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A B S T R A C T

Two ongoing movements in human cognitive neuroscience have researchers shifting focus from group-level in-
ferences to characterizing single subjects, and complementing tightly controlled tasks with rich, dynamic para-
digms such as movies and stories. Yet relatively little work combines these two, perhaps because traditional
analysis approaches for naturalistic imaging data are geared toward detecting shared responses rather than
between-subject variability. Here, we review recent work using naturalistic stimuli to study individual differences,
and advance a framework for detecting structure in idiosyncratic patterns of brain activity, or “idiosynchrony”.
Specifically, we outline the emerging technique of inter-subject representational similarity analysis (IS-RSA),
including its theoretical motivation and an empirical demonstration of how it recovers brain-behavior relation-
ships during movie watching using data from the Human Connectome Project. We also consider how stimulus
choice may affect the individual signal and discuss areas for future research. We argue that naturalistic neuro-
imaging paradigms have the potential to reveal meaningful individual differences above and beyond those
observed during traditional tasks or at rest.
1. Introduction

At present, there are two exciting movements afoot in cognitive
neuroscience. First, the field is shifting focus from the group to the in-
dividual: instead of averaging data across a population, studies are
isolating brain function in single subjects and determining how it relates
to behavioral phenotypes (Bartolomeo et al., 2017; Dubois and Adolphs,
2016; Seghier and Price, 2018). Second, researchers are embracing the
complexity of so-called “naturalistic” stimuli—e.g., film clips, spoken
narratives—as experimental paradigms, to complement and extend the
tightly controlled, parametric tasks that form the pillars of classical
psychology work (Sonkusare et al., 2019).

While each of these movements has brought promising discoveries on
its own, studies at the intersection—i.e., that use naturalistic stimuli to
study individual differences—are relatively few and far between. Why
might this be? Naturalistic stimuli evoke patterns of brain activity that
are, by and large, highly consistent across subjects (Hasson et al., 2004,
2010), and typically, naturalistic imaging data are collected and analyzed
in ways geared toward detecting similarities between subjects rather
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than differences (Nastase et al., 2019). Adapting naturalistic tasks to
study individual differences and brain-behavior relationships raises
several challenges, demanding new approaches to both experimental
design and data analysis. The potential payoff, however, is high. Natu-
ralistic tasks offer a “happy medium” between the extremes of highly
controlled cognitive tasks, which often lack ecological validity, and
resting-state acquisitions, which are entirely unconstrained, making
them vulnerable to confounds and difficult to interpret (Vanderwal et al.,
2019). They allow experimenters to probe intermingled signals
throughout the hierarchy of neural systems—from low-level sensory
processing up to social cognition—using data from a single acquisition,
and while the brain is engaged in activities more similar to everyday life.
Thus, they may offer more “bang for the buck” than either rest or
traditional tasks for characterizing spatiotemporal patterns of brain ac-
tivity in individual subjects.

Here, our goals are threefold. In the first section, we briefly describe
the inter-subject correlation (ISC) family of approaches to analyzing
naturalistic imaging data, which exploit the time-locked nature of the
task across subjects to isolate brain activity driven by the stimulus
l 2020
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1 In this formulation, we assume that b is static within individuals, since it
represents a trait-level measure. However, this formulation could be extended to
support an individual behavioral measure that changes over the course of the
stimulus—for example, attentional state or affective experience—by postulating
that b is also a function of time (i.e., bi(t)).
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(Hasson et al., 2004; Nastase et al., 2019). Also in this section, we review
existing literature using ISC to study individual differences. (For
comprehensive reviews on naturalistic tasks and inter-subject correlation
more generally, we refer the reader to Sonkusare et al. (2019) and Nas-
tase et al. (2019), respectively. Our focus here is specifically on how these
intersect with the study of individual differences.) In the second section,
we advance a framework for studying individual differences in spatio-
temporal patterns of brain activity during naturalistic stimulation, a
phenomenon we call “idiosynchrony”. We focus specifically on the
emerging technique of inter-subject representational similarity analysis
(IS-RSA), which adapts ISC to highlight stimulus-driven responses that
are idiosyncratic rather than shared. We present the theory behind
IS-RSA, then apply it to data from the Human Connectome Project to
demonstrate how brain responses during movie viewing share structure
with behavioral traits, including working memory and personality. In the
final section, we consider directions for future work, including how we
might choose stimuli to amplify behaviorally relevant individual signals.

2. Inter-subject correlation: stimulus-locked, fewer assumptions

Because naturalistic paradigms sit somewhere between resting state
and traditional tasks, researchers have at their disposal a variety of
analysis approaches. The presence of a stimulus permits classic tech-
niques for detecting activation to specific features of the stimulus, such as
the general linear model (GLM) and other regression techniques. At the
same time, thanks to their continuous, non-parametric nature, these
paradigms also lend themselves to approaches developed primarily for
rest—for example, functional connectivity, which considers coac-
tivations between regions rather than magnitude of activation in any
single region.

We place these approaches in a landscape with two major axes: how
time-locked to the stimulus they are, and how many assumptions they
require. Functional connectivity (FC)—especially static FC, which col-
lapses across the whole time series—demands relatively few assump-
tions, but is impossible to map back onto the stimulus, and therefore fails
to separate stimulus-driven from stimulus-independent sources of neural
activity. Dynamic FC gets closer to a time-resolved signal, but in most
cases the need for windows of a minimum lengthmakes it difficult to map
connectivity fluctuations to specific events within the stimulus, and
resulting signals still contain a mixture of stimulus-related and stimulus-
unrelated variation within each subject.

GLM-based analyses do capitalize on the “ground truth” of a stimulus
with known timing, but in doing so make two critical assumptions: one,
that the experimenter knows which features of the stimulus are impor-
tant for driving brain activity, and two, that they have modeled these
features accurately. Non-optimal assumptions at either step will impair
sensitivity.

While both families of approaches can and have been applied to
naturalistic data (regression-based activation: (Bartels and Zeki, 2004;
Lahnakoski et al., 2012a; Lahnakoski et al., 2012b; Russ and Leopold,
2015); functional connectivity: (Betti et al., 2013; Geerligs et al., 2015;
Guo et al., 2016; Vanderwal et al., 2017), to name a few), neither was
designed specifically for these paradigms. The inter-subject correlation
(ISC) family of approaches (Hasson et al., 2004; Nastase et al., 2019;
Simony et al., 2016), which was developed specifically for naturalistic
paradigms, maximize sensitivity to stimulus-driven activity with fewer
assumptions. These approaches use one subject’s brain activity as a
model for a second subject’s brain activity, reasoning that as long as two
subjects receive the same input at the same time, any shared variance
must be due to stimulus processing.

In brief, ISC is defined as the Pearson correlation of the activity
timecourse in a spatial location (i.e., voxel, parcel) across different sub-
jects. It is typically computed using either a leave-one-out framework, in
which one subject’s timecourse is correlated with the average of all other
subjects, or a pairwise framework, in which correlation is performed
between every possible pair of subjects. For our purposes, this latter
2

approach is more relevant, since it preserves information about which
specific subject pairs show the highest and lowest correlations, which can
later be related to behavioral scores.

Unlike FC, ISC isolates stimulus-driven signal and can be interpreted
with respect to events in the stimulus itself. And unlike GLM-based ap-
proaches, even if the experimenter doesn’t know—or can’t model—the
most important features of the stimulus, as long as there is some
consistent signal across subjects, ISC will recover it (Pajula et al., 2012),
in some cases with more sensitivity than deconvolution/GLM-based an-
alyses (Hejnar et al., 2007). Thus, ISC is a powerful, data-driven tech-
nique for detecting shared responses, anticipated or otherwise.

2.1. Adapting ISC to an individual-differences framework

The classic formulation of ISC assumes that the signal observed at
each voxel x and timepoint t reflects a mixture of three components.
Loosely following the notation of Nastase et al. (2019), these components
are:

c, a stimulus-evoked response that is consistent across subjects;
id, a stimulus-evoked response that is idiosyncratic to each subject;
ε, a noise component (which may reflect both neural activity that is
unrelated to the stimulus, i.e., mind-wandering, as well as noise from
non-neural physiological and scanner sources).

Thus, for a given subject i, the response in voxel x at timepoint t can be
described as follows:

xi(t) ¼ c(t) þ idi(t) þ εi(t)

In this formulation, it is not possible to distinguish id from ε, unless
subjects are exposed to the same stimulus multiple times. Even then,
results must be interpreted with caution, because repetition can change
how a stimulus is processed. Another approach is to anchor id to some
other known information about each subject, like a trait score (b), and
search for structure in these responses across subjects:

xi(t) ¼ c(t) þ bi(id(t)) þ εi(t)

xj(t) ¼ c(t) þ bj(id(t)) þ εj(t)

…

xn(t) ¼ c(t) þ bn(id(t)) þ εn(t)

Notice that now the id term has lost its subject subscript, since we are
assuming that there is some canonical response associated with a given
trait, and each subject’s trait score acts as a sort of bias term governing to
what degree a subject expresses that response.1

This framework lets us distinguish stimulus-related responses in in-
dividual subjects from stimulus-unrelated noise, and does so in a way that
facilitates interpretation, since we are linking idiosyncratic responses to a
known behavioral measure. Generally, we might predict that the influ-
ence of individual differences on x(t)—that is, the ratio of id to c—grows
as one moves up the cortical processing hierarchy, such that the shared,
behavior-independent signal dominates in unimodal cortex, while the
idiosyncratic, behavior-dependent signal becomes stronger in higher-
order association cortex. This may explain why ISC is traditionally high
in primary visual and auditory cortex, and drops off (but doesn’t neces-
sarily disappear completely) in areas of prefrontal cortex, for example: it
is not the case that these regions are not responding to the stimulus, but
rather that they respond with different spatiotemporal signatures across
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subjects (Chang et al., 2018; Hasson et al., 2010). Some of this variance
might be explained by trait-level phenotypes.

3. Existing work on ISC & individual differences

Despite the traditional focus on shared responses, in recent years,
researchers have begun to investigate how ISC varies with both state-
level factors related to either the stimulus or experimental instructions,
and—more relevant for our purposes—with trait-like factors intrinsic to
the subjects themselves.

Several studies have shown that ISC is sensitive to features of the
stimulus (Dmochowski et al., 2014; Hasson et al., 2010; Nummenmaa
et al., 2014; Schm€alzle et al., 2015). Other studies have kept the stimulus
constant and used priming to show that ISC is sensitive to explicit ma-
nipulations of attention or prior beliefs about a stimulus (Cooper et al.,
2011; Lahnakoski et al., 2014; Yeshurun et al., 2017). While informative,
these studies do not examine why different individuals often
spontaneously—i.e., with no explicit priming—show different neural or
behavioral responses to the same stimulus.

A handful of studies have reported spontaneous individual differences
in time-locked activity to a stimulus that relate to behavioral appraisal of
the stimulus. Using emotional clips, comedy videos, and moral dilemma
scenarios, respectively, Nummenmaa et al. (2012), Jaaskelainen et al.
(2016) and Tei et al. (2019) found that ISC in certain brain regions
correlated with similarity of post-hoc behavioral ratings (of dynamic
valence/arousal, humor, and moral conflict) across pairs of subjects.
Using an abstract video of animated shapes and an audio story, respec-
tively, Nguyen et al. (2019) and Saalasti et al. (2019) found that subject
pairs with higher ISC in certain cortical regions during the stimulus ul-
timately had more similar interpretations of the stimulus. These studies
provide a fascinating window into how individual differences in brain
activity during stimulus exposure relate to subsequent differences in re-
actions and interpretations. But because both brain responses and
behavior are tied to the specific stimulus at hand, the extent to which
these state-like differences reflect trait-like predispositions—i.e.,
intrinsic individual characteristics—remains unclear.

Recent studies take this additional step and link idiosyncratic re-
sponses during naturalistic stimulation to stable, trait-like factors. Finn
et al. (2018) report that individuals with higher trait paranoia show
stronger ISC in cortical regions involved in social processing during an
ambiguous social narrative. Bacha-Trams et al. (2018) report that indi-
vidual differences in cognitive style (i.e., holistic versus analytical
thinking) relate to strength of ISC in several cortical regions during a
drama movie. In a sample of college-age males, Chen et al. (2020) report
that variations in sociosexual desire and self-control preferences are
linked to variations in activity in several higher-order brain networks,
during erotic (but not neutral) films. In a sample of children and ado-
lescents spanning ages 7–21 years, Gruskin et al. (2020) report that
patterns and severity of depression symptoms are linked to brain re-
sponses during an emotionally evocative animated clip, but only in ad-
olescents, suggesting that these idiosyncratic responses emerge over the
course of development. Finally, in a study of individuals with dyslexia,
ISC calculated from MEG envelope time series correlated with similarity
in phonological processing, technical reading, and working memory
(Thiede et al., 2019). Encouragingly, these studies show that there is
meaningful—i.e., behaviorally relevant—structure in idiosyncratic re-
sponses to naturalistic stimuli.

Other studies have addressed variability by dichotomizing subjects
into diagnostic groups. Several studies have reported differences in ISC
during naturalistic paradigms between healthy controls and populations
with mental illnesses and disorders—most commonly, autism (Bolton
et al., 2018; Byrge et al., 2015; Hasson et al., 2009; Salmi et al., 2013),
but also depression (Guo et al., 2015) and first-episode psychosis
(M€antyl€a et al., 2018; Yang et al., 2020). In general, these studies report
reduced cross-subject synchrony in the patient group, an effect that
sometimes scales with symptom severity (Guo et al., 2015; Salmi et al.,
3

2013).
Group contrasts between patients and controls can be useful to assess

population-level differences in broad strokes. But rather than distinct
canonical responses for each group, patients are typically characterized
by increased heterogeneity of responses (Bolton et al., 2018). This sug-
gests that a better framework would approach the question as an
individual-differences problem. Indeed, Byrge et al.’s post-hoc analyses
revealed that their ISC effect was driven entirely by five individuals from
the ASD group with particularly idiosyncratic responses that could not be
easily explained by other factors (i.e., data quality, symptom severity);
when these five individuals were removed, the ASD and neurotypical
groups were indistinguishable (Byrge et al., 2015). Interestingly, Hasson
et al. (2009) reported that while the responses of subjects with autism
were more variable, these idiosyncratic responses were reliable within
single individuals across repeated presentations of the same stimulus,
suggesting a trait-like component.

Rather than a dichotomy between health and disease, most mental
illnesses are likely better conceptualized as the extreme end of a
phenotypic spectrum (Cuthbert and Insel, 2013; Insel et al., 2010).
Instead of stratifying subjects into patients and controls, we can improve
sensitivity by using continuous measures—task performance, symptom
severity, genetic load—as our independent variables (Finn and
Constable, 2016). To then take advantage of the richness of information
embedded in these continuous spaces, we need analysis frameworks that
can appropriately handle the intricate interdependencies of dyads rather
than individuals. Recent work has proposed using multilevel modeling
and other expanded statistical formulations, some of which offer the
ability to include subject-level covariates into ISC analyses (Chen et al.,
2017; Chen et al., 2020). In the next section, we outline another prom-
ising approach, used by several of the studies cited above, that is flexible,
intuitive and can be applied to detect relationships between any type of
brain and behavioral data.

4. Inter-subject representational similarity analysis: Theory

By definition, inter-subject correlation cannot be calculated for a
single subject. How, then, can we relate ISC, which operates at the level
of subject pairs, to traits and behaviors, which operate at the level of
single subjects? We can triangulate between these two levels of mea-
surement using a framework we call “idiosynchrony”, which leverages
each subject’s unique pattern of synchrony with other subjects to reveal a
covariance structure that also reflects a known behavioral measure—for
example self-report questionnaires, demographics, task performance,
clinical assessments, or genotypes, among others. The intuition is that
individuals who are more similar in behavior should also be more similar
in their neural responses.

We operationalize this by computing two subject-by-subject distance
matrices: one for the brain data (using, for example, ISC), and one for the
behavioral data. We can then compare the geometry of these two
matrices by correlating them, a procedure known as distance correlation
or representational similarity analysis (Mantel, 1967; Kriegeskorte et al.,
2008). We and others call this inter-subject representational similarity
analysis (Chen et al., 2020; van Baar et al., 2019). The advantage of
comparing similarity matrices over a typical first-level analysis is that
instead of directly linking two physically different quantities like brain
data and behavior, we use a second-order isomorphism to compare the
geometry of brain data with the geometry of behavioral data (Fig. 1)
(Kriegeskorte and Kievit, 2013).

This sounds straightforward enough. But one critical question is, how
do we measure behavioral similarity? In choosing a distance metric,
particularly when our behavior is one-dimensional (e.g., age (Mor-
aczewski et al., 2018; Richardson et al., 2018), a trait score (Finn et al.,
2018), accuracy on a cognitive task), we imbue our analysis with some
fundamental assumptions about the structure of the brain-behavior
representational similarity that affect the ultimate results and how we
interpret them. To get a feel for some potential structures, imagine



Fig. 1. Schematic of inter-subject repre-
sentational similarity analysis.
Each subject (bottom layer) is associated
with a behavioral score (middle layer) and a
pattern of brain activity (top layer, e.g., a
time series from a given brain region during
naturalistic stimulation). The middle and
upper layers depict weighted graphs ob-
tained using the similarity matrices as adja-
cency matrices, where thicker lines indicate
increased similarity between nodes (sub-
jects). In IS-RSA, we construct pairwise (i.e,
subject-by-subject) similarity matrices for
the behavioral data and the brain data, then
compare these matrices using a Mantel test.
Thus, we can leverage inter-subject analysis
methods such as ISC to detect shared struc-
ture between brain data and behavioral data.
This figure is a modified version of Fig. 1 in
Glerean et al. (2016).
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arranging the rows and columns of the ISC matrix such that subjects are
ordered by their behavioral score. What would we expect the resulting
matrix to look like?

If we use Euclidean distance or another relative distance metric, we
implicitly assume that subjects with closer scores should be more similar
to one another, regardless of where they fall on the scale. In other words,
for a behavior that is measured on a scale from 0 to 100, a pair of subjects
scoring 0 and 1 should be just as similar as a pair of subjects scoring 99
and 100 (since in both cases, the Euclidean distance is 1). We call this the
Nearest Neighbors (NN) model, since it assumes that a subject should
always look most similar to his or her immediate neighbors, regardless of
their absolute position on the scale (Fig. 2a).

The NNmodel may be appropriate for certain behaviors, but we could
imagine an equally if not more plausible scenario: that similarity between
subjects increases or decreases as one moves up or down the scale, in an
absolute rather than relative sense. For example, perhaps high-scoring
subjects are more similar to other high scorers, while low-scoring sub-
jects are less similar both to high scorers and other low scorers. In other
words, brain responses cluster together for subjects at one end of the
behavioral spectrum, while variability increases as one moves toward the
opposite end of the spectrum. We call this the Anna Karenina (or AnnaK)
model, after the famous opening line of Leo Tolstoy’s novel, which reads
“All happy families are alike; each unhappy family is unhappy in its own
way” (or, in this context, “all high [low] scorers are alike; each low [high]
scorer is different in his or her own way”). In this case, Euclidean distance
would not be the most appropriate choice. Instead, we would want to
model similarity using a metric that reflects absolute position on the
scale—for example, mean: (iþ j)/2, minimum: min(i, j), or the product of
2 While in theory these three potential formulations of the AnnaK model have
somewhat different interpretations, in practice, they tend to yield highly
correlated distance matrices, making it difficult to select the most appropriate
formulation via model comparison. In the empirical section of this paper, we
elected to test only the first formulation (Fig. 2b, mean(i,j)), because it is the
simplest, and because it has the advantage that any inverse relationships (i.e.,
lower behavioral scores associated with higher ISC) will be captured using the
same model (see also Footnote 4). Future work could attempt to disentangle
these and other formulations using advanced model comparison techniques
and/or simulations.
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the mean and minimum (Fig. 2b–d).2

In the case of traits and behaviors that consist of a vector of responses
per subject (e.g., self-report questionnaires) rather than a single scalar
number (e.g., age), we have the option to calculate item-wise similarity
using any number of potential distance metrics—for example, correla-
tion, Euclidean distance, cosine distance and many others. In this case,
we are assuming that it is the pattern of individual responses, and not the
composite score, that should determine the inter-subject similarity
structure. This approach is likely best suited to assessments consisting of
unique items that are not interchangeable—personality questionnaires,
for example.3 As a general heuristic, quantitative assessments—those
with clear “better” and “worse” ends of the scale—are likely more suited
to distance models based on single composite scores, while qualitative
scales could be suited to either composite or item-wise models. We can
also imagine scenarios where both models are theoretically appropriate,
and each might capture different effects. For example, questionnaires
assessing symptom type and severity might show some effects that scale
with overall score (Anna Karenina model), and others that scale with
item-wise similarity (nearest neighbors)—and each of these effects might
be present in different brain regions.

5. Inter-subject RSA: application

To investigate if and how brain similarity reflects behavioral simi-
larity during naturalistic stimulation, and more specifically, how the
choice of distance model affects results, we applied inter-subject RSA to
an empirical dataset from the Human Connectome Project (HCP) (Van
Essen et al., 2013). Subjects (all healthy volunteers aged 22–35 years)
engaged in a movie-watching paradigm during high-resolution (voxel
size ¼ 1.6 mm3, TR ¼ 1s) functional MRI scanning at 7 T. The sample
used here (n ¼ 184) reflects all available data for this paradigm. This
3 Since most cognitive performance tests consist of more than one item, we
could in theory calculate item-wise distance on these tests as well. But because
trials in these tests are generally interchangeable, it is more straightforward and
interpretable to consider the similarity of two subjects’ composite score rather
than the similarity of their performance on individual trials (unless one has a
specific hypothesis about learning rates, attention fluctuations, or other effects
with a dynamic component).



Fig. 2. Simulated potential structures for
brain-behavior representational similarity
matrices.
For each row a-d, the left panel depicts a simu-
lated pairwise brain similarity matrix in which
subjects are ordered along both rows i and col-
umns j by their behavioral score (from low to
high), and each cell {i, j} reflects the correlation
between subjects i and j of the timeseries of a
given brain region (pairwise inter-subject corre-
lation). The right panel depicts a two-
dimensional embedding of the corresponding
distance matrix (i.e., 1 – similarity matrix) using
t-SNE (t-Distributed Stochastic Neighbor Embed-
ding), in which each dot represents a subject, and
subjects are colored according to their behavioral
score. Under the t-SNE solution, similar observa-
tions (in this case, subjects) appear nearby, while
dissimilar observations appear further away.
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dataset contains many sets of twins (both mono- and dizygotic) and
siblings (the 184 subjects come from n ¼ 93 unique families). Details of
data acquisition and basic preprocessing are published elsewhere
(Glasser et al., 2013a; Van Essen et al., 2012; Vu et al., 2017). Each
subject watched four 15-min movie runs; data from the first run (MOV-
IE1_7T_AP) are used here. This run comprised five video clips presented
5

in a fixed order. Four clips were from independent films and documen-
taries, all with some degree of social and affective content, and one was a
montage of brief (1.5s) moving scenes depicting people and places. All
fMRI analyses began with the FIX-denoised data, which includes stan-
dard preprocessing (motion correction, distortion correction, highpass
filtering, and nonlinear alignment to MNI template space (Glasser et al.,
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2013b)) plus regression of 24 framewise motion estimates (six rigid-body
motion parameters and their derivatives and the squares of those 12) and
regression of confound timeseries identified via independent components
analysis (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

Each subject also completed a battery of self-report and behavioral
measures outside the scanner (Barch et al., 2013). We focused on two
trait-level measures from the cognitive and emotional domains, respec-
tively: working memory (as measured by a list-sorting task) and per-
sonality (as measured by the NEO Five-Factor Inventory). We chose these
two traits because we hypothesized that the structure of brain-behavior
similarity would manifest differently for each one, and therefore that
each trait would be best modeled by a different distance function in
IS-RSA, as detailed below. The primary outcome measure from the
list-sorting task is a single scalar measure of working memory span, or
how many items can be accurately stored and manipulated in working
memory at one time (higher scores indicate higher performance). The
NEO-Five Factor Inventory consists of 60 items, and subsets of these are
summed to yield scores for five dimensions: agreeableness, extraversion,
conscientiousness, neuroticism, and openness.

For both working memory and all five personality traits, we tested
two models: 1) a nearest-neighbor model based on overall score (abs(i-
j)), to test the prediction that people that score more similarly on a
behavioral measure look more similar, regardless of whether they score
high or low; and 2) an AnnaK model based on the mean(i,j) formulation,
to test the prediction that people who score high on a given trait share
similar patterns of brain activity, while people that score low show more
variability (or vice versa).4 Within the personality domain, we tested a
third model: nearest-neighbor based on itemwise responses to the per-
sonality questionnaire, to test the prediction that people who fill out the
questionnaire in more similar ways, regardless of their summary trait
scores, would show more similar brain activity. We hypothesized that
working memory would be best captured by the AnnaK model in most
brain regions. We did not have strong hypotheses about the best model
for personality, as any of the above scenarios were plausible a priori.

Because we might expect both behavioral phenotypes and brain ac-
tivity to be more similar between siblings—and especially twins—due to
any number of genetic and environmental influences, we avoided per-
forming IS-RSA on related individuals. We split the dataset into two co-
horts of unrelated subjects (n ¼ 93 and n ¼ 89, respectively), which had
the benefit of giving us a natural replication sample to help guard against
false positives. We performed all analyses on each cohort separately, and
leveraged this test-retest framework to correct for multiple comparisons,
described further below.

For each subject, we extracted activity timecourses from every node
in a 268-node functional parcellation (Shen atlas; Shen et al. (2013)) by
averaging signal across all voxels for each volume. (Because activity is
expected to be smooth across neighboring voxels, this step reduces the
dimensionality of the data, thus avoiding the computational cost of a
voxelwise analysis.) For each node n and each subject pair {i, j} within a
cohort, brain similarity was calculated as the Pearson correlation (ISC) of
activity timecourses across the whole run. Behavioral similarity was
calculated according to either an NN model (i – j; Fig. 2a) or an AnnaK
model (mean(i, j); Fig. 2b). Representational similarity was assessed by
calculating Spearman’s rank correlation between the vectorized upper
4 One advantage of the mean(i,j) formulation of the AnnaK model is that the
same model can detect effects in both directions, based on the sign of the
resulting r-value between the brain and behavioral similarity matrices. If high
scorers are alike and low scorers different, the resulting r-value would be pos-
itive; if low scorers are alike and high scorers different, it would be negative.
(Note that the other two formulations—min(i,j) and abs(i-j)*mean(i,j)—would
also be expected to yield negative r-values in a case where low scorers were
alike, but because these models are not symmetric about the counterdiagonal
[top-right to bottom-left], they would be less precise at detecting inverse re-
lationships, and would require two different models to accurately detect inverse
relationships.).
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triangles of the brain and behavioral similarity matrices.
For each node, the significance of the brain-behavior representational

similarity was assessed non-parametrically using a Mantel test (Mantel,
1967), in which subject labels (i.e., rows and columns) are randomly
permuted for one of the two similarity matrices a large number of times
(in this case, 10,000) and the correlation between the two matrices is
recalculated to form a null distribution of surrogate correlation values.
The observed correlation coefficient is then compared to this null dis-
tribution to obtain a p-value for each node for each cohort. These
p-values were then corrected for multiple comparisons using two parallel
approaches, both of which leveraged the two-cohort framework: (1)
Bonferroni-style, in which a corrected p-threshold was calculated to
reflect the probability of obtaining a p < 0.05 result in both Cohort 1 and
Cohort 2 for any given node (in this case, p ¼ 0.0136)5; and (2) fam-
ilywise error control, in which we used permutation testing to compute a
null distribution for how many nodes across the whole brain would be
expected to survive an initial p-threshold (in this case 0.05) in both co-
horts, and compared the observed number of nodes to this null distri-
bution. Note that the second approach was not designed to test
significance of any particular node, but rather to assess and compare
overall detection power across the brain for our two models.

For working memory, as we hypothesized, brain-behavior represen-
tational similarity was best captured by the AnnaK model (Fig. 3, bottom
row). High-scoring subjects were similar to other high scorers across
much of the brain, while low-scoring subjects had more idiosyncratic
responses—in other words, they were less similar to both the high scorers
and other low scorers. The AnnaK model fit the data better than the
nearest-neighbors model in that it yielded stronger effect sizes (compare
distributions of RSA values between the two scatter plots in Fig. 3) that
were more replicable across the two subject cohorts (rcohort 1, cohort 2 ¼
0.60 for the AnnaK model versus 0.18 for the NN model). The AnnaK
model captured significant relationships between brain and behavioral
similarity in 52 nodes (familywise p < 0.0001) across parietal, temporal,
occipital and cerebellar cortex (of these, 16 survived Bonferroni-style
correction). This pattern is consistent with previous findings that work-
ing memory and other high-level cognitive abilities depend on distrib-
uted networks of regions mostly in association cortex, and that individual
differences in the functional organization of these regions are to some
degree intrinsic, i.e., they can be observed even in the absence of task
states designed specifically to probe these processes (Cole et al., 2012;
Finn et al., 2015; Hampson et al., 2006; Song et al., 2008). In contrast, the
NN model captured significant brain-behavior relationships in only 2
nodes (familywise p ¼ 0.14; neither survived Bonferroni correction).

For personality, results were more complicated. Using trait summary
scores, the nearest-neighbor model based on trait summary scores did not
yield any significant nodes across any of the five dimensions (Fig. 4b, top
scatter plots), and the AnnaK model yielded only two significant nodes at
an uncorrected threshold across all five dimensions (Fig. 4b, bottom
scatter plots). However, the nearest-neighbor model based on item-wise
responses captured 16 nodes across the brain (familywise p < 0.0001;
though only one individual node survived Bonferroni-style correction),
including fusiform, right inferior frontal gyrus, and several nodes in the
5 If each node is tested at an alpha of α ¼ 0.05, the probability of a false
positive for the same node in both cohorts is 0.052, or 0.0025. If there are 268
tests, the probability that any one of them is significant in both cohorts is
0.0025*268, or 0.67. We can set this outcome probability to a desired alpha
level, in this case 0.05: 268*α2 ¼ 0.05, which gives 0.0136. Note that this
approach assumes that Cohorts 1 and 2 are independent, which is not strictly
true since there are twins and non-twin siblings split across cohorts. However, in
the absence of clear data as to how genetic relatedness influences brain activity
during naturalistic stimulation, we believe this approach, akin to using discov-
ery and replication samples, is a step toward ensuring statistical rigor and
generalizability (and is still preferable to including pairs of siblings within the
same cohort, which would violate independence assumptions in the first-level
analyses).



Fig. 3. Inter-subject RSA: Working Memory.
Do pairs of subjects that score more similarly on a test of working memory (Human Connectome Project: ListSort_Unadj) also show stronger ISC in certain brain regions during
naturalistic viewing? Two models for behavioral similarity are tested: a nearest-neighbor model (top row; cf. Fig. 2a) where the behavioral similarity matrix is constructed as |i –
j|, and an “Anna Karenina” model (bottom row, cf. Fig. 2b) where the behavioral similarity matrix is constructed as mean(i,j). In the scatter plots, each dot represents one node
in the Shen atlas (268 total), plotted according to its representational similarity (Spearman correlation between brain similarity and behavioral similarity matrix, r) in cohort 1 (x-
axis) versus its representational similarity in cohort 2 (y-axis). Large gray dots are nodes that show significant representational similarity (p < 0.05, uncorrected) after per-
mutation testing in both cohorts (no. permutations ¼ 10,000 for each cohort); large black dots are nodes that show significant representational similarity (p < 0.0136) after
Bonferroni-style correction at α < 0.05. The dashed diagonal line represents the identity line y ¼ x (not the regression line), to facilitate visual inspection of replicability—if the
results are replicable across cohorts, the RSA r-values should fall close to this line. Glass brains show nodes colored by IS-RSA value. Nodes outlined in gray and black show
significant representational similarity after familywise and Bonferroni correction, respectively (corresponding to the large gray and black dots in the scatterplots).
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cerebellum (Fig. 4a). Interestingly, this suggests that brain responses
during naturalistic stimulation may depend less on overall levels of
certain personality traits, and more on personality “fingerprints”
captured by specific patterns of item-wise responses to the personality
questionnaire. The relative overrepresentation of results in the cere-
bellum adds to a growing body of evidence for its role in social cognition,
especially processes that involve a high level of abstraction (Van Over-
walle et al., 2014); the present results suggest that individual-specific
traits may be encoded in patterns of cerebellar activity during complex
stimulation of a largely social nature.

In sum, we observed that different traits and behaviors are best
modeled by different distance functions in different brain regions. These
results raise several questions to be addressed in future work. For
example, whichmodel(s) perform best on other traits and behaviors? Can
we use dynamic analyses (Glerean et al., 2012; Simony et al., 2016) to
reveal particular time windows where the brain-behavior signal is
strongest? Do these windows relate to known features of the stimulus?
For now, we can conclude that IS-RSA is a promising framework to detect
brain-behavior relationships during naturalistic imaging, and that
choosing the appropriate model not only improves sensitivity, but also
offers the flexibility to test multiple hypotheses with fundamentally
different interpretations.

6. Inter-subject RSA: Future directions

6.1. Boosting individual signal by removing common variance

Our intent here was to demonstrate IS-RSA using a straightforward,
whole-brain method without an overly burdensome computational load.
However, ISC may also suffer from the reliability paradox (Hedge et al.,
2018): the stronger the shared response, the harder it is to identify in-
dividual differences. This is clear especially in sensory areas with high
ISC values reflecting a strong shared time-locked response, possibly
masking inter-individual differences.
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A refined pipeline for IS-RSA might incorporate additional processing
steps to boost individual signal and improve detection power for brain-
behavior relationships. For example, simply regressing out the group-
average timecourse from each individual’s nodewise data before
computing IS-RSA might highlight differences of interest. Alternatively,
stimulus features (e.g., luminance, visual flow, acoustic properties
(Lahnakoski et al., 2012b)) could be used as confounds to regress out
strongly time-locked components from brain signals.

Yet another approach would be to first estimate a common set of
latent features at the group level via hyperalignment (Haxby et al., 2011)
or shared-response modeling (Chen et al., 2015), then calculate IS-RSA
based on either the individual-subject data transformed into feature
space or on the residuals after factoring out group variance. More so-
phisticated techniques using wavelet decomposition or mutual informa-
tion can pull out shared signal components that are not time locked
between individuals or with the stimulus, conceptually similarly to the
evoked and induced oscillations in electrophysiology (Tallon-Baudry and
Bertrand, 1999) (see also subsection “Increasing spatiotemporal
complexity”). All of these techniques seek to decompose spatiotemporal
signals into a set of features that model the shared component of subjects’
responses, thereby minimizing the impact of misaligned anatomical or
functional topographies in favor of emphasizing “true” functional dif-
ferences between individuals. Shared-response modeling and hyper-
alignment have been shown to increase sensitivity to group differences
(Chen et al., 2015) and individual differences (Feilong et al., 2018),
respectively; future work should investigate whether one or more of
these approaches increases sensitivity to brain-behavior relationships in
the IS-RSA framework.

6.2. Extending IS-RSA to a predictive framework

We can readily extend IS-RSA to a predictive framework (Bzdok and
Ioannidis, 2019; Gabrieli et al., 2015), in which a model is trained to take
in patterns of brain activity during naturalistic stimulation and generate a



Fig. 4. Inter-subject RSA: Personality.
Do pairs of subjects with more similar personalities (as measured with the Five-Factor Inventory) also show stronger ISC in certain brain regions during naturalistic viewing? a) IS-
RSA, where personality similarity is calculated as the Pearson correlation between item-wise responses of each pair of subjects (“NN-itemwise”). b) IS-RSA where personality
similarity is calculated based on summary scores for each of the five traits. For each trait, two models for behavioral similarity are tested: a nearest-neighbor model (top graph in
each column; cf. Fig. 2a) where the behavioral similarity matrix is constructed as |i – j|, and an “Anna Karenina” model (bottom graph in each column, cf. Fig. 2b) where the
behavioral similarity matrix is constructed as mean(i,j). In all scatter plots, each dot represents one node in the Shen atlas (268 total), plotted according to its representational
similarity (Spearman correlation between brain similarity and behavioral similarity matrix) in cohort 1 (x-axis) versus its representational similarity in cohort 2 (y-axis). Large
gray dots are nodes that show significant representational similarity (p < 0.05, uncorrected) after permutation testing in both cohorts (no. permutations ¼ 10,000 for each
cohort); large black dots are nodes that show significant representational similarity (p < 0.0136) after Bonferroni-style correction at α < 0.05. The dashed diagonal line
represents the identity line y ¼ x (not the regression line), to facilitate visual inspection of replicability—if the results are replicable across cohorts, the RSA r-values should fall close
to this line. Glass brains show nodes colored by IS-RSA value. Nodes outlined in gray and black show significant representational similarity after familywise and Bonferroni
correction, respectively (corresponding to the large gray and black dots in the scatterplots).
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predicted behavioral score for never-before-seen individuals (or vice
versa). In this context, too, the success of the model will depend crucially
on knowing whether the brain-behavior relationship shows an AnnaK or
NN-type structure.

The success of the AnnaK model for at least one behavior investigated
here has interesting implications for not only IS-RSA, but any approach to
predicting behavior from brain features: it suggests that the relationship
between imaging-derived features and behavior may be linear (or at least
monotonic) only at one end of the behavior spectrum, while the other
end is associated with increased variability but not necessarily in a
consistent direction. One implication may be to consider radial kernels
for regression, which measure distance from a central point (as opposed
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to linear kernels, which measure absolute position on a set of axes).
However, the AnnaK structure does predict a linear or monotonic rela-
tionship between a subject’s behavioral score and their mean (or median)
ISC value with all other subjects, a fact that could be leveraged in a
predictive analysis.

On the other hand, the NN models do not predict any relationship
between behavior and overall mean or median ISC value, but rather
between behavior and ISC with specific partners. In this case, non-
parametric methods such as k-nearest neighbors would be more appro-
priate. In either case, feature selection could be applied to uncover the
brain regions where similarity is most strongly related to behavioral
similarity, to improve model performance.



Fig. 5. Theoretical stimulus tuning curves for sensitivity to individual
differences.
In the upper limit, as the degree of cross-subject synchrony evoked by a stimulus
approaches 1, that stimulus will lose sensitivity to individual differences, since
there will be no brain variability left to relate to behavioral variability. How-
ever, in the lower limit, if a stimulus evokes no correlation across subjects, there
will be no meaningful structure in brain similarity to relate to behavioral sim-
ilarity. Therefore, the optimal tuning curve likely follows an inverted-U shape.
Determining where this curve peaks—in other words, the optimal degree of
synchrony for extracting meaningful individual differences in a certain behav-
ioral domain—should be a goal for future work.
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6.3. Unsupervised IS-RSA

As we amass larger neuroimaging datasets that include naturalistic
tasks, it may become possible to perform unsupervised analyses. In other
words, instead of using known behavioral scores to pre-label the data, we
could cluster inter-subject brain similarity matrices to detect natural
categories or continua in a data-driven fashion, then see if these relate to
present or future behavioral outcomes (Cerliani et al., 2017). In this way,
we may be able to leverage naturalistic neuroimaging to organize in-
dividuals along axes that are more biologically valid than current diag-
nostic and self-report measures, potentially shedding new light on how
individual variability is reflected in nuanced brain function.

6.4. Increasing spatiotemporal complexity

Thus far we have been using inter-subject correlation, or simple
Pearson correlation between two subjects’ timeseries, as our primary
measure of brain similarity, largely because it is straightforward to
compute, visualize, and interpret. However, in theory we could calculate
a brain similarity matrix (cf. Fig. 1) based on any type of information
extracted from single subjects’ neuroimaging data. For example, we
could use functional connectivity (Glerean et al., 2016), or compare
subjects’ temporal trajectories over the course of a stimulus using
low-dimensional topological embeddings (e.g., Gonzalez-Castillo et al.,
2019; Saggar et al., 2018), latent state discovery (Chang et al., 2018), or
projection into a higher-order space using recurrent neural networks
(Venkatesh et al., 2019). Furthermore, the brain and behavioral
inter-subject similarity matrices (cf. Fig. 1) can also be interpreted as
networks, meaning they could be analyzed using geometry-aware
methods such as geodesic distance (Venkatesh et al., 2020). Rather
than mass univariate tests for how behavior is reflected in single regions,
these approaches allow for linking behavior to multivariate patterns of
activity across multiple regions, and may prove even more powerful for
uncovering brain-behavior relationships during naturalistic imaging.

7. Stimulus selection: How much synchrony is enough?

Thus far, we have discussed how to optimize sensitivity to stimulus-
evoked individual differences from an analysis perspective. What about
from an acquisition perspective? While naturalistic imaging experiments
are growing in popularity, currently, there is no principled way to choose
stimuli. Common wisdom is that for studying shared responses, we
should choose something maximally engaging, to “drive” as much of the
brain as possible. Indeed, previous work has shown that features of the
stimulus affect ISC levels: more rhetorically powerful speeches
(Schm€alzle et al., 2015), emotionally arousing narratives (Nummenmaa
et al., 2014), and highly rated television programs (Dmochowski et al.,
2014) all evoke higher synchrony than their less engaging counterparts.

But, when the goal of a study is specifically to investigate individual
differences, considerations for choosing a stimulus may be different. In
the theoretical limit, a stimulus that evoked perfect synchrony across
subjects would be useless for studying individual differences—since
there would be no neural variability to relate to behavioral variability
(Hedge et al., 2018). Practically, however, we are quite far from that
theoretical limit, since individual BOLD responses are “noisy” both in
terms of uninteresting variability (scanner noise, non-neural BOLD sig-
nals, stimulus-unrelated neural activity) and the stimulus-driven idio-
syncratic responses that constitute the “signal” of interest here.

Is there a “sweet spot” where a stimulus evokes enough synchrony to
build a successful cross-subject model, but not enough to saturate the
individual signals of interest? To test their hypothesis that social network
proximity predicts increasingly similar neural responses to movies, Par-
kinson et al. (2018) chose videos that might differentially appeal to those
with different tastes (reasoning that friends would be more likely to have
similar tastes; e.g., styles of humor, opinions on controversial topics). A
handful of studies have created bespoke stimuli that were ambiguous by
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design, such that different individuals might arrive at different in-
terpretations of the same material. Finn et al. (2018) created a narrative
describing a complex social scenario that seemed highly suspicious or
nefarious to some individuals, but less so to others; Nguyen et al. (2018)
created a Heider-Simmel-esque video (Heider and Simmel, 1944)
depicting an interaction among animated shapes in which the relation-
ships between the shapes were open to interpretation. These studies
found that individuals who were more similar on either trait-level (i.e.,
intrinsic) or state-level (i.e., stimulus-driven) measures, respectively,
showed increased inter-subject correlation during stimulus presentation
in regions of higher-order association cortices, especially those linked to
social cognition.

None of these studies, however, directly assessed how the degree of
ambiguity or so-called “taste-dependence” of a stimulus affects its utility
for drawing out meaningful individual signal. If the goal is to study
idiosyncratic responses, how much synchrony is optimal? If we imagine
plotting stimuli by the strength of the ISCs they evoke versus their
sensitivity to individual differences, several potential scenarios emerge
(Fig. 5.). One possibility is that idiosyncratic signals are quickly saturated
by a powerful stimulus, such that the optimal stimulus would evoke only
minimally correlated responses when averaged across all subjects, leav-
ing room for specific subject pairs to be more or less correlated with one
another according to variations in behavior (Scenario 1). Alternatively,
the optimal level of average synchrony could be higher, such that
sensitivity to individual differences benefits from a stronger foundational
shared response at the group level (Scenario 2). Another possibility is
that the theoretical “saturation point” is much higher, such that stimuli
that evoke very strong responses are the ones that are most sensitive to
individual differences (Scenario 3). This third scenario would be
consistent with the observation that stimuli and task states that make
subjects look more similar to one another can actually boost signal-to-
noise for individual differences, since even though these states reduce
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overall cross-subject variation, the remaining variation is presumably
more stable and trait-like (Finn et al., 2017; Vanderwal et al., 2017).

Understanding how stimulus choice affects sensitivity to individual
differences will be an important area for future research, especially as
large-scale data collection efforts begin to incorporate naturalistic scans
into their protocols (Alexander et al., 2017; Van Essen et al., 2012). We
believe acquiring naturalistic scans should be encouraged for several
reasons: beyond improving subject compliance (and therefore data
quality) compared to resting-state scans (Greene et al., 2018; Huijbers
et al., 2017; Vanderwal et al., 2015), naturalistic paradigms yield data
that can be mined in any number of ways, expanding their potential to
generate insights into a variety of open questions in human neuroscience.
Yet, to the extent that stimulus choice affects the individual signals we
observe, it will behoove us to be as principled as possible in choosing
stimuli.

Of course, there may not be a single “best” stimulus for studying in-
dividual differences; rather, the most appropriate stimulus may depend
on the specific behavior(s) of interest. For example, a threatening or
suspenseful stimulus—e.g., the opening scene in a horror film—might
evince neural responses that share structure with trait anxiety, as
compared to one depicting positive emotion—e.g., the happily-ever-after
final scene of a romantic comedy. Conversely, the positive stimulus might
yield better predictions of trait anhedonia. At the same time, both of
these stimuli may yield better predictions of either trait than a neutral
stimulus with little to no emotional content. Testing these hypotheses
will require datasets with a range of both stimuli and behavioral mea-
sures per subject. However, there is already some supporting evidence:
for example, differences between controls and patients with melancholic
depression are more pronounced during a negative film clip than a pos-
itive one (Guo et al., 2015).

8. Limitations

Despite the many clear advantages and—we believe—great potential
of using naturalistic paradigms to study individual differences, there are
several outstanding challenges. For one, the test-retest validity of these
paradigms is unclear. Repetition is known to alter neural processing, and
this is likely especially true for emotionally evocative and memorable
stimuli. Thus, naturalistic paradigms that rely on a single stimulus may be
less appropriate for longitudinal studies, since it would be near impos-
sible to disentangle within-subject changes from repetition effects.

There are computational challenges associated with using inter-
subject approaches, since pairwise techniques mean that the number of
observations increases as n2 rather than n. Especially in the case of inter-
subject functional connectivity (ISFC; Simony et al. (2016)), reducing
dimensionality using pre-defined atlases, and/or selecting regions of
interest based on a priori hypotheses or a first-pass analysis of which
regions surpass some minimal threshold for response consistency (cf.
Fig. 5.), may help in this regard.

Another challenge, albeit not one unique to naturalistic paradigms, is
understanding which traits and behaviors we should target. Predicting a
performance-based or self-report score acquired close in time to the
imaging data itself, which is the goal of the vast majority of the current
literature on brain-behavior relationships, is an important proof-of-
concept, but ultimately the imaging data will always be simply a
noisier version of whatever “ground truth” we are trying to predict. Ul-
timately, the goal should be to determine the value of baseline brain
responses to naturalistic stimuli as predictors of follow-up measures such
as learning rates (Cantlon and Li, 2013), illness trajectory, or response to
intervention.

9. Concluding remarks

Here, we have advanced an emerging framework for studying indi-
vidual differences during naturalistic neuroimaging, a phenomenon we
call “idiosynchrony”. Inter-subject representational similarity analysis
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(IS-RSA) combines the time-locked nature of the stimulus with known
phenotypic information to move from shared responses to activity in
individual subjects that is idiosyncratic, yet structured and interpretable.
Unlike traditional approaches that rely on explicit models of the task,
inter-subject approaches promise to capture as much nuance and vari-
ance of the evoked activity as possible. And, unlike functional connec-
tivity approaches that treat naturalistic neuroimaging data akin to rest,
inter-subject approaches afford near certainty that the observed signals
are both neural in origin and driven by the stimulus. Above and beyond a
boost in signal-to-noise, these paradigms open up exciting opportunities
to link individual patterns of brain activity to specific events within the
stimulus that unfold over various timescales, from its low-level sensory
properties up to high-level narrative features that may evoke different
memories, associations and emotions for each individual. Linking natu-
ralistic patterns of brain activity to trait- and state-related variability
across subjects will deepen our understanding of how individual brains
give rise to individual behaviors, and may eventually lead to imaging-
based tools for real-world applications.

Data and code availability

Raw data for the empirical results presented here come from the
Human Connectome Project (http://www.humanconnectomeproject.o
rg/). Code for all IS-RSA analyses—both simulations (cf. Fig. 2) and
empirical application to HCP data (cf. Figs. 3 and 4)—can be found in the
following Github repository: https://github.com/esfinn/intersubj_rsa,
which also contains the processed HCP data (nodewise time series) that
formed the input to the empirical analyses.
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