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Abstract

We consider complex valued linear blind source separation, where the signal dimension
might be smaller than the dimension of the observable data vector. In order to measure the
success of the signal separation, we propose an extension of the minimum distance index
and establish its properties. Interpretations for the index are derived through connections
to signal-to-noise ratios and correlations. The interpretations are novel also for the real
valued original case. In addition, we consider the asymptotic behavior of the extended
minimum distance index. This paper is an invited extended version of the paper presented
at the CDAM 2019 conference.

Keywords: blind source separation, performance indices, asymptotic properties.

1. Introduction

In several application areas, including, e.g., signal processing, economics and biomedical ap-
plications, it is assumed that one observes vectors that are linear mixtures of latent source
variables. See, e.g., Comon and Jutten (2010) for an introduction. The corresponding model
is referred to as linear blind source separation (BSS) model. Usually, the goal in BSS is to re-
cover the latent unobservable variables. That is, the objective is to estimate the corresponding
mixing (or unmixing) matrix.

Several algorithms for solving the linear BSS problem have been presented in the literature,
see for example Ilmonen and Paindaveine (2011); Matteson and Tsay (2017); Miettinen, Illner,
Nordhausen, Oja, Taskinen, and Theis (2016); Nordhausen (2014); Risk, Matteson, Ruppert,
Eloyan, and Caffo (2014); Virta, Li, Nordhausen, and Oja (2017). As theoretical results,
including asymptotic distributions, are often not presented, different estimators are compared
in simulation studies. To enable comparisons, performance indices are needed. Popular indices
considered in the literature include the Amari index, interference to signal ratio (ISR), mean
square error (MSE) and the minimum distance index (MDI), see Nordhausen, Ollila, and Oja
(2011) for a comparative study. MDI has the advantage of being affine invariant. Moreover, its
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asymptotic behavior is known in the case of real valued square mixing matrices, see Ilmonen,
Nordhausen, Oja, and Ollila (2010, 2012). In this paper, our focus is on the MDI for complex
valued non-square matrices.

This paper is an invited extension of the paper presented at the CDAM 2019 conference
Lietzén, Virta, Nordhausen, and Ilmonen (2019). In the conference paper, we extended the
MDI to the case where only some of the sources, the signals, are of interest to us, and
the index measures how well these signals are recovered. Furthermore, in order to cover
applications such as biomedical image processing, where the observed signals can be complex
valued, we worked under the assumption of complex valued signals. A real valued version
of this extension was proposed already in Virta, Nordhausen, and Oja (2016). However,
no theoretical justification for its properties was given in Virta et al. (2016). Similarly, a
complex valued version of the regular MDI (where no distinction between the signal and
the noise was made) was introduced in Lietzén, Nordhausen, and Ilmonen (2016). In this
paper, we review the results presented in the aforementioned conference paper Lietzén et al.
(2019). In particular, Lemma 2, Theorem 3 and Theorem 8, and the corresponding proofs,
were already given in Lietzén et al. (2019). In this paper, we extend the theoretical results of
Lietzén et al. (2019) by considering the limiting distribution of the non-square complex valued
MDI. Moreover, to highlight the applicability and interpretation of the MDI, we present an
interesting new image data example.

2. Linear complex valued BSS model

Let x be an observable Cp-valued random vector. Assume that,

x = Ωz = Ω
(
z>1 z>0

)>
, (1)

where Ω is a full-rank Cp×p-matrix and the latent Cp-vector z =
(
z>1 z>0

)>
, consists of two

parts. In this linear complex valued BSS model, the Cd-vector z1 contains the signals of
interest. Furthermore, the Cd0-vector z0, d+ d0 = p, contains uninteresting noise.

Given Model (1), the objective is to find a Cd×p transformation matrix Γ, such that the
transformed vector corresponds to the signal variables, Γx = z1, up to some class of trans-
formations, by using only the information contained in the observable x. Note that, usually
the transformation matrix Γ is not unique. For example, in independent component analysis
(ICA), where the latent signals are assumed to be stochastically independent, the trans-
formation matrix is unique up to heterogeneous scaling, permutations and phase-shifts of
the rows. Thus in general, we have no guarantees that two separate IC estimation proce-
dures estimate the same population quantities, which is something we need to consider when
measuring performances. The minimum distance index discussed in the next section solves
the issue by measuring how close the corresponding gain matrix G = ΓΩ is to the matrix
Id,p =

(
Id 0

)
∈ Rd×p, up to heterogeneous scaling, permutations and phase-shifts of the

rows.

3. Complex valued non-square MDI

In this section, we present the definition of the complex valued non-square MDI. We start by
considering the concept of equivalent matrices.

Definition 1. Let ∼ be a relation on Cd×p, defined by A ∼ B ⇐⇒ A = (PJD)B, for some
D ∈ Dd, J ∈ J d and P ∈ Pd, where Pd is the set of Rd×d permutation matrices, Dd is the
set of Rd×d diagonal matrices with strictly positive real valued diagonal entries and J d is the
set of Cd×d diagonal matrices with diagonal entries of the form exp(iθ1), . . . , exp(iθd), where
i is the imaginary unit. We use Cd to denote the set defined as

Cd = {C ∈ Cd×d | C = PJD : P ∈ Pd,J ∈ J d,D ∈ Dd}.
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Lemma 2. The relation ∼ is an equivalence relation on Cd×p.

We use the equivalence relation ∼ to partition Cd×p into equivalence classes and denote the
set of matrices that are equivalent to the matrix A as CA = {B ∈ Cd×p | A ∼ B}.
We next consider the shortest squared distance between the equivalence class CA and the
matrix Id,p =

(
Id 0

)
∈ Rd×p. The corresponding optimization problem is,

minimize ‖PJDA− Id,p‖2F s.t. P ∈ Pd, J ∈ J d and D ∈ Dd, (2)

where ‖ · ‖F is the Frobenius norm. Note that the diagonal elements of matrices belonging to
Dd are in the open interval (0,∞), and thus, the optimization problem does not necessarily
have a minimizer. This leads us to define the shortest distance between the equivalence class
CA and the matrix Id,p using infimum as follows,

% (A, Id,p) = inf
B∈CA

‖B− Id,p‖F = inf
C∈Cd

‖CA− Id,p‖F . (3)

The squared distance [% (A, Id,p)]
2 can be converted into a more applicable form, see the

following theorem.

Theorem 3. Let A ∈ Cd×p and Id,p =
(
Id 0

)
∈ Rd×p, d ≤ p. Furthermore, let Ã jk =

|Ajk|2/
∑p

h=1 |Ajh|2, if A has at least one nonzero element in row j and Ã jk = 0 if A has
only zeros in row j. Then, the squared distance [% (A, Id,p)]

2 defined in Eq. (3), coincides
with,

d− max
P∈Pd

{
Trace

(
PÃ

)}
,

where the trace of a non-square matrix is the sum of its main-diagonal elements.

Proof of Theorem 3. We find the greatest lower bound by allowing the matrix D to have
zeros on the diagonal. We combine the optimization variables J and D by optimizing over
a variable L ∈ Ld, where Ld is the set of all Cd×d diagonal matrices. Since the Frobenius
norm is orthogonally invariant, the corresponding objective function f can be reformulated
as follows,

f (P,L, Id,p) = ‖PLA− Id,p‖2F =
∥∥∥P(LA−P>Id,p

)∥∥∥2
F

=
∥∥∥LA−P>Id,p

∥∥∥2
F
.

Next, write A = V + iW and L = Q + iR, where Q,R,V,W have real valued entries. Now,
since L is a diagonal matrix, we obtain the following form for f(P,L, Id,p):

d∑
j=1

p∑
k=1

[
Q2
jj

(
V2
jk + W2

jk

)
+ R2

jj

(
V2
jk + W2

jk

)]
− 2

d∑
j,k=1

(
QjjVjk −RjjWjk

)
Pkj + d.

In the formula above, we have applied the constraints that the off-diagonal elements of Q
and R are zero. Thus, the only remaining constraint is that P is a permutation matrix. We
proceed to verify the Karush-Kuhn-Tucker (KKT) necessary conditions.

Assume that A has ` rows that have at least one nonzero element. The d−` rows that contain
only zeros give no contribution to the objective function and we can without loss of generality
permute A such that the ` first rows of A are the ones with at least one nonzero element.
The partial derivatives with respect to the first ` diagonal elements of Q and R are,

∂f (P,L, Id,p)

∂Qjj

=

p∑
k=1

2Qjj

(
V2
jk + W2

jk

)
− 2

d∑
k=1

VjkPkj ,

∂f (P,L, Id,p)

∂Rjj
=

p∑
k=1

2Rjj

(
V2
jk + W2

jk

)
+ 2

d∑
k=1

WjkPkj ,
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from which we can derive the solution candidates Q′jj and R′jj , which are optimal by the
convexity of the corresponding optimization problem,

Q′jj =

∑d
k=1 VjkPkj∑p

k=1

(
V2
jk + W2

jk

) and R′jj =
−
∑d

k=1 WjkPkj∑p
k=1

(
V2
jk + W2

jk

) , j ≤ `.

Since the last d−` rows of A do not contribute to the objective function, we set Q′jj = L′jj = 0

and Pjj = 1, when j > `. Using the property V2
jk + W2

jk = |Ajk|2 and since a permutation
matrix has exactly one nonzero element 1 in every row and column, we can reformulate the
objective function for L′ = Q′ + iR′ as follows,

f
(
P,L′, Id,p

)
= d−

∑̀
j=1

∣∣Aj,π(P,j)

∣∣2 Pπ(P,j),j∑p
k=1 |Aj,k|2

−
d∑

j=`+1

0 = d−
d∑
j=1

Ãj,π(P,j)

such that π : Pd×{1, . . . , d} → {1, . . . , d} : P× j 7→ cj , where cj is the row-index for the only
nonzero element of the permutation matrix P in the column j. An equivalent optimization
problem is then to find a permutation for the rows of Ã, such that the sum of the main-
diagonal elements is maximized, that is,

min
P∈Pd

d−
d∑
j=1

Ãj,π(P,j)

 ⇐⇒ d− max
P∈Pd

{
Trace

(
PÃ

)}
.

As in Ilmonen et al. (2012), the trace maximization problem in Theorem 3 can be seen as
a linear sum assignment problem (LSAP). It can be solved, e.g., by the Hungarian method
Papadimitriou and Steiglitz (1982). In practice, the LSAP can be solved using, e.g., the
solve_LSAP function given in the statistical software R, R Core Team (2018), package clue,
Hornik (2005).

We next present the minimum distance index (MDI) for non-square complex valued matrices.
Note that this is an extension to the cases presented in Ilmonen et al. (2010, 2012); Lietzén
et al. (2016).

Definition 4. Let Ω be the mixing matrix in Model (1), let Γ̂ be a corresponding unmixing
estimate and let Ĝ = Γ̂Ω be Cd×p-valued. The minimum distance index (MDI) for the
estimate Γ̂ is given by,

MD(Γ̂) =
%
(
Ĝ, Id,p

)
√
d

=
1√
d

inf
C∈Cd

∥∥∥CĜ−
(
Id 0

)∥∥∥
F
.

Remark 5. Note that, the non-square MDI is applicable beyond Model (1). It can, for
example, be applied for assessing the performance when the mixing matrix Ω ∈ Cp×q, q ≤ p.

Note that, in order to apply the MDI, the mixing matrix Ω needs to be known. We next
show that MDI satisfies properties that enable interpretations and fair comparisons.

Theorem 6. Let A ∈ Cd×p. Then, MD(A) ∈ [0, 1] and the following properties are satisfied,

(i) MD(A) = 0⇐⇒ AΩ ∼
(
Id 0

)
= Id,p,

(ii) MD(A) = 1⇐⇒ ∃B ∈ Cd×(p−d) : AΩ =
(
0 B

)
,

(iii) the function f : [0, 1]→ R, f(c) = %
((
Id 0

)
+ c · off(A), Id,p

)
, is increasing in c ∈ [0, 1]

for all matrices A that satisfy |Ajk| < 1 when j 6= k. (The function off(·) here sets the
main-diagonal elements of its argument equal to zero.)
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Proof of Theorem 6. Let G = AΩ and let G̃jk = |Gjk|2/
∑p

h=1 |Gjh|2, if G has at least one

nonzero element in row j and G̃jk = 0 if G has only zeros in row j. By Theorem 3, we
have that MD2(A) = 1 − 1

d maxP{Trace(PG̃)}, where the elements of G̃ are between zero

and one. Hereby, the minimal value for MD2(A) is obtained, when PG̃ is an identity matrix,
and consequently, Trace(PG̃) = d. In addition, the maximal value for MD2(A) is obtained,
when the first d columns of G̃ contain only zeros, and consequently, Trace(PG̃) = 0. Thus,
it follows that MD(A) ∈ [0, 1]. Next, we proceed to verify properties (i)–(iii).

First, assume that G ∼ Id,p. This gives us that G̃ is equal, up to a permutation, to Id,p. The
maximal trace is then achieved by the permutation that places the only nonzero elements 1 of
the matrix G̃ to the main-diagonal. Thus, maxP{Trace(PG̃)} = d, which implies MD(A) = 0.
Next, assume that MD(A) = 0. This assumption gives us that maxP{Trace(PG̃)} = d. The
corresponding trace can be d only when there exists an element G̃jk in every row j such that
k ≤ d and G̃jk = 1. Hereby, there has to be exactly one nonzero element in each of the first
d columns of G and the nonzero elements have to be on different rows. Consequently, G is
equivalent to Id,p. Thus, property (i) holds.

For property (ii), first assume that G =
(
0 B

)
. Then, the main-diagonal of G̃jk con-

tains only zeros, regardless of the permutation and regardless of the matrix B. Thus,
maxP{Trace(PG̃)} = 0, which gives us that MD(A) = 1. For the only if part, assume
that MD(A) = 1. This assumption gives us that Trace(PG̃) = 0 for the optimal P and
consequently for every other P as well. Thus, G =

(
0 B

)
, where B ∈ Cd×(p−d) is arbitrary.

Hereby, property (ii) holds.

For the final property (iii), assume that 0 ≤ c1 ≤ c2 ≤ 1. The requirement that the absolute
values of the off-diagonal elements of A are less than one ensures that the permutation matrix
that maximizes the trace is the identity matrix. Then,

[f(c2)]
2 − [f(c1)]

2 =

d∑
k=1

(
−1

c2
∑p

j 6=k |Akj |2 + 1
+

1

c1
∑p

j 6=k |Akj |2 + 1

)
≥ 0,

that is, the function f is increasing under the given conditions.

Remark 7. Note that Theorem 6 and its proof are very similar to (Lietzén et al. 2019,
Theorem 6). However, (Lietzén et al. 2019, Theorem 6) contains an error that was corrected
in Theorem 6 and its proof.

4. Two interpretations for MDI

Theorem 6 reveals that the endpoints of the MDI-range [0, 1] correspond to completely suc-
cessful and unsuccessful signal separations, respectively. However, it is not entirely clear how
much the separation result improves when the index decreases within the interval, say, from
0.2 to 0.1. To better interpret the MDI-values in practice, we next express MDI through two
better-known measures of estimation accuracy, signal-to-noise ratio (SNR) and correlation.

Assume Model (1) and let, without loss of generality, the identifiability constraint Cov(z) = Ip
hold. Let further Γ̂ ∈ Cd×p be an estimated unmixing matrix for the d signals of interest,
z1 = (z1, . . . , zd). The estimates of the signals are then ẑ1 = (ẑ1, . . . , ẑd)

> = Ĝz, where
Ĝ = Γ̂Ω ∈ Cd×p is the gain matrix. We define the SNR and the absolute correlation of the
jth signal to be,

SNRj =
Var(ẑj)

Var(ẑj − zj)
and |Corj | = |Cor(ẑj , zj)|.

The above form of SNR is as defined in Gonzales and Woods (2001). Both SNRj and |Corj |
measure the accuracy with which we estimate the jth signal. They have the respective ranges
[0,∞) and [0, 1], with the upper endpoints corresponding to a perfect estimation of the jth
signal.
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Our next result establishes a connection between MDI, SNRj and |Corj | under two constant

contamination models for the gain matrix Ĝ: a homogeneous model where the contamination
is equal for each of the elements, and a heterogeneous model where the contaminations are al-
lowed to differ element-by-element but (for mathematical tractability) we require the diagonal
elements of Ĝ to be uncontaminated. These contamination models mimic situations, where
there are estimation errors of different severities in the estimation of the unmixing matrix.
Denote in the following the arithmetic and harmonic means of the values c1, . . . , cd > 0 by
A(cj) = A(c1, . . . , cd) and H(cj) = H(c1, . . . , cd), respectively.

Theorem 8. Assume Model (1) with Cov(z) = Ip.

i) Under the homogeneous contamination, Ĝ = Id,p + ε1d,p, where 1d,p is a d× p matrix
full of ones and ε ∈ C,Re(ε) > −1/2, we have

MD2(Ĝ ) =

(
p− 1

p

)
SNR−1j = 1− |Corj |2 .

ii) Under the heterogenous contamination, Ĝ = Id,p + B, where B ∈ Cd×p has zero main
diagonal and |Bjk| < 1, j 6= k, we have

MD2(Ĝ ) = H(SNR1, . . . ,SNRd)
−1 = 1− A(|Cor1|2 , . . . , |Cord|2).

Proof of Theorem 8. Under the homogeneous contamination, we have that MD2(Ĝ) = 1 −
1
d maxP{Trace(PG̃)}, where each diagonal element of G̃ equals |1+ε|2/[|1 + ε|2 +(p−1) |ε|2]
and each of its off-diagonal elements equals |ε|2/[|1 + ε|2 + (p − 1) |ε|2]. The assumption
Re(ε) > −1/2 guarantees that Id is the unique solution to the maximization problem over
d× d permutation matrices, yielding MD2(Ĝ) = [(p− 1)|ε|2]/[|1 + ε|2 + (p− 1) |ε|2]. Now, by
Cov(z) = Ip, the signal-to-noise ratio SNRj of the jth signal ẑj = Ĝj1z1 + · · ·+ Ĝjdzp, is

SNRj =
Var(ẑj)

Var(ẑj − zj)
=

∑p
k=1 |Ĝjk|2

|Ĝjj − 1|2 +
∑p

k 6=j |Ĝjk|2
=

(
p− 1

p

)
MD−2(Ĝ). (4)

Similarly, the second-order statistics Var(zj) = 1, Var(ẑj) = |1 + ε|2 + (p − 1) |ε|2 and
Cov(ẑj , zj) = 1 + ε imply that the squared absolute correlation for the jth signal has the
value

|Corj |2 =
|Cov(ẑj , zj)|2

Var(ẑj)Var(zj)
=

|1 + ε|2

|1 + ε|2 + (p− 1) |ε|2
= 1−MD2(Ĝ),

concluding the proof for the homogeneous contamination.

The claim is shown for the heterogeneous contamination in exactly analogous manner, and
we list only the values of some of the key quantities. The squared MDI is now MD2(Ĝ) =
1 − (1/d)

∑d
j=1(1 +

∑p
k 6=j |Ĝjk|2)−1, and, using the form (2) for the signal-to-noise ratio,

we obtain 1 − (SNRj)
−1 = (1 +

∑p
k 6=j |Ĝjk|2)−1, which together prove the result for the

SNR. For the correlation, we have the values Var(zj) = 1, Var(ẑj) = 1 +
∑p

k 6=j |Ĝjk|2 and

Cov(ẑj , zj) = 1, which together imply that |Corj |2 = (1 +
∑p

k 6=j |Ĝjk|2)−1, yielding the final
part of the claim.

In Table 1, we demonstrate the results of Theorem 8 under the heterogeneous contamination
(where the conversion formula does not depend on the dimensionality p), with the SNR-values
expressed in the standard decibel scale through the transformation SNR 7→ 10 log10(SNR).

Based on the table, the value MDI = 0.1 is already an indicator of a very satisfactory sepa-
ration, corresponding to an average SNR of 20 dB and to an average absolute correlation of
0.995. Next, we visually demonstrate the MDI in the context of image separation.
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Table 1: The average SNRs and absolute correlations for particular MDI-values.

MDI 0.1 0.01 0.001 0.0001

H(SNRj) 20 dB 40 dB 60 dB 80 dB√
A(|Corj |2) 1− 0.5 · 10−2 1− 0.5 · 10−4 1− 0.5 · 10−6 1− 0.5 · 10−8.

Figure 1: Original images.

(a) MD = 0.01 (b) MD = 0.25 (c) MD = 0.5 (d) MD = 0.85

Figure 2: Illustration of homogeneous contamination of the second image in Figure 1 with
MDI values. The images are linear combinations of the images presented in Figure 1.

We consider four unmixed color images, presented in Figure 1. The example was conducted
using the statistical software R, R Core Team (2018). We have chosen images with colors on
the surface of the RGB cube, that is, at least one of the three values that define the color of
a single pixel has either the maximal or minimal value. We can then find a transformation
between the RGB cube surface and the complex plane. The transformation is not defined on a
single point and is bijective everywhere else. The images in this example are chosen such that
none of their pixels are on the non-bijective point. We have then homogeneously contaminated
the images and calculated the corresponding MD index values for them. As an example, we
present the contaminated second image, with the corresponding MDI values, in Figure 2.
The contamination is conducted as in Theorem 8 part i), which ensures that the optimal
permutation is the identity matrix, and thus the order of the images remains unchanged.
As the contamination is homogeneous, the omitted images illustrate similar results. Note
that the actual color in Figure 2 does not play a role in calculating the MDI as the color
corresponds to the phase-shift and MDI is invariant with respect to scale, complex phase and
order of the components.

5. Asymptotic behavior

In this section we provide the limiting distribution of the minimum distance index under
general settings. In addition, we provide an example of the asymptotic properties, when we
have

√
n-consistency and asymptotic normality.

For an n-indexed sequence B̂(n) of Cd×p-matrices, we use B̂(n) = Op(1) to denote that the

univariate sequences that correspond to the elements of B̂(n) are uniformly tight, i.e., bounded

in probability. Additionally, we use B̂(n) = op(1) to denote that a sequence converges in
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probability to a zero matrix.

Under general settings, finding the asymptotic distribution of the MDI can be complicated.
In the following theorem, we present a direct asymptotic link between a sequence Â(n) and

the squared distance [%(Â(n), Id,p)]
2. By applying the theorem, one can usually significantly

simplify the problem of finding the asymptotic distribution of the corresponding MDI.

Theorem 9. Let Â (n) be an n-indexed sequence of Cd×p-matrices that satisfies γn(Â (n) −
Id,p) = Op(1), where (γn)n∈N is a real-valued increasing sequence that tends to infinity as
n→∞. Then, as n→∞,

γ2n

[
%
(
Â (n), Id,p

)]2
= γ2n

∥∥∥off
(
Â (n)

)∥∥∥2
F

+ op(1),

where %(Â (n), Id,p) is defined in Eq. (3) and the function off(·) sets the main-diagonal ele-
ments of its argument equal to zero.

Proof of Theorem 9. Note that, the assumption γn(Â(n) − Id,p) = Op(1) implies that Â(n) −
Id,p = op(1). Let,

Ĉ(n) = arg min
C∈Cd

∥∥∥CÂ(n) − Id,p

∥∥∥
F
,

where Cd = {C ∈ Cd×d | C = PJD : P ∈ Pd,J ∈ J d,D ∈ Dd}, and Dd is the set of Rd×d
diagonal matrices with non-negative diagonal entries. We can then write,

%
(
Â(n), Id,p

)
= inf

C∈Cd

∥∥∥CÂ(n) − Id,p

∥∥∥
F

=
∥∥∥Ĉ(n)Â(n) − Id,p

∥∥∥
F
.

Similarly as in the proof of Theorem 3, we can split Ĉ(n) into a permutation matrix part P̂(n) ∈
Pd and a diagonal matrix part L̂(n) ∈ Ld, such that Ĉ(n) = P̂(n)L̂(n). Since Â(n) converges

in probability to Id,p, we obtain that Ĉ(n)− Id = op(1), see (Arcones 1998, Theorem 1). This

further implies that P̂(n) − Id = op(1) and L̂(n) − Id = op(1). In addition, since the number

of possible permutation matrices is finite, we have that γn(P̂(n) − Id) = op(1). For additional
details, see the beginning of the proof of (Ilmonen et al. 2012, Theorem 4.2), and note that
similar arguments can be applied here.

We can then apply the following factorization,

γn

(
Ĉ(n)Â(n) − Id,p

)
= γn

[(
P̂(n) − Id

)(
L̂(n) − Id

)(
Â(n) − Id,p

)
+
(
P̂(n) − Id

)(
L̂(n) − Id

)
Id,p +

(
P̂(n) − Id

)(
Â(n) − Id,p

)
+
(
P̂(n) − Id

)
Id,p +

(
L̂(n) − Id

)(
Â(n) − Id,p

)
+
(
L̂(n) − Id

)
Id,p +

(
Â(n) − Id,p

)]
= γn

(
L̂(n) − Id

)
Id,p + γn

(
Â(n) − Id,p

)
+ op(1).

(5)

In the following, we denote, âjk := [Â(n)]j,k, Ŝj :=
∑p

k=1 |âjk|
2 and p̂jk := [P̂(n)]j,k. Fur-

thermore, we denote the complex conjugate of a as a∗. Note that Ŝj = 1 + op(1), and that
γn|âjk|2 = γn(âjkâ

∗
jk) = op(1), when j 6= k. Recall the form of the entries of the matrix

L̂(n) from Theorem 3. The main-diagonal element (j, j) of Eq. (5) can then be expressed as
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follows,

γn

[∑d
k=1 â

∗
jkp̂kj

Ŝj
− 1

Ŝj
+

1

Ŝj
− 1 + (âjj − 1)

]
+ op(1)

=
γn

Ŝj

[(
â∗jj p̂jj − 1

)
+

(
1−

p∑
k=1

|âjk|2
)

+ Ŝj (âjj − 1)

]
+ op(1)

=
γn

Ŝj

[(
â∗jj − 1

)
(p̂jj − 1) + (p̂jj − 1) +

(
â∗jj − 1

)
+
(
1− âjj â∗jj

)
+ Ŝj (âjj − 1)

]
+ op(1)

=
γn

Ŝj

[(
â∗jj − 1

)
+
(
1− âjj â∗jj

)
+ Ŝj (âjj − 1)

]
+ op(1)

=
γn

Ŝj

[(
â∗jj − 1

)
(1− âjj) + (1− âjj) + Ŝj (âjj − 1)

]
+ op(1)

=
1

Ŝj

(
1− Ŝj

)
γn (1− âjj) + op(1) = Op(1)op(1)Op(1) + op(1) = op(1).

The above representation uses the formulation for L̂(n) that assumes at least one nonzero entry

in every row of Â(n). As we have that Â(n) converges in probability to Id,p, and since the
theorem is an asymptotic result, it suffices to only consider the case of every row containing
at least one nonzero element.

Thus, by using the continuous mapping theorem and the properties of the Frobenius norm,

γ2n

[
%
(
Â(n), Id,p

)]2
=
∥∥∥γn (Ĉ(n)Â(n) − Id,p

)∥∥∥2
F

=
∥∥∥γn · off

(
Â(n)

)
+ op(1)

∥∥∥2
F

= γ2n

∥∥∥off
(
Â(n)

)∥∥∥2
F

+ op(1).

Hereby, the asymptotic distribution of the squared MDI is obtained by scaling both sides of
Theorem 9 with 1/d. Remarkably, Theorem 9 gives that the asymptotic distribution of MDI
depends only on the off-diagonal elements of the sequence Â(n).

We next present the widely considered case when γn =
√
n and when Â(n) is asymptotically

normal.

Corollary 10. Let Â(n) = V̂(n) + iŴ(n) be an n-indexed sequence of Cd×p-matrices that
satisfy,

√
n

(
vec
(
V̂n − Id,p

)
vec(Ŵn)

)
D−−−→

n→∞
Z,

where
D−−−→

n→∞
denotes convergence in distribution and Z ∼ N2dp(0,ΣZ). Then,

n

%
(
Ân, Id,p

)
√
d

2

D−−−→
n→∞

Y,

where Y is distributed as d−1
∑`

j=1 λjxj, where x1, . . . , xk are independent and xj ∼ χ2(1),
∀j ∈ {1, . . . `}, and λ1, . . . λ` are the ` nonzero eigenvalues (including all algebraic multiplici-
ties) of Σ, defined as,

Σ =

(
Ipd −Dd,p 0

0 Ipd −Dd,p

)
ΣZ

(
Ipd −Dd,p 0

0 Ipd −Dd,p

)
,

where Dd,p = diag(vec(Id,p)).
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Proof of Corollary 10. Since,

n
∥∥∥off

(
Â(n)

)∥∥∥2
F

= n
d∑
j=1

p∑
k=1

j 6=k

∣∣∣∣[Â(n)

]
j,k

∣∣∣∣2 = n
d∑
j=1

p∑
k=1

j 6=k

[([
V̂(n)

]
j,k

)2

+

([
Ŵ(n)

]
j,k

)2
]
,

we can apply Theorem 9 and (Tan 1977, Theorem 3.1), which together with the idempotency
of Ipd −Dd,p give that n(%(Ân, Id,p)/

√
d)2 converges in distribution, as n→∞, to a random

variable distributed as d−1
∑`

j=1 λjxj , where x1, . . . , x` are independent and xj ∼ χ2(1),
∀j ∈ {1, . . . `}, and λ1, . . . λ` are the ` nonzero eigenvalues of Σ.

Examples of estimators that satisfy the assumptions of the sequence Â(n) in Theorem 9,
and in particular, Corollary 10, are given in, e.g., Ilmonen and Paindaveine (2011); Ilmonen
(2013); Miettinen et al. (2016).

6. Final remarks

In this paper, we considered asymptotic behavior of the MDI for complex valued non-square
matrices. The MDI is a powerful tool in controlled performance comparisons, when the mixing
matrix Ω is known. As stated in Remark 5, the extended MDI presented in this paper can be
straightforwardly implemented to the undercomplete BSS case when Ω has more rows than
columns. Note that in the undercomplete case, the mixing matrix can always be converted
to a square matrix by adding zeros.

In the future, we will explore whether MDI could be extended to nonlinear BSS. Additionally,
an extension to the case of added noise, x = Ωz + ε, will be considered in future work.
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