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Retrieving quantum backscattered signals in the presence of noise

Hany Khalifa∗ and Riku Jäntti
Aalto University, Department of Communications and Networking, Espoo, 02150, Finland

Quantum sensing based on entangled photon pairs is gradually establishing itself as a cornerstone in mod-
ern communication networks. The unrivalled capability of quantum sensing techniques in distilling signals
plagued by noise, renders them suitable for deployment in backscatter communication networks. Several at-
tempts have been made recently to utilize pairs of entangled signal-idler photons, to enhance the sensitivity of
photo-detection in backscatter networks. However, these efforts have always assumed the lossless retention of
the idler mode, which is a challenging task from a practical perspective. In this study we examine the extent to
which quantum correlations remain after retaining the idler mode in a lossy memory element, while the signal
photon propagates through a lossy thermal channel as usual. We also examine briefly two different detection
methods, and estimate the received signal-to-noise ratio for them both. This new proposed model is one step
further towards realizing quantum backscatter communication.

I. Introduction

Metrology is more or less the branch of science concerned
with devising efficient detection schemes, in order to reliably re-
trieve modulated information. Owing to the impetus given to the
sensor industry by its ability to perform super-resolution mea-
surements, quantum sensing [1] is nowadays reckoned as the
next evolutionary step towards enhanced metrology for quantum
communication systems. The workhorse of almost all quantum-
enhanced protocols is quantum entanglement. Quantum entna-
glement [2] is characterized by its inimitable non-local correla-
tions that can be sustained, at least theoretically, over large dis-
tances. In the past few decades, numerous protocols which de-
rive benefit from entanglement as a resource have been proposed
in both the optical and microwave domains. In the optical do-
main, secure quantum communication [3, 4], satellite quantum
key distribution [5, 6], quantum teleportation [7, 8], noiseless
linear amplifiers [9], and quantum repeaters[10] have been ex-
perimentally demonstrated with both continuous variables (CV)
and photon number states.
On the other hand, microwave quantum technologies rely on
the use of superconducting elements as their comprising compo-
nents, which are only operable inside cryogenic environments.
Thus, advances in this doamin are mainly theoretical [11]. No-
table efforts have been made in the field of microwave quantum
communication, the most renowned among them are microwave
quantum teleportation [12] and quantum illumination enhanced
sensing [13, 14].
In this paper we will focus on a new application in which quan-
tum approaches can be used for improved sensitivities and res-
olutions, namely, quantum backscatter communication (QBC)
[15–17]. Quantum backscattering is a branch of quantum com-
munication, which exploits quantum entanglement in order to
distil backscattered signals propagating through a noisy thermal
channel. In a typical QBC scenario, a tag antenna communicates
classical information (identification number) to an interrogator
by either reflecting or not reflecting a probe signal sent by the
interrogator. The aforementioned simple modulation technique
can be accurately modelled by a lossless quantum beamsplitter
[18]. Unlike its classical analogue, the quantum beamsplitter
mixes a single input with vacuum noise entering from its unused
dark port. Thus, the tag antenna can be treated as a 2 port net-
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work having 2 inputs and 2 outputs. This abstract description
of the QBC system is extremely flexible, such that its realiza-
tion is not restricted to one particular frequency range. Optical
realizations are favoured when open air quantum communica-
tion is considered [11], since at room temperature the number
of noise photons is� 1. On the contrary, microwave supercon-
ducting circuits do not function properly at room temperature,
since in the 2-7 GHz range—the typical operating point of such
devices— the number of black body photons is in the vicinity of
103. As a consequence, realizations in the microwave domain
will always find themselves enthralled within cryogenic struc-
tures. Nevertheless, this exceptionally intricate environment is
sufficient for quantum computing applications. Moreover, since
the tag antenna can be regarded abstractly as a beamsplitter,
which in the context of quantum computing realizes a phase
gate [18], we can fit our QBC model within a framework for an
all-linear microwave quantum computer, in a manner that imi-
tates its renowned optical analogue [19]. Linear optical quantum
computing showed great scalability and ease of implementation,
where its proposed scheme only utilises beam splitters, phase
shifters, single photon sources and photo-detectors. Alongside
microwave beamsplitters, low power backscatter devices em-
ployed as phase gates, could pave the way for scalable and effi-
cient linear microwave quantum computing.
Recently, a few prototypes have been proposed for realizing
quantum backscattering with both continuous variables and pho-
ton number states [15–17]. The main theme of these approaches
was the lossless possession of the idler mode throughout the
duration of the whole protocol. In our new model we release
this demanding assumption by storing the idler mode in a lossy
memory element. In other words, we will assume that the idler
mode propagates through a pure loss channel until a measure-
ment is performed. We believe that this new model is more prac-
tical and realistic.
In the next few sections we study thoroughly the effect of this
new assumption on the correlations between the signal and idler
photons, and show that quantum backscattering can be achieved
under this new consideration.
This paper is organized as follows. In section II we describe
the effect of propagation losses on quantum correlations in QBC
systems. Section III investigates the signal-to-noise ratio at the
receiver. Finally, section IV will be our conclusion.
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FIG. 1: QBC block diagram

II. Backscattering with Gaussian entangled states

A. Quantum backscatter communication (QBC)

The aim of QBC is to capture faint signals backscattered by a
tag antenna, which is embedded in a noisy thermal environment.
As depicted in Fig.1, the sender is a photon source that gener-
ates entangled photon pairs. The mode A (signal) is transmitted
to probe a tag antenna immersed in a heat bath. The mode B
(idler) is retained at the receiver—which is co-located with the
transmitter— to be measured with the backscattered mode A.

We will assume that the retention process is carried out by a
memory element that can be modelled accurately by a pure loss
channel. This new treatment is a little bit different from earlier
ones [15–17], where the idler mode was assumed to be retained
losslessly at the receiver. The tag antenna can be modelled by
a low reflectivity beamsplitter, where thermal noise enters from
the beamsplitter’s dark port. In a quintessential QBC scenario,
the tag antenna switches between two states denoted transmit-
ting (on) and non-transmitting (off). During the “on” state the
backscattered signal is mixed with thermal noise, while in the
“off” state only thermal noise enters the receiver:

Transmitting (on) : ρ̂on = TrTh[Û(ρ̂AB ⊗ ρ̂Th)Û†]

Non-transmitting (off) : ρ̂off = TrA[ρ̂AB]⊗ ρ̂Th
(1)

where Û is a completely positive trace preserving map (CPTP),
ρ̂AB is the signal-idler joint density operator, ρ̂Th is the thermal
state of the environment and “Tr” is the partial trace operation.

B. Entanglement of a two mode squeezed state [20]

Quantum entanglement is indispensable for the operation of
QBC. Entangled two-mode squeezed states (TMSS) have proven
to be most popular, owing to their ease of production and ver-
satility. Thus, TMSS are extensively used in almost every
entanglement-based communication protocol. In the number ba-
sis a TMSS is written as:

|TMSS〉 =
√

1− λ2
∞∑

n=0

λn |n〉 |n〉 (2)

where λ = tanh r, and r is the squeezing parameter. At the trans-
mitter a TMSS is generated by the process of spontaneous para-
metric down conversion (SPDC) [18], where a strong laser pump

is disintegrated into a pair of signal & idler photons. The signal
is sent to probe the tag antenna, while the idler is retained in a
lossy memory element at the receiver.
Entanglement of a Gaussian TMSS is quantified by its covari-
ance matrix, where it can be written in terms of the quadra-
ture operators x̂a, p̂a, x̂b, p̂b defined as x̂k = (âk + â†k)/

√
2,

p̂k = (âk − â†k)/i
√

2, where k = a,b. Furthermore, we
can arrange these operators in the following row vector
X̂ = (x̂a, p̂a, x̂b, p̂b), as a consequence, the covariance matrix
can be written as

CVkl =
1

2
〈X̂kX̂l + X̂lX̂k〉 − 〈X̂k〉 〈X̂l〉 (3)

where k,l = a,b, X̂a = (x̂a, p̂a) and X̂b = (x̂b, p̂b)
In the context of QBC, the covariance matrix can be written in
the following block form

CV =

(
α γ
γT β

)
. (4)

The eigenvalues of the block covariance matrix (known also as
the symplectic spectrum), determine whether a Gaussian TMSS
is entangled or not. The symplectic eigenvalues ν± are defined
as

ν± =

√
1

2

(
∆±

√
∆2 − 4 det CV

)
, (5)

where det CV is the determinant of the covariance matrix and

∆ = detα+ detβ − 2 det γ (6)

For an entangled state, the smallest of the two symplectic eigen-
values ν− is always < 1/2 and the violation of this condition
implies that the state is separable.

C. Survival of quantum correlations in lossy media

As highlighted earlier, the generated signal and idler modes
will propagate through a heat bath and a pure loss channel re-
spectively. Due to their interaction with the environment, both
modes will suffer significant loss. Thus, our task in this section
is to investigate the survivability of the signal-idler entanglement
under these two loss mechanisms. The losses accompanying a
mode propagating through a thermal channel are exactly simi-
lar to those experienced by a damped simple harmonic oscillator
(SHO). Thus, the dynamical equations which describe the inter-
action between a SHO and a heat bath (environment) can model
our problem precisely [18]. To describe the damping of a SHO,
one has to derive first the field’s master equation, then utilizes it
to calculate the decay rate of the mode operator (see appendix
A 1). Fortunatley, this complicated process can be captured ac-
curtely by a beamsplitter model [18].
We begin now our analysis by first considering the signal mode.
After traversing the thermal channel, the mode operator is given
by

âsignal,out = Γsignalâsignal,in + N̂signal (7)

where âsignal,out is the channel’s output, âsignal,in is its input,
Γsignal is the channel’s transmission efficiency and N̂signal is a
fluctuating noise term.
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FIG. 2: Two-mode entangled Gaussian state in lossy media.

The fluctuating Langevin force N̂ was added to the mode opera-
tor input-output equation, in order that the commutation relation
for the output mode is preserved.

[âsignal,out, â
†
signal,out] = [âsignal,in, â

†
signal,in] = 1 (8)

The noise properties of the thermal bath are

[N̂, N̂†]signal = 1− Γ2
signal

〈N̂†N̂〉signal = n̄
(9)

where n̄ is the average number of black body photons in a ther-

mal bath
[

exp(−~ωkbT
)
[
1− exp(−~ωkbT

)
]−1]

, ~ is Planck’s con-

stant, ω is the mode frequency, kb is Boltzmann’s constant and
T is the bath temperature.
On the other hand, the lossy memory element, where the idler
mode is kept, is modelled by a pure loss channel [21, 22], i.e. a
bath at zero temperature. The output mode operator after propa-
gating through that channel will be

âidler,out = Γidlerâidler,in + N̂idler (10)

For simplicity, we assumed that both channels have the same
transmission efficiency Γ— this assumption will not affect any
future calculations— nonetheless, their noise properties are rad-
ically different

[N̂, N̂†]idler = 1− Γ2
idler

〈N̂†N̂〉idler = 0
(11)

Now we are ready to calculate the covariance matrix in (3). As
shown in Fig.2 the down-converter produces TMSS that can be
described as

|ζ〉 = exp(ζâ†signalâ
†
idler − ζ

∗âsignalâidler) |0,0〉vac (12)

where Ŝ(ζ) = exp(ζâ†signalâ
†
idler − ζ∗âsignalâidler) is the

two-mode squeezing operator, and ζ = reiφ is the squeezing pa-
rameter w.r.t some phase offset. The covariance matrix now can
be written as (see also appendix A 3)

CVsi =
1

2
〈0,0| Ŝ†(ζ)(X̂sX̂i + X̂iX̂s)Ŝ(ζ) |0,0〉

− 〈0,0| Ŝ†(ζ)X̂sŜ(ζ) |0,0〉 〈0,0| Ŝ†(ζ)X̂iŜ(ζ) |0,0〉
(13)

where s, i denote signal and idler respectively. Now since each
mode is subjected individually to its respective loss mechanism,
the quadrature operators X̂s, X̂i will be expressed in terms of
(7) and (10), alongside their accompanying noise properties.
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FIG. 3: Sudden-death of entanglement in a thermal environment plotted
for different values of the squeezing parameter.
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FIG. 4: Entanglement is preserved when each mode propagates through
a pure loss channel.

Therefore, the block elements of the covariance matrix in (4)
will be

α =

(
a 0
0 a

)
. (14)

β =

(
b 0
0 b

)
. (15)

γ = γT =

(
−c 0
0 c

)
. (16)

where a = (e−2κt sinh2 r) + 1/2, b = (e−2κt sinh2 r)
+1/2 + n̄, c = (1/2)e−2κt sinh 2r.
In order to highlight the physics behind the damping of a SHO,
we redefined the channel’s transmission efficiency Γ as a time
dependent decay rate, such that κ is its damping constant. This
new definition is more suited to our model, since memory leaks
are best described as time-dependent processes. The lossy mem-
ory element can be a leaky cavity, a fiber loop, or a lossy trans-
mission line.
Thus, by using (5) we can calculate the smallest symplectic
eigenvalue and examine whether the original TMSS remains en-
tangled or not. To make our analysis look more complete,
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we have plotted the smallest symplectic eigenvalue ν− against
the decay rate κt. As can be seen in Fig.3 the entanglement cri-
terion is violated as soon as n̄ becomes non-zero, thus the effect
of the interaction with the heat bath is to break the entanglement
between the signal and idler modes. This phenomenon is also
know as entanglement sudden death [23].
One way to get around this problem is to decompose the chan-
nel into a cascade of n channels, where each introduces n̄ � 1
noise photons. Nonetheless, in such case, the overall decay rate
will be accelerated e−nκt. Similar approaches can also be found
in the literature under the name “Bath engineering” [24], where
several techniques have been developed to increase the temper-
ature of the environment adiabatically. Our own solution to the
problem of entnaglement sudden-death is demonstrated in ap-
pendix A 2. We have considered also another interesting case,
where each mode decays according to (10) with the same decay
constant κ. As shown in Fig.4, the symplectic eigenvalue ν−
is always < 1/2 and hence the entanglement between the two
modes survives as the entangled light propagates through a pure
loss channel [22].
This result is of particular interest, especially when we deploy
the QBC model in the context of quantum computing, since it
shows that entanglement can withstand passive coupling losses.

III. signal-to-noise ratio considerations [25]

As discussed earlier, entangled states are fragile and can de-
cay rapidly to a statistical mixture of states through their interac-
tion with the environment. Thus, we will consider the effect of
transmission losses on the received signal-to-noise ratio (SNR),
in order to estimate the number of signal-idler pairs that can sur-
vive travelling over a noisy and lossy channel.
The adopted detection method will decide which SNR expres-
sion is more suitable. For direct detection (photon counting), the
SNR is defined as

SNR =
〈n̂〉2

〈∆n̂2〉
(17)

where n̂ is the photon number operator.
While for quadrature measurement the same expression can not
be used, since 〈X̂〉 = 0. Thus, we have to redefine the SNR in
terms of the variance of the quadrature operator [26].

SNR =
Var(X̂signal)

Var(X̂noise)
(18)

When homodyning is considered, backscattered light is re-
ceived by a beamsplitter, where the incoming mode is mixed
with the vacuum. Consequently, the numerator in (18) is
rescaled according to the beamsplitter’s transmission coefficient
η, Var(X̂signal) = η2Var(X̂signal).
Note that the term Var(X̂signal) involves only the signal pro-
duced at the transmitter (sender) and doesn’t include any noise
contributions. So by writing our TMSS as a squeezed vacuum,
then utilizing the unitarity of the squeezing operator and the fol-
lowing Bogoliubov transformation,

â(ζ) = cosh r â + eiφ sinh r b̂†

b̂(ζ) = cosh r b̂ + eiφ sinh r â†
(19)
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FIG. 5: SNR in the case of homodyne detection plotted for different n̄.

we get the following expression for the variance of the signal
quadrature.

Var(X̂signal) = 1 + 2 sinh2 r (20)

As for the denominator, after the beamsplitter it looks like

Var(X̂noise) = ηVar(X̂input) + (1− η)Var(X̂vacuum)
(21)

where Var(X̂input) is the variance of the input light beam after
passing through either the thermal or the passive channel, while
Var(X̂vacuum) is the vacuum uncertainty, which in our case is
normalized to 1. In either case, the expression for Var(X̂input)
can be imported directly from our previous calculation of the co-
variance matrix (see section II-C), where, for a thermal channel
the input variance is,

Var(X̂input) = (2 e−2κt sinh2 r) + 1 + n̄ (22)

while in the case of a pure loss channel we have

Var(X̂input) = (2 e−2κt sinh2 r) + 1 (23)

In Fig.5 we have plotted the SNR against the beamsplitter’s
transmission coefficient η. As can be seen, for the thermal envi-
ronment the SNR is low and only reaches its maximum when η
approaches 1. We can also note that the SNR degrades signifi-
cantly as the number of noise photons n̄ increases. Conversely,
for the case of a pure loss channel, the SNR is dramatically
higher, since the environment adds no noise photons. Further-
more, as time progresses, i.e; when κt increases, the SNR can
be enhanced further, since entanglement is always preserved (see
Fig.4) and more signal reaches the detector. Another point worth
mentioning is that the SNR for small values of η vanishes, this is
mainly due to the process of homodyning itself, where in homo-
dyne detection the weak input field is mixed with a strong local
oscillator (LO) (a coherent state) on a low reflectivity beamsplit-
ter, in order to avoid the risk of losing the input field in favour
of the LO. In our case, mixing the input field with the vacuum
gives exactly the same effect, since the variance of the vacuum
is similar to that of a coherent state. Thus, small values of η are
irrelevant and just contribute to plain noise.
For the sake of comparison, let us now consider direct detec-
tion of photons. We will investigate the variance of the photon
number operator 〈∆n̂2〉 to determine how the expression in (17)
behaves in different environments. For the pure loss channel,
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the photon number variance of a TMSS is

〈∆n̂2〉 = 〈n̂2〉 − 〈n̂〉2 = e−4κt sinh2 r(cosh2 r + sinh2 r)
(24)

while for the thermal environment we have,

〈∆n̂2〉 = e−4κt sinh2 r(cosh2 r + sinh2 r)

+ e−4κtn̄(sinh2 r + cosh2 r) + n̄2
(25)

In the previous equation, it can be noted that noise will domi-
nate (25) as the bath temperature increases. Then by plugging
in (25) into (17), we can see that the SNR ≈ 0. Thus, we can
conclude that homodyne detection is more efficient in environ-
ments overwhelmed by thermal photons, while direct detection
methods seem to be favourable inside cryogenic environments.

IV. Conclusion

In this paper, a new model for quantum backscatter commu-
nication (QBC) was proposed. Unlike previous QBC realiza-
tions, we have considered retaining the idler mode inside a lossy
memory element, until a measurement is performed. After that,
we investigated the effects of two different loss mechanisms on
signal-idler correlations. Our analysis showed that when one
of the modes traverses a thermal environment while the other
propagates through a pure loss channel, the correlations between
the two modes experience a phenomenon called ”entanglement
sudden-death“. On the other hand, when both modes are sub-
jected to pure loss, entanglement can always survive. We also
examined briefly the received SNR according to two different
detection methods. Our study showed that homodyne detection
is preferable when thermal environments are considered. Fi-
nally, with advanced bath engineering techniques we think that
QBC can be achieved inside thermal environments.

A. Appendix

1. Damping of backscattered signals in a thermal environment

In this appendix we outline briefly the dynamics of backscat-
tered signals inside a thermal environment.
By assuming a large, unchanging environment (Born approxi-
mation), that is discrete and memoryless (Markov approxima-
tion) [18, 22], the master equation of a backscattered signal cou-
pled to a heat bath can be written as

dρ̂

dt
=

Υ

2
(n̄(ω0) + 1)[2âρ̂â† − â†âρ̂− ρ̂â†â]

+
Υ

2
(n̄(ω0))[2â†ρ̂â− ââ†ρ̂− ρ̂ââ†]

(A1)

where n̄(ω0) is the average number of blackbody photons as a
function of the mode frequency, and “Υ” is the decay rate.
Afterwards, we use (A1) to derive the time dependence of the
mode operator

d 〈â〉
dt

=
d(Tr(âρ̂))

dt
= Tr(â

dρ̂

dt
)

=
Υ

2
(n̄(ω0) + 1)[2ââρ̂â† − ââ†âρ̂− âρ̂â†â]

+
Υ

2
(n̄(ω0))[2ââ†ρ̂â− âââ†ρ̂− âρ̂ââ†]

(A2)

FIG. 6: Avoiding entanglement sudden-death by utilizing an attenuator-
amplifier chain.

Then using the cyclic property of the trace yields,

=
Υ

2
(n̄(ω0) + 1)[2â†ââρ̂− ââ†âρ̂− â†ââρ̂]

+
Υ

2
(n̄(ω0))[2âââ†ρ̂− âââ†ρ̂− ââ†âρ̂]

(A3)

After a little bit of bosonic algebra, i.e. [â, â†] = 1, we get,

d 〈â〉
dt

=
−Υ

2
〈â〉,

〈â〉 = e
−Υt

2 〈â〉
(A4)

Consequently, the time derivative of the mode operator can be
written as a decaying field plus a fluctuating noise term (known
also as Langevin force) that has a vanishing mean value.

âout =
dâ

dt
= e

−Υt
2 âin + N̂

〈N̂〉 = 0

(A5)

Equation (A5) is known as the quantum Langevin equation. As
can be seen, it is written as a simple input-output relation plus
a noise term, thus a quantum beamsplitter can accurately simu-
late this equation. Similar analysis is carried out to derive the
dynamics of a mode operator inside a pure loss channel (a bath
at zero temperature), however in such case we have to set n̄ to 0
in A1, and then proceed as in A2–A4

2. Avoiding entanglement sudden-death

As stated earlier in section II-C, the interaction between the
signal mode and a severe thermal environment could lead to a
phenomenon called entanglement sudden-death. Furthermore,
coupling a cryogenic environment to a thermal bath is also
not easy, since the injection of thermal noise into a cryostat
would certainly damage the superconducting equipment that re-
side within. In this appendix we adapt a solution which is usu-
ally used in quantum optical networks [27], to protect our signal
against entanglement sudden-death. As shown in Fig.6, the sig-
nal mode traverses a cascade of attenuator-amplifier elements.
The attenuator (pure loss channel) is a two-port microwave net-
work that can be engineered to have a specific cut-off frequency
[28], such that, only the signal mode propagates through it, while
the non-resonating noise modes are dissipated by resistive ele-
ments. Thus, a beamsplitter with the appropriate transmission
coefficient can model this attenuator precisely. Building on this
remark, we can now couple a cryogenic environment to a heat
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FIG. 7: The inseparability criterion against the system losses [29] .

bath without letting in a horde of noise photons. On the other
hand, the role of the amplifier is to compensate for the loss
caused by the attenuator. The amplifier design in Fig.6 follows
that in [29], where it has been shown that entanglement can be
preserved under the amplification method adopted. For our pur-
poses, we are just concerned with the case where noise-reduced
amplification can be performed within a tolerable loss, while
the rest of the manuscript [29] deals also with other interesting
cases. We will now turn our attention towards the protocol de-
picted in Fig.6. The entanglement generator generates entangled
signal-idler pairs via the process of spontaneous down conver-
sion, which can be expressed as

âs1 = G1 âs0 + g1 â†i0

âi1 = G1 âi0 + g1 â†s0
(A6)

where G1 is the amplitude gain of the non-linear process, and
g2
1 = G2

1 − 1. Spontaneous down conversion can be, in some
sense, thought of as an amplification process, where the vacuum
signal and idler modes âs0, âi0 are the initial seeds of the ampli-
fier, while âs1, âi1 are the amplifier’s outputs. Furthermore, it
can be noted that (A6) exactly resembles the Bogoliubov trans-
formation in (19), since squeezing and spontaneous down con-
version are equivalent to one another. Next, the signal mode tra-
verses the attenuator-amplifier chain, while the idler propagates
through a pure loss channel, as in the original model. For sim-
plicity we will assume that the loss coefficients of the attenuators
in Fig.6 are the same, thus

âout
j =

√
1− ς âj +

√
ς v̂ (A7)

where ς is the beamsplitter’s reflection coefficient, j = s1, i1,
and v̂ is a vacuum mode. After that, the signal mode enters a
parametric amplifier with a strong pump field. The input-output
relations for the amplifier are given by

âs2 = G2 âout
s1 + g2 â†v0

âi2 = G2 âv0 + g2 â†outs1

(A8)

where G2 is the amplitude gain of the amplifier, g2
2 = G2

2 − 1,
âv0 is the amplifier’s noise mode and âi2 is a new mode gener-
ated by the parametric process to satisfy the energy conservation

constraint. Similarly, the output modes âs2, âi2 are quantum
correlated in the same way as âs1, âi1. For the sake of practi-
cality, we will assume that the amplifier outputs are subjected to
loss as described by (A7). To suppress the noise added by the
amplifier âv0, the auxiliary mode âi2—which is quantum corre-
lated with âs2— is heterodyned, and the resulting photo-currents
are utilized to modulate âi1 in order to enhance the entanglement
between the modes âi1 and âs2. The degree of entanglement or
inseparability Ii1s2 between âi1 and âs2 can be quantified by [2]

Ii1s2 = 〈∆X̂2
−,i1s2〉+ 〈∆P̂2

+,i1s2〉 (A9)

where X̂−,i1s2 = (X̂i1 − X̂s2)/
√

2, P̂+,i1s2 = (P̂i1 +

P̂s2)/
√

2, X̂k = âk + â†k, P̂k = i â†k − i âk , and k = i1, s2
The modes âi1 and âs2 are said to be entangled (inseparable)
only when Ii1s2 < 2. When the losses are maximum ς = 1 the
modes are replaced with the vacuum, such that, the uncertainty
of the quadratures is equal to that of a vacuum state. Finally,
after performing a joint quadrature measurement, we can plot
the inseparability Ii1s2 against the system losses ς . As can be
seen in Fig.7 the inseparability condition is violated only when
the losses exceed 0.64, which is still an impressive result, since
all the modes involved were assumed to be lossy. To summa-
rize, in this appendix we have proposed a solution based on [29]
to avoid sudden-death of entanglement in quantum backscatter
networks. Our model utilizes a cascade of attenuator-amplifier
elements to couple a transmitter residing inside a cryostat to a
thermal bath. The auxiliary mode generated during the amplifi-
cation process—which is usually discarded— has been exploited
to reduce the amplifier’s noise. Finally, the proposed solution
can also tolerate losses to some extent, thus it is suitable for
practical applications.

3. Correlation matrix for the signal-idler pair

For illustration purposes, we calculate here the block element
α of the covariance matrix. We recall that the matrix α is con-
cerned with the idler mode variances,

α =
1

2
〈X̂mX̂j + X̂mX̂j〉TMSS

− 〈X̂m〉TMSS 〈X̂j〉TMSS

(A10)
where m, j = 1,2, and X̂1 = (â+â†)√

2
, X̂2 = (â−â†)

i
√
2

Then writing the TMSS as a squeezed vacuum implies,

〈0| X̂m,j |0〉 = 0 (A11)

For the first quadrature we get

1

2
〈0,0| Ŝ†(ζ)(Γâin + N̂ + Γâ†in + N̂†)

(Γâin + N̂ + Γâ†in + N̂†)Ŝ(ζ) |0,0〉
(A12)

where we used (10).
By using the unitarity of the squeezing operator, the Bo-
goliubov transformation (19), and the noise properties in
(11), we can now calculate second order moments like
〈â2〉 , 〈â†2〉 , 〈âN̂〉 , 〈ââ†〉 , 〈â†â〉 , 〈N̂†N̂〉 , 〈N̂N̂†〉. Similarly,
we can calculate the other block elements.
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