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Gain Scheduling of a Full-Order Observer for

Sensorless Induction Motor Drives
Zengcai Qu, Marko Hinkkanen, Senior Member, IEEE, and Lennart Harnefors, Senior Member, IEEE

Abstract—This paper deals with the design of a speed-adaptive
full-order observer for sensorless induction motor (IM) drives. A
general stabilizing observer gain matrix, having three free design
parameters, is used as a design framework. A gain-scheduled
selection of the free design parameters is proposed. Furthermore,
the full-order observer is augmented with the stator-resistance
adaptation, and the local stability of the augmented observer is
analyzed. The performance of the proposed full-order observer
design is experimentally compared with a reduced-order observer
using a 2.2-kW IM drive.

Index Terms—Flux estimation, full-order observer, induction
motor, resistance adaptation, sensorless, stability.

I. INTRODUCTION

It is well known that instability phenomena can arise in

sensorless control of induction motor (IM) drives, especially

in the regenerative low-speed region [1] and also in high-

speed operation [2]. The observer, which is used for estimating

the flux and rotor speed, requires appropriate gains to avoid

these problems. Tuning the gains is challenging, and local

stability for all operating points (complete stability) is difficult

to achieve, even if accurate parameter estimates are assumed.

Furthermore, the observers are sensitive to errors in model

parameters, particularly to the model stator resistance at low

speeds.

Most sensorless estimators can be classified either as speed-

adaptive observers [2]–[16] or inherently sensorless observers

[17]–[21]. In both these classes, various observer structures

and design approaches exist. For example, an artificial-neural-

network based estimator [12], square-root-unscented Kalman

filtering [15], robust Kalman filtering [16], and H∞ theory

[13] have recently been applied to the observer gain de-

sign. Comparatively simple, but still very flexible, observer

structures are the speed-adaptive full-order observer [3] and

the inherently sensorless variant [20], [21] of the classical

reduced-order observer [22].

Properties of these different observers highly depend on

their gains. Rigorous proof of the complete stability is avail-

able only for a few observer types [8], [9], [11], [20], [21]. A

general stabilizing gain for the inherently sensorless reduced-

order observer was presented in [20], [21]. The reduced-order
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Fig. 1. Inverse-Γ model in stator coordinates.

observer is simpler to implement and tune than the full-order

observer, but it can be more sensitive to noise at high speeds

(for similar dynamic performance). The full-order observer has

four degrees of freedom in the selection of the two observer

gains, which complicates the design procedure. A general

stabilizing observer gain matrix for the speed-adaptive full-

order observer was derived in [9], where also a gain-scheduling

design of three free design parameters was proposed. This

original gain design guarantees sufficient damping at every

operating point, but it leads to very high sensitivity to model

parameter errors at lowest speeds.

Because the induced electromotive force (EMF) at low

speeds is very small, the mismatch of the voltage drop

across the stator resistance has a serious influence on the flux

and speed estimation. To improve low-speed operation, the

reduced-order observer can be augmented with a completely

stable resistance-adaptation scheme [21]. On the other hand,

the speed-adaptive full-order observers augmented with stator-

resistance adaptation schemes have unstable regions (except in

the case of some special observer structures [8], [11]).

In this paper, the observer gain design and the analysis of the

stator-resistance adaptation for the speed-adaptive full-order

observer are considered. The main contributions of the paper

are:

1) A gain-scheduling design for the full-order observer is

proposed, using the general stabilizing gain matrix given

in [9] as a design framework. The proposed design

improves the robustness against model parameter errors

at lowest speeds. At higher speeds, the proposed design

results in constant-valued gains, which provide sufficient

damping.

2) The local stability of the full-order observer, augmented

with the stator-resistance adaptation mechanism, is ana-

lyzed.

3) The proposed full-order observer design is experimen-

tally compared with the original design [9] and the

reduced-order observer design presented in [21] using

a sensorless 2.2-kW IM drive.
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TABLE I
PARAMETERS OF THE 2.2-KW IM

Stator resistance Rs 0.064 p.u.
Rotor resistance RR 0.040 p.u.
Leakage inductance Lσ 0.17 p.u.
Magnetizing inductance LM 2.20 p.u.

II. IM MODEL

The inverse-Γ model of the IM shown in Fig. 1 is consid-

ered. The electrical dynamics in coordinates rotating at the

angular speed ω̂s of the rotor flux estimate are given by

d

dt

[
is
ψR

]

︸ ︷︷ ︸

x

=

[
−Rσ

Lσ

I−ω̂sJ
1
Lσ

(αI−ωmJ)

RRI −αI−(ω̂s−ωm)J

]

︸ ︷︷ ︸

A

[
is
ψR

]

+

[
1
Lσ

I

O

]

︸ ︷︷ ︸

B

us

(1a)

is =
[
I O

]

︸ ︷︷ ︸

C

[
is
ψR

]

(1b)

where

I =

[
1 0
0 1

]

J =

[
0 −1
1 0

]

O =

[
0 0
0 0

]

The space vector is = [id, iq]
T is the stator current, us =

[ud, uq]
T the stator voltage, and ψR = [ψRd, ψRq]

T the rotor

flux. The total resistance is Rσ = Rs + RR, where Rs is

the stator resistance and RR the rotor resistance. The leakage

inductance is Lσ , the magnetizing inductance is LM, the

inverse rotor time constant is α = RR/LM, and the electrical

rotor speed is ωm.

A 2.2-kW 400-V IM will be considered in the following

analysis and experiments. The rating of the motor is as follows:

speed 1436 r/min; frequency 50 Hz; line-to-line rms voltage

400 V; rms current 5 A; and torque 14.6 Nm. The per-unit

(p.u.) quantities will be used; the base values for angular speed,

voltage, and current are defined as 2π ·50 rad/s,
√

2/3 ·400 V,

and
√
2 · 5 A, respectively. The p.u. model parameters of the

IM are given in Table I. It is worth mentioning that the same

(or very similar) p.u. values of the observer tuning parameters

can be used for different machines. Naturally, the tuning

parameters differ significantly, if they are not normalized.

III. SPEED-ADAPTIVE FULL-ORDER FLUX OBSERVER

A. Observer Structure

The speed-adaptive full-order observer is expressed as [3]

dx̂

dt
= Âx̂+Bus +K(is − îs) (2a)

îs = Cx̂ (2b)

where ”∧” denotes the estimated values. The state estimate

and the observer system matrix are

x̂ =

[
îs

ψ̂R

]

, Â =

[

− R̂σ

Lσ

I−ω̂sJ
1
Lσ

(αI−ω̂mJ)

RRI −αI−(ω̂s−ω̂m)J

]

respectively, where the total resistance estimate is R̂σ = R̂s+
RR. The observer gain matrix is

K =

[
Ks

Kr

]

=

[
ksdI + ksqJ
krdI + krqJ

]

(3)

The rotor speed estimate is obtained using the conventional

adaptation law

ω̂m = kpψ̂
T

RJĩs +

∫

kiψ̂
T

RJĩsdt (4)

where kp and ki are the speed adaptation gains. The cur-

rent estimation error ĩs = is − îs, and estimation errors

of other variables are marked similarly. If the observer is

implemented in estimated flux coordinates, the flux estimate

is ψ̂R = [ψ̂R, 0]
T. In these coordinates, the speed adaptation

law (4) reduces to

ω̂m = kpψ̂Rĩq +

∫

kiψ̂Rĩqdt (5)

B. Gain Design

The general stabilizing observer gains in (3) are [9]

Ks =
r − R̂σ

Lσ

I +
x

Lσ

J (6a)

Kr = (RR − r + αl)I + (ω̂ml − x)J (6b)

where l > 0, r > 0, and x can be freely chosen.1 With these

gains, the closed-loop estimation error dynamics are locally

stable at any operating point (for positive kp and ki).
The design framework (6) will be used in the following.

Even if (6) guarantees complete stability for accurate param-

eter estimates, the selection of the free design parameters

l, r, and x significantly affects the robustness, damping,

convergence rate, and other properties of the system. In order

to achieve good performance, it is necessary to vary these

parameters as a function of the speed estimate (or the stator

frequency).

1) Original Design: In [9], the goal in the selection of

the free design parameters has been to guarantee sufficient

damping for all operating points. The relationships between

the design parameters l, r, and x and approximate open- and

closed-loop pole locations have been derived. Based on these

relationships, the following parameters were given:

l = Lσ

ω̂2
s

α2 + ω̂2
m

(7a)

r = Lσ ·max {|ω̂s|, ωmin} (7b)

x = 0 (7c)

where ωmin is a design constant. In the following, ωmin = 0.1
p.u. is used.

The speed adaptation gains were selected as

ki =
2TN
Jδ

|ω̂s|Lσ

ψ̂2
R

kp =
kiLσ

r
(8)

1The notation used in this paper differs from [9]: l = k′
2

, r = Lσx
′,

x = Lσ(ω̂m+y′), where the original parameters are marked with the prime.
This different notation is selected in order to highlight the physical nature of
these parameters: l can be considered as a virtual inductance, r as a virtual
resistance, and x as a virtual reactance.
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Fig. 2. Gain designs: (a) original design; (b) proposed design. The first subplot shows the design parameters l, r, and x; the second and third subplots show
the resulting observer gain components as function of ω̂m.

where J is the total moment of inertia and the design constant

δ can be interpreted as the specified speed tracking error during

the ramp acceleration under the rated torque TN. It can be

seen that ki is proportional to the stator frequency ω̂s and

inversely proportional to the square ψ̂2
R of the estimated flux

magnitude. The speed adaptation gain can be formulated as

ki = k′i |ω̂s|/ψ̂2
R, where k′i = 2TNLσ/Jδ is a design constant.

In the following, k′i = 0.5 p.u. is used.

The design parameters l, r, and x as well as the resulting

components of Ks and Kr as function of ω̂m are shown

in Fig. 2(a). As shown in Appendix A, the dynamics of

the observer become equivalent to those of the pure voltage

model at zero stator frequency (since l = 0 at ω̂s = 0). Due

to this undesirable feature, the drive cannot be operated at

zero frequency without load (i.e., dc magnetization), which

complicates the starting of the drive. Furthermore, the observer

design is very sensitive to the errors in R̂s at low frequencies

due to the voltage-model-like behavior, which may cause

serious problems, e.g., in speed reversals.

The nonlinear estimation-error dynamics are governed by

(1) and (2) together with the speed-adaptation law (4). Local

dynamic properties of this nonlinear system can be studied by

means of the linearized model (Appendix B). The eigenvalues

of the linearized estimation-error dynamics with the original

gain design are shown in Fig. 12(a). It can be seen that the

damping is sufficient at all speeds.

2) Proposed Design: The observer gain proposed in [4]

Ks =
z + |ω̂s|Lσ − R̂σ

Lσ

I (9a)

Kr = [RR − z · f(ω̂s)] I + z · f(ω̂s) · sign(ω̂s)J (9b)

yields well-damped and comparatively robust estimation-error

dynamics at higher speeds. The function f is shown in Fig. 4,

and it can be expressed as

f(ω) = min

{ |ω|
ω∆

, 1

}

(10)

The tuning parameters z and ω∆ are positive constants.2

The drawback of (9) is that an unstable region at low speeds

in the regenerating mode exists [20]. In the proposed design,

the free parameters of (6) are selected so that the observer

gains at higher speeds resemble those in (9). This goal can be

achieved by choosing

l = min

{
Rs

α
,
z

|ω̂m|

}

(11a)

r = RR + αl + z · f(ω̂m) (11b)

x = ω̂ml (11c)

where the function f given in (10) depends on ω̂m. As an

example, the design parameters l, r, and x as well as the

resulting components of Ks and Kr as function of ω̂m are

shown in Fig. 2(b), where the two positive design constants

are selected as: ω∆ = 0.5 p.u. and z = 0.3 p.u. It can be seen

2The scaling of the tuning parameter z differs slightly from the original
paper: z = α′Lσ , where α′ refers to the tuning parameter used in [4].
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Fig. 3. Eigenvalues of the closed-loop system matrix: (a) original gain design;
(b) proposed gain design. The operating-point stator frequency is varied as
ωs0 = 0 . . . 2 p.u. and the slip frequency corresponds to the rated load. In
both cases, all the eigenvalues stay in the left-half plane also at the smallest
speeds in every load conditions due to the design framework [9].

that l is always positive, and the voltage-model behavior is

avoided. Furthermore, it can be seen that the gains are constant

at speeds higher than ω∆. It is to be noted that both x = 0
and x = ω̂ml lead to simple observer gain components, cf. (6).

The selection given in (11c) was made based on the damping.

The speed adaptation gains are selected as

ki = k′i/ψ̂
2
R kp = kiLσ/r (12)

where k′i = 0.5 p.u. is used in the following. The eigenvalues

of the closed-loop system with the proposed gain design are

shown in Fig. 12(b). A completely stable, well-damped, and

comparatively robust system is achieved.

C. Stator-Resistance Adaptation

The speed adaptation law (5) drives the current estimation

error ĩq to zero in the steady state. The remaining nonzero

component ĩd in the direction of the flux estimate can be used

for estimating one model parameter. For improved low-speed

operation, the observer can be augmented with the stator-

resistance adaptation law [3]

R̂s =

∫

kRψ̂
T

Rĩsdt (13)

0

f

ω
ω∆

1

Fig. 4. Function f , which is used in (9) and (11).

0

k′
R

ω̂s
ωδ

A

Fig. 5. Parameter k′
R

as function of ω̂s.

which in estimated flux coordinates reduces to

R̂s =

∫

kRψ̂Rĩddt (14)

Unfortunately, the closed-loop dynamics of the augmented

observer become very complex. Hence, instead of trying

to derive exact analytical stability conditions, the stability

analysis and the adaptation gain design is carried out using

numerical methods in the following.

Furthermore, an approximate analytical stability condition

based on the principle of the time-scale separation [5] is

derived in Appendix C. In the approximation, the observer

dynamics and the speed-adaptation loop are assumed to be

much faster than the dynamics of the resistance-adaptation

loop. Therefore, the observer can be assumed to be in quasi-

steady state as seen from the slower resistance-adaptation loop.

This approximation leads to the first-order closed-loop system

dR̂s

dt
= αR(Rs − R̂s) (15)

where the analytical expression for the approximate bandwidth

αR of the resistance adaptation can be found in Appendix C.

Naturally, the adaptation gain should be chosen so that αR is

nonnegative.

Based on the approximate bandwidth αR and the results

of extensive numerical eigenvalue analysis and computer sim-

ulations of the full system, the sign of the stator-resistance

adaptation gain kR should depend on the stator frequency (at

most operating points). Due to errors in measurements and in

other parameters, the stator resistance can be estimated only

when the rotor speed is low and the load is high [7], [23].

The adaptation should be disabled in the vicinity of no-load

operation and at higher stator frequencies due to poor signal-

to-noise ratio. The resistance adaptation is disabled when isq <
0.1 p.u. and the adaptation gain kR is made proportional to
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Fig. 6. Maximum real part of all eigenvalues of the closed-loop system matrix
with the proposed gains and the stator-resistance adaptation. The numerically
calculated eigenvalues are shown for A = 0.005 p.u. and for A = 0.001 p.u.
Furthermore, the pole s = −αR corresponding to the approximate model
is also shown for A = 0.005 p.u. The operating-point stator frequency is
ωs0 = −0.1 . . . 0.1 p.u. The rotor flux and the slip frequency are at their
rated values. The stator-resistance adaptation causes an unstable region in the
motoring mode in this operating point.

|isq|. Furthermore, kR is made to decrease linearly with the

increasing stator frequency. The gain is realized as

kR = k′R(ω̂s) sgn(ω̂s)|isq| (16)

where the function k′R is shown in Fig. 5. The function can

be expressed as

k′R(ω̂s) = max

{

A

(

1− |ω̂s|
ωδ

)

, 0

}

(17)

where A and ωδ are positive constants. In the following, ωδ =
0.25 p.u. is selected.

The resistance adaptation causes an unstable region in the

low-speed region, which is very difficult to avoid by means

of gain scheduling. However, this unstable region can be

made relatively narrow, if a low value for k′R is used. As

an example, the numerically calculated maximum real part

of all eigenvalues at the rated flux and rated slip frequency

are shown in Fig. 6 for A = 0.005 p.u. and A = 0.001
p.u. Furthermore, the pole s = −αR corresponding to the

approximate model is also shown for A = 0.005 p.u. It

can be seen that both the approximate model and the full

linearized model predict an unstable region in the motoring

mode, but there is clear discrepancy between these models.

According to the approximate model, the size of the unstable

region (i.e., zero crossings in the figure) does not depend

on the magnitude of the resistance-adaptation gain, while the

full linearized model shows dependency on the gain. In the

following, A = 0.005 p.u. is selected, which corresponds to

the unstable region of 0 ≤ ωs ≤ 0.0422 p.u. in the motoring

mode according to Fig. 6. Since the rated slip frequency of

the 2.2-kW IM is 0.0427 p.u., stable zero-speed operation

under the rated load torque is theoretically possible, but this

operating point is already very close to the unstable region.

It is worth mentioning that the unstable region in Fig. 6

could be avoided by choosing a smaller (or zero) |kR| gain at

the unstable operating points. However, since no exact analyt-

ical stability conditions exist, the stator-resistance adaptation

gain should be iteratively tuned based on tedious numerical

studies and trial-and-error tests. The load also affects the

unstable operating region, which would further complicate the

tuning procedure. Hence, the stator-resistance adaptation can

be impractical or impossible to implement (especially in the

case of general-purpose drives, where the motor is typically

unknown) in the case of the speed-adaptive full-order observer.

IV. BENCHMARK METHOD: REDUCED-ORDER OBSERVER

The reduced-order flux observer proposed in [21] is used as

a benchmark method in the experimental tests in Section VI.

The observer structure in estimated rotor flux coordinates is

dψ̂R

dt
+ ω̂sJψ̂R = e+G(ê− e) (18)

where G is the observer gain matrix. The two expressions for

back EMF induced by the rotor flux are

e = us − R̂sis − Lσ

dis
dt

− ω̂sLσJis (19a)

ê = RRis − (αI − ω̂mJ)ψ̂R (19b)

An inherently sensorless observer is obtained by selecting the

observer gain matrix G as

G =

[
g1 0
g2 0

]

(20)

The general stabilizing gain corresponds to the gain compo-

nents

g1 =
bα− (c/ω̂s − ω̂s)ω̂m

α2 + ω̂2
m

(21a)

g2 =
bω̂m + (c/ω̂s − ω̂s)α

α2 + ω̂2
m

(21b)

which depend on the estimated speed. The observer is locally

stable for all positive values of the design parameter b and c
with accurate model parameters. The rotor speed is estimated

using the slip relation.

The reduced-order observer is augmented with the stator-

resistance adaptation as described in [21]. An advantage of

the reduced-order observer (compared to the speed-adaptive

full-order observer) is that the resistance adaptation can be

more easily tuned based on the existing analytical stability

conditions. The unstable regions appearing in the case of the

full-order observer with resistance adaptation (illustrated in

Fig. 6) are avoided.

V. EXPERIMENTAL SETUP AND IMPLEMENTATION

The proposed full-order observer gain design, the original

gain design, and the benchmark method were compared by

means of experiments. The 2.2-kW four-pole IM (cf. Section

II) was used in the laboratory experiments. The IM was fed

by a frequency converter controlled by a dSPACE DS1103

PPC/DSP board. A servo motor was used as a loading ma-

chine. The total moment of inertia of the experimental setup

is 0.015 kgm2. The speed was measured using an incremental

encoder for monitoring purposes.
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is,ref

θ̂s

Current

controller

dq

abc

dq

abc

is ia, ib, ic

IM

Observer

ω̂m

ψ̂R

Fig. 7. Sensorless control system. The stator currents ia, ib, and ic and the
dc-link voltage uDC are measured. The estimated flux angle is denoted by

θ̂s. The components of the current reference is,ref are used for controlling
the flux and the torque. The control system also included the speed controller
and flux-weakening controller (not shown).

A. Sensorless Control System

The speed-sensorless control algorithms were implemented

in the dSPACE board. The block diagram of the sensorless

control system is shown in Fig. 7. The block “Observer”

represents either the speed-adaptive full-order observer or

reduced-order observer. Both the observers are implemented

in estimated rotor-flux coordinates. The space-vector pulse-

width modulator (SVPWM) with compensation for inverter

nonlinearities is used. The reference voltage us,ref obtained

from the current controller is fed to the flux observer. The

speed controller and flux-weakening controller correspond

to [24]. Furthermore, the magnetic saturation was modeled

according to [24]. The sampling was synchronized to the

SVPWM, and both the switching frequency and the sampling

frequency were 5 kHz. For fair comparison, the other parts

of the control algorithm (speed controller, current controller,

SVPWM, magnetic-saturation model, etc.) and their tuning

were kept the same for all the observers. The tuning of the

reduced-order observer (in p.u. values since the motor is not

the same) corresponds to that proposed in [21].

B. Compensation for Inverter Nonlinearities

The effect of inverter nonlinearities on the stator voltage is

substantial at low speeds [17]. The most significant inverter

nonlinearities, i.e., the dead-time effect and power device

voltage drops, have to be compensated for [25]–[27]. Using

phase a as an example, a compensated duty cycle for the

pulsewidth modulator was evaluated as [21]

da = da,ref +
2dδ
π

arctan

(
ia
iδ

)

(22)

where da,ref is the ideal duty cycle obtained from the current

controller and ia is the phase current. The parameter dδ =
0.011 p.u. takes into account both the dead-time effect and

the threshold voltage of the power devices, while the on-

state slope resistance of the power devices is included in the

stator-resistance estimate. The shape of the arctan function is

determined by the parameter iδ = 0.21 p.u. The duty cycles

of phases b and c were evaluated in a similar manner.

C. Digital Implementation of the Observer

At high speeds, the digital implementation of the observer

has an important effect on the estimation accuracy and sta-

bility [22], [28], [29]. Good estimation accuracy at all stator

frequencies can be achieved by implementing the observer in

synchronous coordinates (where the quantities are dc in the

steady state) in accordance with Fig. 7. If the observer were

discretized using the forward Euler method, the discrete ob-

server would become unstable at high speeds in any coordinate

systems (however, the better the damping of the continuous-

time design, the higher is the maximum stable operating

frequency). Instead of the forward Euler method, the Tustin

method could be used, but this method is computationally

expensive. It is worth noticing that the observer system matrix

Â is time varying: this matrix depends on ω̂m and possibly

also on non-constant parameter estimates.
Here, the semi-implicit (or symplectic) Euler method in

synchronous coordinates is selected for both the observers

[30], [31]. This method is even simpler to implement than

the forward Euler method, but it preserves well the damping

between the continuous-time and discrete-time domains.

VI. EXPERIMENTAL RESULTS

A. Comparison With the Original Gains

Due to the voltage-model-like behavior at zero frequency,

it was difficult to start the motor in the experiments from zero

speed with the original gain selection. Hence, the motor was

first started using the proposed gains and then switched to the

original gains at nonzero frequency.
Fig. 8 shows the results of no-load speed reversals using the

original and proposed gains. The speed reference was ramped

from 0.06 p.u. to −0.06 p.u. and then reversed back to 0.06

p.u. within 3 s. The stator-resistance adaptation was disabled.

It can be seen that the system with the original gains becomes

unstable in the low-speed region. On the other hand, there are

no problems when the proposed gains are used.

B. Comparison With the Reduced-Order Observer

1) Operation At Medium and Higher Speeds: Medium-

speed operation is shown in Fig. 9. The speed reference was

stepped to 0.5 p.u. at t = 1 s and stepped to zero at t = 4 s, and

rated-load torque was applied at t = 2 s and removed at t = 3
s. Results did not show significant differences between the

performance of the full-order and reduced-order observers at

medium speeds (or even at low speeds, if the stator-resistance

adaptation was disabled).
Fig. 10 shows the results of operation at higher speeds.

The speed was stepped to 2 p.u. at t = 0.5 s and a 30%

of the rated load was applied at t = 1.5 s. It can be seen that

the reduced-order observer is more sensitive to noise (which

originates particularly from the SVPWM operating at the

border of the overmodulation region). It is worth noticing that

the effect of the noise could be reduced by decreasing dynamic

performance of the drive (i.e., by reducing the bandwidth of

the speed controller).
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(a)

(b)

Fig. 8. Experimental results showing no-load speed reversals of the full-
order observers: (a) original gains; (b) proposed gains. The first subplot shows
the speed reference and the estimated speed, the second subplot shows the
estimated torque, and the last subplot shows the estimated rotor-flux angle.

2) Stator-Resistance Adaptation at Lowest Speeds: Fig. 11

shows the experimental results of low-speed reversals. The

rated load torque was stepwise applied at t = 1 s. The

speed reference was slowly ramped from 0.06 p.u. to −0.06
p.u., and then back to 0.06 p.u. in 30 s. This test is very

challenging, since motoring, plugging, and regenerating are

gone through and the stator frequency is very low. Successful

stator-resistance adaptation makes the system more robust

against temperature changes, and it is possible to repeat

the test without problems. It can be seen that the reduced-

order observer augmented with the stator-resistance adaptation

scheme works well.

When the augmented full-order observer is used, the sys-

(a)

(b)

Fig. 9. Experimental results showing the medium-speed operation: (a)
reduced-order observer; (b) full-order observer. The first subplot shows the
speed reference and the estimated speed, the second subplot shows the
estimated torque.

tem is stable, but there are visible oscillations in the stator

resistance estimate R̂s after t = 24 s (as the drive enters the

motoring mode), indicating a higher risk of instability. This

agrees with the eigenvalue analysis shown in Fig. 6: the stator-

resistance adaptation causes a narrow unstable region in the

low-speed operation. Furthermore, when the parameter k′R was

increased, the oscillation in R̂s became worse.

The persistent operation at zero stator frequency under load

torque cannot be achieved; this is a fundamental limitation

of sensorless IM drives [17]. Thus it is obvious that the

speed reversals would become unstable if the speed ramps

were made much slower (assuming that the maximum and

minimum speeds remain the same). The maximum time that

can be spent in the vicinity of zero stator frequency, without

losing the stability of the drive, depends on the accuracy of the

compensation for inverter nonlinearities and the accuracy of

the parameter estimates (mainly on the accuracy of the induc-

tance estimates if the stator-resistance adaptation is enabled in

its stable region). However, a well-designed completely stable

observer is a necessary precondition for stable operation.

Operation at zero speed under load condition is an eas-

ier test, since the stator frequency equals the nonzero slip

frequency. In the case of the reduced-order observer with

resistance adaptation, there are no theoretical limitations for
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(a)

(b)

Fig. 10. Experimental results showing operation at higher speeds: (a) reduced-
order observer; (b) full-order observer. The first subplot shows the speed
reference and the estimated speed, the second subplot shows the current
components in estimated rotor-flux coordinates, and the last subplot shows
the estimated flux magnitude.

this kind of operation, if ideal operating conditions are as-

sumed [21]. The full-order observer with resistance adaptation,

however, has an unstable region even in the case of ideal

operating conditions, as discussed in Section III-C. Fig. 12

shows experimental results of zero-speed operation under the

rated load torque for both the observer types. The load torque

is stepped from zero to the rated torque at t = 5 s and

stepped back to zero at t = 55 s. It can be seen that both

the observers can be operated at zero speed under the rated

load torque for a long time. However, as explained in Section

III-C, the full-order observer operates very close to its unstable

region in this operating point, which probably also increases

(a)

(b)

Fig. 11. Experimental results showing low-speed reversals with rated load
torque: (a) reduced-order observer; (b) full-order observer. The first subplot
shows the speed reference and the estimated speed, the second subplot shows
the estimated torque, the third subplot shows the stator-resistance estimate,
and the last subplot shows the estimated rotor flux angle.

the noise in the stator-resistance estimate. It can also be

seen that the resistance estimates increase due to the rising

temperature of the stator winding. Naturally, the inductance

estimates and inverter nonlinearities play an important role

also in this operating condition.
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(a)

(b)

Fig. 12. Experimental results showing zero speed operation with rated load
torque: (a) reduced-order observer; (b) full-order observer. The first subplot
shows the speed reference and the estimated speed, the second subplot shows
the estimated torque, the third subplot shows the stator-resistance estimate.

VII. CONCLUSIONS

The gain-scheduling design for the speed-adaptive full-order

observer was proposed. In order to guarantee the complete

stability with accurate model parameters, the gain design was

based on the general stabilizing gain [9]. Compared to the

original design in [9], the proposed gain design improves the

robustness against model parameter errors at lowest speeds.

Furthermore, the full-order observer was augmented with

the stator-resistance adaptation scheme. Based on extensive

numerical eigenvalue analysis, the estimation-error dynamics

of the augmented full-order observer are very difficult to

completely stabilize (while the unstable region can be made

very narrow by slowing down the dynamics of the resistance

adaptation).

The full-order flux observer was compared with the reduced-

order flux observer using experimental tests of a 2.2-kW IM

drive. Experimental results indicate that the full-order flux

observer has slightly better noise rejection at higher speeds.

However, the reduced-order observer is more favorable at low

speeds, since it can be augmented with the completely stable

stator-resistance adaptation scheme.

APPENDIX A

FLUXES AS STATE VARIABLES

If the stator flux and the rotor flux are selected as state

variables, the state-space representation becomes

d

dt

[
ψs

ψR

]

︸ ︷︷ ︸

x′

=

[

−Rs

Lσ

I−ω̂sJ
Rs

Lσ

I
(1−σ)α

σ
I −α

σ
I−(ω̂s−ωm)J

]

︸ ︷︷ ︸

A′

[
ψs

ψR

]

+

[
I

O

]

︸︷︷︸

B′

us

(23a)

is =
[

1
Lσ

− 1
Lσ

]

︸ ︷︷ ︸

C′

[
ψs

ψR

]

(23b)

where the total leakage factor is σ = Lσ/(LM + Lσ). An

observer

dx̂′

dt
= Â′x̂

′ +B′us +K
′(is − îs) (24a)

îs = C
′x̂

′ (24b)

is equivalent to the observer in (2) if

K ′ =

[
LσI I

O I

]

K (25)

holds for the observer gain matrices [2]. Hence, the stabilizing

observer gains in (6) are transformed to

K ′

s = (αl − R̂s)I + ω̂mlJ (26a)

K ′

r = (RR − r + αl)I + (ω̂ml − x)J (26b)

It can be seen that choosing l = 0 leads to K ′

s = −R̂sI (for

any r and x), i.e., the dynamics of ψ̂s become equal to those

of the pure voltage model [2]. Hence, selecting l = 0 should

be avoided.

APPENDIX B

LINEARIZED MODEL

Accurate parameter estimates (except R̂s) are assumed.

Using (1) and (2), the linearized dynamics from the inputs

ω̃m and R̃s to the output ĩs become

dx̃

dt
=

[
−Rσ

Lσ

I−ωs0J −Ks0
1
Lσ

(αI−ωm0J)

RRI −Kr0 −αI−ωr0J

]

︸ ︷︷ ︸

Ae

x̃

+

[
− 1

Lσ

JψR0 − 1
Lσ

is0
JψR0 0

]

︸ ︷︷ ︸

Be

[
ω̃m

R̃s

] (27a)

ĩs = Cx̃ (27b)

where x̃ = x − x̂ is the estimation error of the state vector

and other estimation errors are defined similarly. Operating
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point quantities are marked with the subscript 0 and ωr0 =
ωs0 − ωm0 is the angular slip frequency. The linearized speed

and resistance adaptation laws are

dω̃m

dt
= ψR0J

(

kp0
dĩs
dt

+ ki0ĩs

)

(28a)

dR̃s

dt
= kR0ψ

T
R0ĩs (28b)

Substituting

dĩs
dt

= Ae11ĩs +Ae12ψ̃R +Be11ω̃m +Be12R̃s (29)

into (28a) yields

d

dt

[
ω̃m

R̃s

]

=

[

kp0ψ
T
R0JBe11 kp0ψ

T
R0JBe12

0 0

] [
ω̃m

R̃s

]

+

[
kp0ψ

T
R0JAe11 + ki0ψ

T
R0J kp0ψ

T
R0JAe12

kR0ψ
T
R0 0

]

x̃

(30)

where Ae11, Ae12, Be11, and Be12 are the corresponding sub-

matrices of Ae and Be. Using (27) and (30), the eigenvalues

of the closed-loop estimation error dynamics can be evaluated.

If the stator-resistance adaptation is disabled, its effect can be

easily dropped out from the above equations.

As described in Sections III-B and III-C, the gains K, kp,

ki, and kR are functions of the operating point. If accurate

parameter estimates are assumed, x̃0 = 0 and ω̂m0 = ωm0

hold at the operating point. Therefore, the linearized model

is valid, even if the gains are functions of the operating

point. Furthermore, the general stabilizing gain (6) guarantees

the complete stability (if the stator-resistance adaptation is

disabled).

As far as accurate parameter estimates are assumed, the

linearized estimation-error dynamics of the speed-adaptive

full-order observer (or the reduced-order observer [21]) do not

couple with the linearized control-error dynamics. Hence, only

the estimation-error dynamics are considered here. The stabil-

ity of the linearized estimation-error dynamics is a necessary

(but not sufficient) condition for the local stability of the whole

drive system. It is worth noticing that this separation does

not hold for all estimators (e.g., for a statically-compensated

voltage model [18]) or it does not hold if parameter errors are

considered [1].

APPENDIX C

APPROXIMATE RESISTANCE-ADAPTATION DYNAMICS

Based on (27), the transfer function from the stator-

resistance estimation error R̃s(s) to the estimation error ĩd(s)
of the d-axis current becomes

Gd(s) = − 1

Lσ

A1(s)B1(s) +A2(s)B2(s)

A2
1(s) +A2

2(s)
(31)

where

B1(s) = sisd0 + isd0α− isq0ωr0 (32a)

B2(s) = sisq0 + isq0α+ isd0ωr0 (32b)

A1(s) = s2 + s

(
Rσ

Lσ

+ α+ ksd0

)

− ωr0(ωs0 + ksq0)

+ αksd0 +
α(Rs + krd0) + krq0ωm0

Lσ

(32c)

A2(s) = s(ωr0+ωs0+ksq0) + α(ωs0 + ksq0) + ωr0ksd0

+
ωs0Rσ + αkrq0 − ωm0(Rs + krd0)

Lσ

(32d)

The effect of the speed-adaptation loop will be omitted in

the following. The resulting closed-loop resistance-adaptation

dynamics are still complex,

R̂s(s)

Rs(s)
=

K(s)Gd(s)

1 +K(s)Gd(s)
(33)

where K(s) = kR0ψR0/s is the transfer function corre-

sponding to the adaptation law (14). Hence, general analytical

stability conditions for the speed-adaptive full-order observer

augmented with the stator-resistance adaptation are difficult to

derive. If the observer dynamics are assumed to be in quasi-

steady state, the resistance-estimation dynamics reduce to

R̂s(s)

Rs(s)
=

αR

s+ αR
(34)

where the approximate bandwidth is

αR = kR0ψR0Gd(0) (35)

The stability condition based on this approximation is

kR0[A1(0)B1(0) +A2(0)B2(0)] < 0.
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