle that they make with respect to the x direction. Subsequently, we go through the
points in the sorted order and compute all the central angles between consecutive points. As illustrated in the figure, a central angle exceeding a threshold value

= °10max indicates the beginning of a new sub arc. (c) The result of applying arc division algorithm. Different colors correspond to different sub arcs. (d) Arcs
obtained from the data set originally shown in Fig. 5 after applying the arc division algorithm iteratively. Note that the algorithm manages to filter out practically all
of the noise points close to the edges of the arcs.
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tree had to range at least 1 m in the z direction.
After the extraction and clustering of the arcs, we utilized the

workflow proposed by Hyyppä et al. (2020) in order to obtain high-
quality stem curve estimates despite of the positional drift of the
scanner that is affecting the SLAM-corrected point cloud. In the rest of
this section, we provide a summary of this workflow but a more de-
tailed description of the methods together with schematic figures can be
found in Hyyppä et al. (2020). First, we estimated the growth direction
of individual trees using the principal component analysis (PCA).
Subsequently, we applied the arc matching algorithm. The goal of the
matching algorithm was to determine the stem diameter at the mid-
points of the height intervals ( = + ×z j1.2m 0.4j m, = …j {0, 1, 2, }) by
optimally matching the extracted arcs within each height interval. In
the matching, only such height intervals containing at least 2 arcs were
taken into account in order to increase the robustness and reliability of
stem curve extraction. In brief, the arc matching algorithm iterates
through the following process:

1. On the first iteration, we fitted a circle to each of the arcs separately
using the hyper-accurate fit. Then, we shifted each arc such that the
center of the circular fit coincided with the origin after the shift.

2. We fitted a single circle to all of the arcs together such that the
center of the fitted circle was fixed to the origin. This fit resulted in a
radius estimate R.

3. Next, we fitted a separate circle to each of the arcs such that the
radii of the fitted circles were all fixed to R. Again, all the arcs were
shifted such that that the centers of the fitted circles coincided with
the origin after the shifts. The instructions 2 and 3 were iterated for
5 times in order to match the arcs optimally.

Note that we performed the circle fitting in the plane perpendicular
to the average growth direction of the tree that we had previously
obtained using the principal component analysis. This inclination angle
correction improves the modeling accuracy for trees with inclined
stems since it effectively makes the circle fitting equivalent to cylinder
fitting.

To robustify the stem curve extraction process even further, we used
a simple outlier detection scheme. The diameter estimate Dj obtained
by applying the arc matching algorithm at the height of zj was classified
as outlying using the following criteria.

1. First, we searched for the k nearest height intervals for the height zj
(including the height interval itself), and computed the median
(MEDIAN) and median absolute deviation (MAD) based on the
diameter estimates of these k height intervals. If the tree had more
than 5 diameter estimates at different heights associated with it, we
used =k 5. Otherwise, we set k to equal the number of diameter
estimates corresponding to the tree. The diameter estimate Dj was
regarded as an outlier if
(a) > ×D| MEDIAN| 2 MADj , and
(b) >D| MEDIAN| 3.0j cm.

After removing the clearly outlying diameter estimates, we obtained
the final stem curve estimate by fitting a smoothing cubic spline (see,
e.g., De Boor et al., 1978; Pollock et al., 1993) to the diameter estimates
at different heights. When fitting the smoothing spline, each diameter
estimate was weighted with the corresponding uncertainty estimate.
Thus, diameter estimates with high uncertainty had a lower impact on
the fit as diameter estimates with low uncertainty. Note also that we
chose the optimal value of the smoothing parameter using leave-1-out
cross validation.

The DBH was primarily obtained by evaluating the fitted smoothing
spline at the height of =z 1.3 m. However, if the lowest extracted
diameter estimate was located above =z 1.3 m, the smoothing spline
could not be used to estimate the DBH. If the stem curve had been
extracted from a sufficiently wide height range (> 3 m), the DBH was

obtained by fitting a linear model to the lowest 3 meters of the
smoothing spline and subsequently, evaluating the linear model at the
height of =z 1.3 m. If the stem curve was extracted only from a narrow
height range (< 3 m), we fitted a square root function (see Eq. (2)) to
the stem curve, and then extrapolated the DBH by estimating the fit at
the breast height.

3.3. Non-stem-based tree detection algorithm

In this section, we propose a tree detection algorithm based on ro-
bust vertical line fitting that is capable of detecting both trees with
visible and occluded stems. The algorithm has been designed for trees
with close-to-vertical stems in relatively sparse forests. Additionally,
the proposed algorithm is suitable for point clouds collected with any
technology that ensures that the positional drift of the scanner is ap-
proximately smaller than the average diameter of the trees. We used the
proposed workflow (1) to show that almost all of the trees on the test
sites can be detected even though their stems are occluded and (2) to
find accurate tree locations from the above-canopy UAV data, which
enables registrating the under-canopy and above-canopy point clouds
that are in different coordinate frames. The working principle of the
tree detection algorithm is illustrated in the schematic in Fig. 7.

As a first step in the proposed tree detection algorithm, we con-
structed a simplified voxel-based representation of the point cloud. The
point cloud was divided into voxels having a lateral width of =L 25xy
cm in the x and y directions and a vertical width of =L 40z cm in the z
direction. Voxels containing at least =N 50voxel points were marked as
full in order to filter out points located in regions with a low point
density. To identify regions that potentially correspond to trees, we
applied the 2D DBSCAN clustering algorithm for the full voxels at all
the different heights intervals (with a width of 40 cm) ranging from the
height of =z 1.5 m to =z 10.0 m. In the DBSCAN clustering, the
minimum point number threshold was chosen as 1 and the cluster ra-
dius was set to = 503 cm. For each of the clusters, an effective circular
representation was constructed by assigning the circle center to the
center of mass of the cluster and choosing the effective cluster radius
based on the area of the cluster as

=r A ,eff (5)

where A represents the area of the cluster based on the number of
voxels belonging to the cluster.

Subsequently, a rectangular cell grid with a cell width of 10.0 m was
set up in the xy plane and the clusters were assigned to these cells based
on their locations. We applied a RANSAC-inspired vertical line fitting
procedure for the clusters located within each cell. The vertical line
fitting process can be summarized as follows.

1. Loop through the clusters within the given cell and fit a vertical line
through the current cluster center. Find the number of inliers by
counting the number of clusters that are located closer to the ver-
tical line than their effective cluster radii reff . Keep track of the
vertical line with the most inliers.

2. Accept the best vertical line if it is associated with at least 5 inlying
clusters. Delete these inlying clusters from the list of available
clusters and repeat the process until the best vertical line goes
through less than 5 clusters.

Having performed the vertical line fitting in all the cells, we looped
through the fitted vertical lines and searched for all the clusters that
were located closer than r1.5 eff from a given vertical line. This step was
required since each cluster was used at most once in the vertical line
fitting process described above. Due to reassigning clusters to the ver-
tical lines, a single clusters could be assigned to multiple vertical lines.
Consequently, clusters corresponding to multiple vertical lines were
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splitted such that each voxel was assigned to the closest vertical line
based on the weighted distance metric r||·|| /2 eff , where ||·||2 refers to the
ordinary Euclidean norm. After, splitting the clusters, each cluster be-
longed to at most one vertical line. By using the newly assigned clusters,
the location of each vertical line was re-fitted by giving more weight to
smaller clusters

=x
x r
r

,i i i

i i

eff,
2

eff,
2 (6)

=y
y r
r

,i i i

i i

eff,
2

eff,
2 (7)

where x y( , )i i refers to the center of the ith cluster associated with the
given vertical line and r ieff, is the corresponding effective radius. Finally,
a vertical line was classified as a tree if it contained at least 10 clusters.
In Fig. 7(b), we illustrate the tree detection and segmentation results for
a single cell in the obstructed plot. Note that the algorithm can even
detect spruces with partly overlapping branches provided that suitably
chosen parameter values are used.

3.4. Stem volume estimation using a combination of under-canopy and
above-canopy UAV laser scanning data

In order to estimate the stem volumes for the trees with detected
stems, we derived the tree height from the point clouds obtained with
the above-canopy flying UAV. To this end, we first generated the DTM
for the above-canopy point clouds and subtracted the ground level from
the z coordinates of all the points. Importantly, the coordinate frames of
the point clouds collected with the under-canopy and above-canopy
UAVs were different since the point clouds obtained with the above-
canopy flying UAV were georeferenced, whereas the under-canopy
point clouds were not. To find the two-dimensional Euclidean trans-
formation between the point clouds, we first used the tree detection
algorithm described in the previous section to detect the locations of all
trees in the above-canopy point cloud. Since the number of stem stem
points was much lower in the above-canopy point cloud as compared
with the under-canopy point cloud, we used the parameter values

=L 50z cm and =N 1voxel in the tree detection algorithm. The rest of the
parameters were kept at their default values. Subsequently, the stem
locations extracted from the under-canopy UAV laser scanning data
were compared against the tree locations found from the above-canopy

point cloud in order to find the rotation angle and translation between
the point clouds.

Having matched the point clouds, we determined the tree height for
each tree whose stem had been previously found from the under-canopy
UAV laser scanning data. For a given tree, we first found all the points
in the above-canopy UAV point cloud that were located within 1 m
from the 3D line defined by the growth direction of the tree.
Subsequently, we divided the z axis ínto height intervals of width 1.0 m
and counted the number of points within the height intervals. For big
trees having a diameter larger than 20 cm, the tree top was identified as
the highest height interval containing at least 10 points and the tree
height was obtained as the average z coordinate of the 5 highest lying
points in the given height interval. For small trees having a diameter
smaller than 20 cm, the tree top was assumed to be located in the
lowest height interval that was above the highest extracted good-
quality arc and contained less than 10 points. In this case, the tree
height was acquired by computing the average of 5 highest lying points
in the height interval below the interval corresponding to the tree top.
Note that the division to small and large trees was made to accurately
extract the heights of suppressed trees shadowed by taller trees.

After extracting the stem curve from the under-canopy UAV laser
scanning data and the tree height from the corresponding above-canopy
UAV data, we estimated the stem volume using the same method as for
the reference stem volumes described in Section 2.4. Briefly, we fitted
the parabolic and square root functions given by Eqs. (1) and (2) to the
stem curve radii appended with the tree height. Subsequently, the stem
volume was obtained by integrating the fits as described in Eq. (3).

3.5. Statistical analysis

In this section, we briefly review the statistical tools used for as-
sessing the performance of the under-canopy UAV laser scanning. We
quantify the accuracy of stem detection using the concepts of com-
pleteness and correctness

= ×Completeness Number of reference trees found
Total number of reference trees

100%, (8)

= ×Correctness Number of reference trees found
Total number of trees found

100%, (9)

where the total number of trees found refers to all the trees found by the
algorithm within the test site.

Fig. 7. (a) Schematic of the tree detection algorithm based on a small region located in the obstructed plot. The figure shows the effective circles representing the
clusters obtained by applying DBSCAN clustering for the voxel-based representation of the point cloud. The results of the vertical line fitting are represented with
solid black lines. Clusters corresponding to the same vertical line, i.e., tree are colored with the same color, whereas black circles represent clusters that do not belong
to any tree. Note that in the figure, we have already refined the clustering by splitting clusters that belonged to multiple trees. (b) Segmentation of the point cloud
based on the tree detection algorithm.
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As usual, the bias and root-mean-square error (RMSE) of a variable x
(e.g., DBH, tree height) are evaluated using the following equations

=
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x x
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i i

1

,ref
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=
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x x
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where N is the number of successfully found trees, xi refer to the esti-
mates obtained with the algorithm, and xi,ref denote the corresponding
reference values. The corresponding relative bias and RMSE are defined
as follows

= ×
x

bias % bias
¯

100%,
ref (12)

= ×
x

RMSE % RMSE
¯

100%,
ref (13)

where x̄ref denotes the average value based on the reference measure-
ments

Note that the bias and RMSE have to be computed in a slightly
different way for the stem curve estimates since the number of diameter
estimates varies from tree to tree. We define the bias and RMSE of a
single stem curve as
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where biasi andRMSEi are the bias and RMSE corresponding to the stem
curve of the ith tree, D z( )i j is the extracted diameter at height zj based
on the smoothing spline fit, and D z( )i j,ref is the corresponding reference
diameter. Note that the extracted diameter is compared with those re-
ference diameters that are located within the height interval of the
extracted stem curve. Thus, the number Ni varies from tree to tree.

The total bias and RMSE of the stem curve estimation can then be
computed as
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where the summation runs over the matched trees.

4. Results

4.1. Stem and tree detection using under-canopy UAV laser scanning data

Before comparing the tree attributes of the extracted and reference
stems, we matched the extracted stems with the corresponding re-
ference trees by finding the optimal rotation and translation between
the local coordinate system of the under-canopy UAV point cloud and
the global coordinate system. After applying this Euclidean transfor-
mation, we matched each detected stem with the closest reference tree
provided that the distance between the trees was less than 0.5 m.

In the sparse plot, our stem detection algorithm described in Section
3.2 managed to detect correctly 39 out of the 42 reference trees, i.e., the
completeness of stem detection was 93%. As illustrated in Fig. 8(a), the
algorithm could detect all of the 39 pines but none of the 3 spruces due
to the poor stem visibility. Additionally, there were no falsely detected
stems within the test site indicating that the correctness of stem de-
tection was 100%.

In the obstructed site, our stem detection algorithm detected cor-
rectly all of the 30 pines and 4 out of 5 birches but only 2 of the 8
spruces. Therefore, the completeness of stem detection was 84% when
all of the trees were considered. As can be seen from Fig. 8(b), there
were again no falsely detected stems within the test site indicating that
the correctness of stem detection was 100%.

Using the tree detection algorithm presented in Section 3.3, we were
able to detect 41 out of the 42 trees in the sparse plot corresponding to a
completeness level of 98%. The algorithm interpreted two spruces with
highly overlapping branches as a single tree resulting in the omission of
a single spruce. In the obstructed plot, the tree detection algorithm
detected 40 out of the 43 trees. The algorithm interpreted 4 small
spruces with highly overlapping branches as a single spruce resulting in
the omission of three spruces. In both of the test sites, the correctness of
tree detection was 100%. Note that the detected location of one birch is
off by approximately 1 m as compared with its reference location in
Fig. 8(b) due to its highly inclined stem.

4.2. DBH estimation using under-canopy UAV laser scanning data

Using the definitions in Section 3.5, the bias of the DBH estimates was
found to be 0.31 cm (1.1%) in the sparse plot, and 0.29 cm (1.0%) in the
obstructed plot. As illustrated in Fig. 9(a), the corresponding RMSE values
for the DBH were 0.69 cm (2.2%) in the sparse plot, and 0.92 cm (3.1%) in
the obstructed plot. Fig. 9(b) illustrates the high accuracy of the DBH es-
timation by showing a scatter plot of the estimated DBH values against the
reference measurements. The coefficient of determination was 0.98 for the
sparse plot and 0.99 for the obstructed plot. Note that the sparse test site
contained a single tree, for which the DBH had to be extrapolated since the
lowest extracted diameter estimate was located above =z 1.3 m. The ob-
structed plot contained two such trees.

4.3. Stem curve estimation using under-canopy UAV laser scanning data

In Fig. 10(a), we illustrate the performance of the stem curve ex-
traction algorithm by showing a scatter plot of the estimated stem
diameters and the corresponding reference measurements. Based on the
scatter plot, we note that the coefficient of determination R2 was 0.91
for the sparse plot and 0.96 for the obstructed plot. In Fig. 10(b), we
show a distribution of the heights, up to which the stem curve was
successfully determined. Note that the height interval, where the stem
curve can be reliably extracted, is tree specific and depends mostly on
the visibility of the stem. On average, our method was able to extract
the stem curve up to the height of 7.5 m in the sparse plot, and up to the
height of 6.6 m in the obstructed plot.

Using the definitions presented in Section 3.5, the total bias of the
stem curves was found to be 0.42 cm (1.8%) in the sparse plot and
0.55 cm (2.0%) in the obstructed plot as illustrated in Fig. 10. The
corresponding RMSE values were 1.2 cm (5.0%) in the sparse plot and
1.4 cm (5.2%) in the obstructed plot. In Fig. 10(c), we show the relative
RMSE and bias of the stem curve estimates as a function of height.
Based on the figure, we can observe that the RMSE is the smallest in the
height interval 1.0–1.5 m, and the RMSE increases with increasing
height. Below the height of =z 5 m, the relative RMSE is below 5.0%
for both the plots, whereas it has a value in the range of 5–10% at the
heights of 5.0–9.0 m. Interestingly, also the bias of the stem curve es-
timates increases with increasing height from approximately 0% at the
height of 3.0 m to nearly 8% at the height of 8.0 m. In Figs. 11–13, we
show a few examples of the stem curves extracted with our method for
each of the three tree species present in the test sites.

4.4. Stem volume estimation using a combination of under- and above-
canopy UAV laser scanning data

In this section, we consider the accuracy of the stem volume esti-
mation based on a combination of under- and above-canopy UAV laser
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scanning data using the process described in Section 3.4. Using the
point cloud collected with the above-canopy flying UAV, we extracted
the tree heights for trees with a detected stem with a bias of 0.34 m
(1.5%) in the sparse plot and with a bias of −0.14 m (-0.6%) in the
obstructed plot. The corresponding RMSE values were 0.53 m (2.4%)
for the sparse plot and 0.77 m (3.1%) for the obstructed plot.

By employing the stem curves extracted from under-canopy UAV
laser scanning data and tree heights obtained from above-canopy UAV
laser scanning data, we were able to derive the stem volumes of in-
dividual trees with a bias of 0.023 m3 (3.8%) in the sparse plot, and
with a bias of 0.031 m3 (3.7%) in the obstructed plot. The corre-
sponding RMSE values were 0.063 m3 (10.1%) in the sparse plot, and
0.087 m3 (10.1%) in the obstructed plot. In Fig. 10(d), we illustrate the
high precision of the stem volume estimation by showing a scatter plot
of the stem volume estimates and the corresponding reference values.
The coefficient of determination R2 was found to be 0.90 for the sparse
plot and 0.99 for the obstructed plot.

4.5. Species-wise results

In this section, we additionally present the species-wise results for
stem detection, DBH estimation, stem curve extraction and stem

volume estimation since the characteristic properties of trees vary
greatly between the different species. In Table 2, we present the results
for stem and tree detection averaged among different tree species. As
already noted in Section 4.1, the stem and tree detection results are
close to 100% for pines and birches, whereas the detection rate for
spruces is markedly worse. The low stem detection rate for the spruces
is due to the severe occlusion of their stem as can be seen from Fig. 14,
which shows a photograph and a point cloud of a spruce whose stem
could not be detected. The tree detection rate for spruces is 64%, i.e.,
much higher than the stem detection rate but still far from 100%. This is
due to the fact that the spruces on the test sites tend to grow close to
each other, on account of which their branches overlap at several
heights as can be seen from the point cloud depicted in Fig. 7(b). Hence,
our tree detection algorithm might interpret multiple spruces as a single
tree. This problem can potentially be alleviated by using optimized
parameter values instead of heuristically chosen ones in the tree de-
tection algorithm described in Section 3.3, but this would most prob-
ably make the algorithm more prone to false detection of trees.

In Table 3, we present the species-wise results for DBH, stem curve
and stem volume estimation for those trees whose stem was detected.
Based on the table, we can note that the results are the best for pines
that are characterized by a straight, circular stem with only slight

Fig. 8. Detected trees (circles) and the reference trees (filled squares) (a) in the sparse and (b) in the obstructed plots. The tree species are indicated with colors: pines
are denoted with light blue, birches with black and spruces with dark green. We use red circles to denote the locations of trees whose stem was successfully detected
using the arc-based algorithm. Blue circles denote trees whose stem could not be detected but whose location could still be found using the separate tree detection
algorithm described in Section 3.3.

Fig. 9. (a) Relative root-mean-squared error (RMSE) and bias of the DBH estimates on an individual tree level in the sparse plot (light blue) and in the obstructed plot
(dark red). (b) Scatter plot of the estimated DBH values vs the reference values for the sparse plot (blue pluses) and the obstructed plot (red crosses).
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occlusion from branches. Importantly, the RMSE of stem curve esti-
mation is also significantly below 10.0% for the detected birches and
spruces, and the RMSE of stem volume estimation is below 15% for
these trees despite of the severe occlusion that some of the detected
trees suffered from. However, it pays to bear in mind that the number of
birches and spruces on the test sites is fairly small, and therefore one
should not draw too far-reaching conclusions based on these results.

To further illustrate the performance of our algorithm for different
tree species, we show photographs, raw point clouds, matched point
clouds and the extracted stem curve for one tree of each species in
Figs. 11–13. As can be seen from Fig. 11, our algorithm can extract the
stem curve for pines approximately up to the height of 8 m with a good
precision. Note also that the positional drift of the scanner can cause
distortion of the stems in the raw point cloud as illustrated in Fig. 11(c).
Importantly, the arc matching algorithm can eliminate this distortion as
shown in 11(d), thus greatly improving the accuracy of stem curve
estimation.

In Fig. 12, we illustrate the stem curve estimation for a large birch in
the obstructed plot. Note that the birch represents one of the most
difficult birches to model on the obstructed test site due to its fairly
non-circular stem and its relatively high number of branches above the
height of =z 5.0 m. Nevertheless, our stem curve estimation algorithm

can predict the stem curve of the birch with a reasonable accuracy,
especially, at low heights.

Finally, Fig. 13 illustrates a spruce whose stem was detected from a
narrow height interval despite of the severe occlusion of the stem.
Figs. 13(c-d) illustrate the robustness of the arc extraction algorithm by
showing that the algorithm is also capable of detecting stem points for
very difficult trees.

5. Discussion

5.1. Comparison to past studies

The stem and tree detection rates obtained in this study are at the
level of typical detection rates obtained in MLS studies. Using hand-
held mobile laser scanners, the previously reported stem detection rates
have varied between 80 to 95 percent in relatively sparse structured
forests (Cabo et al., 2018; Bauwens et al., 2016; Marselis et al., 2016;
Del Perugia et al., 2019). Liang et al. (2014a) obtained 87.5% for the
tree mapping accuracy in boreal forest conditions by utilizing a laser
scanner mounted on an all-terrain vehicle. Using a mobile backpack
laser scanner, Hyyppä et al. (2020) detected 84–95% of the stems on
the same 32 m × 32 m test sites that were used in this study.

Fig. 10. (a) Scatter plot of the stem diameters estimated with under-canopy UAV laser scanning vs the corresponding results from reference measurements for the
sparse plot (blue pluses) and the obstructed plot (red crosses). Note that the figure includes the diameter estimates at all different heights. (b) Distribution of the
heights, up to which the stem curve was successfully determined in the sparse and obstructed plot. (c) The relative RMSE and bias for stem diameters estimated with
under-canopy UAV laser scanning as a function of the height for both the sparse (blue) and obstructed plot (red). (d) Scatter plot of the stem volumes estimated using
the combination of under-canopy and above-canopy UAV laser scanning vs the corresponding reference volumes for the sparse plot (blue pluses) and the obstructed
plot (red crosses).
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Based on our results, under-canopy UAV laser scanning can provide
the DBH and stem curve of trees with a similar accuracy as multi-scan
TLS measurements in boreal forest conditions. In previous multi-scan
TLS studies conducted in boreal forest conditions, the DBH and stem
curve have been obtained with an RMSE of 5–10% (e.g., Liang et al.,
2018a; Liang et al., 2019). Recent studies using ground-based mobile
laser scanning have resulted in the following accuracy for DBH esti-
mation. Tomaštík et al. (2017) used Google Tango (Google LLC., Cali-
fornia, USA), Cloud Compare (GPL) software with the Cloth Simulation
Filter, and manual measurements of DBH in order to measure the DBH
of trees with an RMSE of below 2 cm. Similar approaches by Hyyppä
et al. (2017) using automated circle fitting resulted in an RMSE of
0.73 cm, whereas Fan et al. (2018) obtained 1.26 cm for the error of
DBH estimation. Using hand-held scanners, DBH has been obtained
with an accuracy ranging from 1 to 4 cm in relatively sparse structured
forests (Cabo et al., 2018; Bauwens et al., 2016; Marselis et al., 2016;
Del Perugia et al., 2019). Recently, Hyyppä et al. (2020) used backpack
mobile laser scanning, a SLAM algorithm and the post-SLAM arc
matching algorithm to derive the stem curve of trees with an RMSE of
5–6% in easy and medium-difficult boreal forests. Thus, our results for

DBH and stem curve estimation obtained with under-canopy UAV laser
scanning have an RMSE on par with the past best studies based on MLS.

Furthermore, the combination of under- and above-canopy UAV
laser scanning allowed us to derive the stem volume with an RMSE that
is equivalent with the state-of-the-art multi-scan TLS methods that can
reach an RMSE of approximately 10% in favourable forest conditions
(see, e.g., Liang et al., 2014b). Interestingly, our results for stem volume
estimation are even slightly better than the level of 15–20% obtained in
comparable forest conditions by the international TLS benchmarking
study (see Liang et al., 2018a). Earlier, only a few mobile laser scanning
papers (Liang et al., 2019; Liang et al., 2018b; Bienert et al., 2018) have
reported the accuracy of stem volume estimation. The presented errors
(RMSE) for stem volume range from 20 to 50% even in relatively sparse
boreal forest plots. Very recently, Hyyppä et al. (2020) demonstrated
that the stem volume could be obtained with an RMSE of approximately
10% in easy and medium-difficult boreal forest conditions by using a
backpack mobile laser scanning and a carefully designed point cloud
processing workflow, which takes into account the positional drift of
the scanner that remains even after the SLAM correction.

Fig. 11. (a) Photograph of a pine located in the sparse plot. (b) The raw point cloud of the pine obtained with under-canopy UAV laser scanning. (c) Cross section of
the point cloud corresponding to the pine in the height interval z [2.0m, 2.5m]. Note the distortion in the point cloud due to the positional drift of the SLAM
algorithm. (d) The same cross section as in panel (c) after performing the arc extraction and arc matching algorithms. Note that the remaining noise is due to the
ranging accuracy of the scanner. (e) The stem curve (red circles) extracted for the pine shown in panel (a) using the arc-based method. Note that the stem curve is
estimated using the under-canopy UAV laser scanning apart from the tree height that is obtained from above-canopy UAV laser scanning. The error bars of the stem
curve correspond to the standard deviation of the circular fit. We also show the smoothing spline fit (solid black line) and the extrapolation of the stem diameter
(dashed green line) used to compute the stem volume based on the effective fit obtained from Eqs. (1) and (2). The reference diameter measurements are shown with
blue rectangles.
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5.2. Feasibility considerations regarding under-canopy UAV laser scanning

Since the point clouds collected with the under-canopy flying UAV
are more noisy than those obtained with TLS or the best MLS methods,
we presume that the major reason for the high-quality results obtained
in this study is the data processing workflow that takes into account the
time-dependent positioning error of the scanner. Our data processing
workflow included a correction of the positioning errors using both a
real-time SLAM algorithm and a post-SLAM arc matching algorithm.

Another advantage of the under-canopy UAV measurements is that
they are fast even when conducted manually as in this study. The time
taken by the measurements can be reduced further if the fully-auto-
matic concept described in Section 5.3 is implemented. We expect that
several dozens of plots can be measured in one day by one surveyor
with manual flying and up to 50 plots when utilizing the fully-auto-
matic concept. In comparison, a two-person team can conduct con-
ventional field measurements on two plots in one day if also the tree
locations are to be measured. TLS measurements can be carried out for
half a dozen of plots in one day by two surveyors when calibration
objects are used to perform a multi-scan survey. Thus, the proposed
concept is up to several tens times faster than the conventional mea-
surements even when manual flying of the UAV is employed. This im-
plies that under-canopy UAV laser scanning has great potential for

realizing accurate and fast forest field reference inventories in condi-
tions, where the road network supports field data collection. Im-
portantly, the fully-automatic concept illustrated in Fig. 16 can also be
used for various other remote sensing and earth observation applica-
tions. However, there is a need to develop further the technologies
related to all steps 1–6 in the robotic-assisted end-to-end approach
before the fully-automatic concept can be realized in practice.

Furthermore, the algorithms proposed in this paper are feasible
from the point of view of the computation time. Our Matlab im-
plementation of the stem curve extraction algorithm can process a
single point cloud containing approximately 50 million points in just
under 20 min on a modern laptop computer. Furthermore, our Matlab
implementation of the tree detection algorithm described in Section 3.3
runs in just under one minute for each of the point clouds. The two
point clouds studied in this work cover an area of approximately 70 m ×
70 m 0.5 ha each. This implies that during a single day, our im-
plementation of the algorithm could process a point cloud covering
36 ha assuming that the point density is on the order of ×1 104 pts/m2.
With further parallelization and optimization, the running time of the
proposed algorithm can possibly be reduced further.

As noted in Section 4.3, the RMSE of stem diameters was below 5%
in the height interval z = 1–5 m, whereas the corresponding error in
the height range z = 5–10 m was found to be between 5–10% and the

Fig. 12. (a) Photograph of a large birch located in the obstructed plot. (b) The raw point cloud of the birch obtained with under-canopy UAV laser scanning. (c) Cross
section of the point cloud corresponding to the birch in the height interval z [2.0m, 2.5m]. (d) The same cross section as in panel (c) after performing the arc
extraction and arc matching algorithms. (e) The stem curve (red circles) extracted for the birch shown in panel (a) using the arc-based method. Note that the stem
curve is estimated using the under-canopy UAV laser scanning apart from the tree height that is obtained from above-canopy UAV laser scanning. The error bars of
the stem curve correspond to the standard deviation of the circular fit. We also show the smoothing spline fit (solid black line) and the extrapolation of the stem
diameter (dashed green line) used to compute the stem volume based on the effective fit obtained from Eqs. (1) and (2). The reference diameter measurements are
shown with blue rectangles.
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diameters were systematically overestimated. There are a few reasons
that could explain this observation. First, the growth of the stem dia-
meters between the years 2014 and 2019 was calibrated by measuring
the DBH in 2019 as explained above, and subsequently adding the
change in the DBH to all the measured reference stem diameters.
However, it is possible and even likely that the shape of a tree has
changed during the 5 years. Therefore, the reference measurements are
simply less accurate high above the ground for most of the trees. To
support this finding, we show in Fig. 15 the stem curve of a pine whose
stem diameter is clearly overestimated in the height interval =z 5-8 m
as compared with the calibrated reference. In the figure, we also show
the stem curve of the same tree extracted from mobile laser scanning
data recorded in 2016 using a scan-line arc-based stem curve estimation
method (Hyyppä et al., 2020). By comparing the three stem curves of

the same tree, we can conclude with relatively high certainty that the
stem diameter has grown much more in the height interval 5–8 m than
at the breast height explaining the large RMSE. A recent paper (Luoma
et al., 2019) studying the changes in stem tapering supports these
findings: the largest decrease in tapering was detected especially with
coniferous trees and was the largest with Scots pine trees. The trees
tend to grow into the shape of a cylinder which change the tapering of
the tree depending on the age of the tree.

Another potential reason for the height dependent RMSE is that the
number of branches increases at heights high above the ground and
simultaneously, the number of good quality arcs decreases. Both of
these phenomena can reduce the accuracy of stem curve extraction at
higher heights. In future studies, the reference data must be acquired
with sufficient rigour to ensure that a reasonable quality assessment can

Fig. 13. (a) Photograph of a spruce located in the obstructed plot. (b) The raw point cloud of the spruce obtained with under-canopy UAV laser scanning. (c) Cross
section of the point cloud corresponding to the spruce in the height interval z [2.5m, 3.5m]. (d) The same cross section as in panel (c) after performing the arc
extraction and arc matching algorithms. Note that this is a close-up to the spruce stem as compared with panel (c). (e) The stem curve (red circles) extracted for the
spruce. Note that the stem curve is estimated using the under-canopy UAV laser scanning apart from the tree height that is obtained from above-canopy UAV laser
scanning. The error bars of the stem curve correspond to the standard deviation of the circular fit. We also show the smoothing spline fit (solid black line) and the
extrapolation of the stem diameter (dashed green line) used to compute the stem volume based on the effective fit obtained from Eqs. (1) and (2). The reference
diameter measurements are shown with blue rectangles.

Table 2
Species-wise statistics of the stem and tree detection obtained by considering all the trees within the two plots.

Tree species Number of trees Stem detection Tree detection

Completeness (%) Correctness (%) Completeness (%) Correctness (%)

Pine 69 100% 100% 100% 100%
Birch 5 80% 100% 100% 100%
Spruce 11 18% 100% 64% 100%
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be made.
Our stem curve extraction algorithm is suitable for the detection of

trees with at least partly visible stems. Importantly, the algorithm can
deal with a moderate amount of noise in the point cloud thanks to the
RANSAC-based circle fitting step and the iterative arc division algo-
rithm. Here, noise refers to the deviation of points from the surfaces of
stems due to measurement errors, branches, or understory vegetation. A
major cause of noise in the point cloud is due to reflections from
branches, needles and leaves of the trees. Spruces are examples of such
trees that are challenging to process with the approach presented herein
due to the severe occlusion of the stem as illustrated in Figs. 13 and 14.
As a result of the occlusion problem, the stems of especially young
spruces might not be detectable even for the human eye in the point
cloud as illustrated in Fig. 14.

Moreover, our approach requires further testing, particularly in
dense, complex boreal forest conditions. It is, therefore, clear that dif-
ferent algorithmic approaches will need to be developed for different
forest types; the algorithm presented by Liang et al. (2012) is an ex-
ample of an approach that has the potential for working better within
spruce canopies thanks to a PCA-based filtering step for stem point
detection. However, this approach might not be directly applicable for
the point clouds produced with the under-canopy flying UAV since the
limited ranging accuracy (± 3 cm) of the scanner gives rise to a fair
amount of noise and the stems in the point cloud can be distorted due to
the positional drift of the scanner. However, there are possibilities to
improve the approach presented herein further by using intensity in-
formation, improved SLAM, improved sensors, the use of the outer
shape of the tree to estimate trunk, and approaches more tolerant to
noisy data. An interesting idea for future development would be to
combine the point cloud collected using the under-canopy flying UAV
with color information from a photogrammetric point cloud produced
with structure from motion technology (Iglhaut et al., 2019). This could
potentially enable efficient filtering of points reflected from leaves and
needles that are characterized by green color.

5.3. Robotic-assisted surveying concept for the future

The robotic-assisted surveying concept envisioned for the future is
illustrated in Fig. 16. First, an autonomous car is driven to a location
adjacent to the forest plot to be surveyed. The UAV then flies from the
autonomous car to the plot. The UAV with the laser scanners pointing
downwards maps the forest plots first from above the canopy and ob-
tains a georeferenced point cloud of the forest. The georeferenced point
cloud can be used in a similar manner as autonomous cars use HD
(high-definition) maps for absolute positioning (see Levinson et al.,
2007). Since GNSS (Global Navigation Satellite System) visibility is
unobstructed above the canopy, the HD map (point cloud) will be po-
sitionally accurate. When approaching lower levels of the canopy, the
position is determined by matching lidar returns with respect to the HD
point cloud by applying e.g. Iterative Closest Points (ICP) variants
(Rusinkiewicz and Levoy, 2001; Censi, 2008; Jež, 2008; Hong et al.,
2010). The localization accuracy is related to the grid size of the HD
map. Since the HD map easily includes hundreds of millions of points
even for short ranges, different variants have been developed
(Javanmardi et al., 2018). Tu et al. (2016) compressed the point cloud
applying image compression techniques. Biber and Straßer (2003) re-
presented the environment by normal distributions (NDT) instead of the
raw point cloud. Magnusson et al. (2007) extended the NDT idea to the
3D. The HD map can be updated when approaching the lower levels of

Fig. 14. (a) Photograph of a young spruce located in the obstructed plot. (b) The raw point cloud of the spruce obtained with under-canopy UAV laser scanning. (c)
Cross section of the point cloud corresponding to the spruce in the height interval z [3.0m, 4.0m]. Note that the stem of the spruce is severely occluded and
therefore, the stem could not be detected using the arc-based method. However, the spruce could still be detected by using the separate tree detection algorithm.

Table 3
Species-wise statistics of the DBH, stem curve and stem volume estimation
obtained by considering all the trees within the two plots.

Tree
species

Detected
stems

DBH Stem curve Stem volume

Bias-% RMSE-% Bias-% RMSE-% Bias-% RMSE-%

Pine 69 1.3% 2.3% 2.0% 4.8% 3.2% 8.4%
Birch 4 −2.4% 5.0% 2.1% 7.4% 6.9% 14.6%
Spruce 2 2.4% 2.8% −3.9% 6.4% 12.5% 13.2%

Fig. 15. Stem curve of an example tree based on three measurements conducted
in different years: under-canopy flight in 2019 (red circles), mobile laser
scanning in 2016 (black triangles) and terrestrial laser scanning in 2014 (blue
squares).
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the canopy according to the concepts described in Jo et al. (2018).
Then, the scanner is adjusted to a forward-looking mode and under-
canopy flying is carried out using the principles following Vandapel
et al. (2005). The under-canopy relative position of the scanner is then
determined by SLAM (Simultaneous Localization and Mapping) and
absolute position by matching the SLAM determined point cloud with
the HD map. Recent developments in under canopy navigation include
Higuti et al. (2019), Schultz et al. (2016) and Cui et al. (2016).

The point cloud of the trees in the forest is then collected along the
flight. Finally, the UAV continues to the next plot or to the car to be
charged for deployment at the next plot after an autonomous drive. The
post-processing depicted in this paper can be applied to derive stem
characteristics. The concept requires a relatively good forest road net-
work such as that available in Scandinavian forests. The concept can be
used for automated field data collection supporting all kinds of earth
observation applications.

6. Conclusions

Conventional manual forest plot measurements are implemented
using calipers, measuring tapes and hypsometers leading to an accuracy
ranging from 10% to 15% for the stem volume at individual tree level.
This accuracy level has been reached with remote sensing techniques
only when using multi-scan terrestrial laser scanning and the best state-
of-the-art algorithms. In this paper, we showed that we can achieve the
same accuracy by using a combination of under-canopy and above-ca-
nopy UAV laser scanning data.

In this study, the manually operated UAV, equipped with a Kaarta
Stencil-1 laser scanner, provided a point cloud for two boreal forest test
sites classified as sparse and obstructed. The point clouds collected with

the under-canopy flying UAV were used for stem curve estimation. The
data processing work flow included a robust arc finding algorithm de-
signed for point clouds collected with a 3D scanner, a post-SLAM arc
matching algorithm and a PCA-based inclination angle correction.
Using the proposed work flow, we were able to detect 93% of the stems
in the sparse plot and 84% of the stems in the obstructed plot. Using the
proposed work flow, the DBH was estimated with an RMSE of 2.2% in
the sparse plot and with an RMSE of 3.1% in the obstructed plot,
whereas the corresponding errors for the stem curve estimates were
5.0% and 5.2% on the two sites, respectively. Additionally, we collected
point clouds of the two test sites using an above-canopy flying UAV in
order to perform accurate tree height measurements that were required
for stem volume estimation. By utilizing the extracted stem curves and
tree heights, we were able to estimate the stem volumes for individual
trees with an RMSE of 10% in both of the plots without using any al-
lometric models.

Our results imply that under-canopy UAV laser scanning has great
potential for realizing fast and accurate field reference data collection.
The results were the best for pine trees with a detection rate of 100%
and a stem volume estimation error below 10%. Future studies should
focus on spruces and dense, complex canopies in order to be able to
reach practical performance for field inventories. Developments in
SLAM algorithms, autonomous UAV navigation and collision avoidance
are also needed. Besides the application depicted in this paper, the
robotic-assisted end-to-end approach envisioned for the future could
provide extensive possibilities to automated field data collection sup-
porting all kinds of earth observation applications.
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Appendix A. Sensitivity analysis of the stem curve extraction algorithm

In this section, we present a simple sensitivity analysis for the stem curve extraction algorithm (see Section 3.2) with the goal to show that the
results provided by the algorithm are not sensitive to small changes in the parameter values. Note also that the parameter values provided in Section
3 were chosen heuristically. As a result, some of the modified parameter values resulted in even lower errors than those presented in Section 4.
However, one should bear in mind that the best results obtained as a result of a parameter sweep can exhibit over-fitting.

In Table A.4, we show the results of stem detection, DBH estimation, stem curve estimation and stem volume estimation when the paramater
values were varied one at a time. Note that we varied only such parameter values whose effect we presumed to be the most significant for the
algorithm. Based on the table, we can note that the results hardly changed even though some of the parameters were changed by large relative
amounts. As an overall trend, we can observe that the errors decreased when the quality criteria (N , ,Rmin min etc) for the arcs were made stricter.
However, making the quality criteria too strict reduced the completeness of stem detection, especially, when it comes to the two spruces detected in

Fig. 16. The robotic-assisted end-to-end concept, for which the current study
offers one practical application. The mini-UAV (2) departs from the car (1), and
navigates itself to the forest area where high-quality reference measurements
are needed. With the help of GNSS and IMU integration (3) and using the 3D
point cloud (HD map, 4), a possible fly-through area is calculated and the mini-
UAV flies to under-canopy (6). When the UAV reaches a height between 2–6 m
(above the ground level), it starts to fly horizontally (5) in order to map as large
an area as possible.
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the obstructed test site. Additionally, we can note that the relative changes in the results were more pronounced for the obstructed plot. One major
reason for this observation is the fact that the large birch depicted in Fig. 12 has a large volume (3.3 m3) as compared with the other trees on the
obstructed plot (average 0.86 m3). Therefore, the modeling accuracy of the large birch had a relatively large impact on the results of the whole plot.
Making the quality criteria less strict resulted in an over-estimation of the diameter of the large birch at heights around =z 5 m, which, in turn,
reduced the accuracy of stem volume estimation.

Note also that we obtained less than 50 good quality arcs for the two spruces detected in the obstructed plot, and therefore the minimum number
of arcs required for stem detection (minPts2) should not be set too high if the spruces are to be detected. To detect the spruce illustrated in Fig. 13, the
parameter minPts2 should have a value below 15 since the occlusion of the stem greatly limits the number of extracted arcs.

Table A.4
Sensitivity analysis for the stem curve extraction algorithm described in Section 3.2. The parameters are varied one at a time, and the results obtained by using the
modified parameter values are listed in the table. The default parameter value is shown in parentheses after the modified value.

Parameters Stem detection DBH Stem curve Stem volume

Completeness (%) Correctness (%) Bias-% RMSE-% Bias-% RMSE-% Bias-% RMSE-%

Default
Sparse plot 93% 100% 1.1% 2.2% 1.8% 5.0% 3.8% 10.1%

Obstructed plot 84% 100% 1.0% 3.1% 2.0% 5.2% 3.7% 10.1%

Inlier threshold (RANSAC) =d 2in cm (3 cm)
Sparse plot 93% 100% 1.1% 2.0% 1.3% 4.8% 2.6% 10.1%

Obstructed plot 81% 100% 0.3% 3.2% 1.6% 3.9% 1.1% 5.8%

Inlier threshold (RANSAC) =d 4in cm (3 cm)
Sparse plot 93% 100% 1.4% 2.4% 2.3% 5.5% 5.6% 11.5%

Obstructed plot 84% 100% 0.6% 4.0% 2.5% 5.5% 5.3% 15.5%

Point number threshold =N 30min (50)
Sparse plot 93% 100% 1.5% 2.5% 2.6% 5.7% 5.9% 11.0%

Obstructed plot 84% 100% 0.3% 3.6% 2.7% 5.7% 5.4% 10.7%

Point number threshold =N 70min (50)
Sparse plot 93% 100% 0.9% 2.0% 1.2% 4.6% 2.1% 9.8%

Obstructed plot 84% 100% 0.5% 4.0% 1.6% 4.2% 0.9% 7.6%

Radial residual threshold = 1.2R cm (1.5 cm)
Sparse plot 93% 100% 1.1% 2.4% 1.8% 5.0% 4.0% 10.5%

Obstructed plot 81% 100% 0.6% 3.2% 2.2% 4.3% 1.7% 6.9%

Radial residual threshold = 2.0R cm (1.5 cm)
Sparse plot 93% 100% 1.1% 2.2% 1.9% 5.0% 4.4% 10.7%

Obstructed plot 84% 100% 0.6% 4.3% 2.0% 5.2% 4.4% 11.8%

Max. angle between points = °7max ( °10 )
Sparse plot 93% 100% 0.4% 2.0% 0.6% 4.6% 0.3% 9.5%

Obstructed plot 84% 100% 0.2% 3.3% 1.0% 3.8% −0.1% 8.5%

Max. angle between points = °20max ( °10 )
Sparse plot 93% 100% 1.8% 3.3% 3.1% 6.3% 7.7% 13.0%

Obstructed plot 86% 100% 0.6% 3.3% 2.9% 5.7% 5.8% 10.7%

Min. inlier ratio (RANSAC) = 0.6in (0.7)
Sparse plot 93% 98% 1.4% 2.5% 2.1% 5.2% 4.9% 10.9%

Obstructed plot 86% 100% 0.6% 3.7% 2.4% 5.3% 4.1% 9.8%

Min. inlier ratio (RANSAC) = 0.8in (0.7)
Sparse plot 93% 100% 1.0% 1.9% 1.7% 5.0% 4.1% 10.6%

Obstructed plot 84% 100% 0.3% 3.7% 0.2% 4.6% 2.4% 8.0%

DBSCAN =minPts 152 (5)
Sparse plot 93% 100% 1.0% 1.9% 1.8% 4.9% 4.4% 10.5%

Obstructed plot 81% 100% 0.4% 3.4% 2.5% 5.3% 3.7% 9.7%

DBSCAN =minPts 502 (5)
Sparse plot 93% 100% 1.2% 2.2% 1.7% 5.0% 3.9% 10.6%

Obstructed plot 79% 100% 0.2% 3.6% 2.3% 5.1% 4.3% 12.5%

Min. angle of arc = °90min ( °108 )
Sparse plot 93% 100% 1.1% 2.1% 2.2% 5.3% 4.9% 11.0%

Obstructed plot 84% 100% 0.7% 3.7% 2.4% 5.8% 5.2% 15.8%

Min. angle of arc = °126min ( °108 )
Sparse plot 93% 100% 1.1% 2.3% 1.7% 5.0% 3.4% 10.3%

Obstructed plot 84% 100% 0.4% 2.6% 1.5% 4.7% 2.2% 8.6%
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As a final note, the value of the parameter min had a relatively large impact on the bias of the stem curve and volume estimation since it
controls how easily points close to the boundaries of an arc are removed. If the value of min was set to a large value, the outlier filtering did not
work efficiently, which increased the risk of diameter over-estimation due to the noise points close to the edges of arcs.
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