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Deep Learning Method for 
Mandibular Canal Segmentation 
in Dental Cone Beam Computed 
Tomography Volumes
Joel Jaskari1, Jaakko Sahlsten1, Jorma Järnstedt2, Helena Mehtonen2, Kalle Karhu3, 
Osku Sundqvist3, Ari Hietanen   3, Vesa Varjonen3, Vesa Mattila3 & Kimmo Kaski1,4*

Accurate localisation of mandibular canals in lower jaws is important in dental implantology, in which 
the implant position and dimensions are currently determined manually from 3D CT images by medical 
experts to avoid damaging the mandibular nerve inside the canal. Here we present a deep learning 
system for automatic localisation of the mandibular canals by applying a fully convolutional neural 
network segmentation on clinically diverse dataset of 637 cone beam CT volumes, with mandibular 
canals being coarsely annotated by radiologists, and using a dataset of 15 volumes with accurate 
voxel-level mandibular canal annotations for model evaluation. We show that our deep learning model, 
trained on the coarsely annotated volumes, localises mandibular canals of the voxel-level annotated 
set, highly accurately with the mean curve distance and average symmetric surface distance being 
0.56 mm and 0.45 mm, respectively. These unparalleled accurate results highlight that deep learning 
integrated into dental implantology workflow could significantly reduce manual labour in mandibular 
canal annotations.

The human mandible, also known as the lower jaw, is anatomically complex and it is the only movable bone in 
the facial area facilitating the functions of mastication, speech and facial expressions. It also serves as a scaffold 
and platform for the lower dentition, muscle insertions, temporomandibular joint, nerves, and vessels. Important 
mandibular structures are the two mandibular canals that are located bilaterally underneath the teeth in the 
premolar and molar regions. The mandibular canals have two openings called mandibular foramen in the ramus 
area, and mental foramen in the parasymphyseal area. Each canal contains the artery and vein as well as the 
inferior alveolar nerve, which is part of the mandibular branch of the trigeminus nerve that supplies the motor 
innervations to muscles and sensory innervations to the teeth, chin, and lower lip.

In order to detect and diagnose these anatomical structures, 3D computed tomography (CT) imaging tech-
niques are commonly used. The accuracy of these techniques is affected by the anatomical variability between 
individuals and variations in radiological visibility. This poses a challenge to locate the mandibular canals with 
sufficiently high precision to avoid complications in dentomaxillofacial surgical operations. To achieve this, the 
cone beam computed tomography (CBCT) is widely applied to dentomaxillofacial radiology for 3D diagnostics 
and operation planning. A clinical alternative is the multi-detector computed tomography (MDCT), though its 
use is limited by high radiation dosage and low spatial resolution. In contrast, the CBCT allows more accurate 
imaging of hard tissues in dentomaxillofacial area and its effective radiation dosage is lower than that of the 
MDCT1. In addition, CBCT is cost-efficient and easily available2.

Dental implantology is one of the most common surgical operations on jaws. In order to plan the position, 
place, and size of the implant(s) and how the surgery is to be conducted, the mandibular canals need to be located 
accurately. A popular approach is to label the canal to cross-sectional slices using 3D imaging software, to produce 
the segmentation of the canal. The labelling is very labour-intensive and time-consuming, thus there is a need 
for an automated or semi-automated mandibular canal segmentation system or tool to alleviate the workload 
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on radiologists. Earlier studies had concentrated on 3D CT-scans3,4, but more recent works also on 3D CBCT 
scans5–9. There are various differences between these two approaches10, and it has been observed that some of 
the mandibular canal segmentation methods for the CT scans do not straightforwardly translate to those of the 
CBCT scans6.

The most successful class of methods for the automated segmentation of the mandibular canals has been 
the statistical shape models (SSM), described by Kainmueller et al.5 and Abdolali et al.9. However, these two 
SSM approaches require the training annotations to include segmented mandible bone, which in turn results in 
the need for additional manual annotation work or development of a robust algorithm for the segmentation of 
the mandible. The method described by Moris et al.7 requires the selection of predefined thresholds for images’ 
grey-scale values that best separate the mandibular canal from other tissue. As the Hounsfield unit scale is not 
exact in CBCT scans10 and it is also highly dependent on the imaging device, we observed that in our heterogene-
ous dataset there was no robust threshold limits that could be used to implement the method.

Our approach to the segmentation of the mandibular canal is that of deep neural networks. Deep learning11, 
i.e. the training and use of deep neural networks, has recently gained wide popularity in a variety of medical imag-
ing tasks, such as classification12–14 and segmentation15. A popular neural network architecture for segmentation 
is the fully convolutional one, which contains only convolutional layers and can produce segmentation maps as 
an output16,17. Our model uses this architecture with 3D convolutional layers performing the neural network con-
volutions in all three spatial dimensions and it has the ability to learn patterns that are equivariant to translations 
in the three spatial dimensions. In this study, we show that a fully convolutional deep neural network can accu-
rately segment the mandibular canal from volumetric CBCT scans and outperform the previously presented SSM 
approaches. We also analyse the performance of the model relative to the anatomical position on the mandibular 
canal, and how the model performs on samples that have visual ambiguity in the pathway of the canal.

Results
Primary test data.  Our main results are obtained for a set of 15 CBCT-scans with voxel-level annotations, 
serving as our primary test data. As the performance measures, we used the Dice similarity coefficient (DSC), 
mean curve distance (MCD), average symmetric surface distance (ASSD), and robust Hausdorff distance (RHD). 
The results using the DSC were 0.57 (SD = 0.08) for the left canal and 0.58 (SD = 0.09) for the right canal, while 
for the MCD measure we obtained 0.61 mm (SD = 0.16) for the left canal and 0.50 mm (SD = 0.19) for the right 
canal. For the ASSD we obtained 0.45 mm for both the canals (with left SD = 0.12 and right SD = 0.11), and for 
the RHD the results were 1.40 mm (SD = 0.63) for the left canal and 1.38 mm (SD = 0.47) for the right canal. The 
full set of results for the primary test data are presented in Table 1.

Compared to the previous state-of-the-art studies of automated mandibular canal segmentation by Kainmueller 
et al.5, and Abdolali et al.9, our model outperformed both of them in the MCD and the ASSD. In comparison to the 
more accurate results obtained by Abdolali et al. (2017), with MCD = 0.92 mm (SD = 0.15) for the left canal and 
MCD = 0.82 mm (SD = 0.25) for the right canal, our method improved the mean MCD by more than 0.3 mm for 
both canals. For the ASSD, Abdolali et al. (2017), obtained 0.79 mm (SD = 0.22) for the left canal and 0.84 mm (SD 
= 0.18) for the right canal, while our method improved the ASSD accuracy by 0.34 mm and 0.39 mm for the left and 
for the right canal, respectively. The full comparison of the results is presented in Table 2.

Scan
VS 
(mm)

Left Right

DSC
MCD 
(mm)

ASSD 
(mm)

RHD 
(mm) DSC

MCD 
(mm)

ASSD 
(mm)

RHD 
(mm)

#1 0.2 0.72 0.39 0.27 0.69 0.70 0.43 0.29 1.20

#2 0.2 0.69 0.46 0.28 0.80 0.67 0.37 0.33 0.89

#3 0.2 0.54 0.47 0.50 1.20 0.62 0.35 0.41 0.89

#4 0.2 0.62 0.47 0.41 1.26 0.65 0.37 0.34 0.89

#5 0.2 0.60 0.52 0.38 1.13 0.67 0.29 0.34 1.20

#6 0.2 0.63 0.52 0.37 1.13 0.55 0.61 0.44 1.33

#7 0.2 0.62 0.55 0.37 0.89 0.59 0.47 0.45 1.26

#8 0.2 0.63 0.60 0.40 1.20 0.63 0.35 0.37 0.98

#9 0.2 0.49 0.61 0.67 2.04 0.54 0.64 0.52 1.33

#10 0.2 0.58 0.65 0.50 1.96 0.62 0.29 0.42 1.13

#11 0.2 0.59 0.66 0.44 1.50 0.56 0.67 0.53 2.04

#12 0.4 0.47 0.75 0.50 1.20 0.35 0.85 0.67 2.30

#13 0.2 0.51 0.76 0.71 3.22 0.51 0.38 0.57 1.65

#14 0.4 0.46 0.87 0.48 1.26 0.45 0.84 0.56 2.26

#15 0.4 0.46 0.95 0.50 1.44 0.54 0.62 0.45 1.39

Mean 0.57 0.61 0.45 1.40 0.58 0.50 0.45 1.38

SD 0.08 0.16 0.12 0.63 0.09 0.19 0.11 0.47

Table 1.  The results for the DSC, MCD, ASSD, and RHD measures are presented for the left and right canals, 
for all the 15 scans in the primary test data. The mean and the standard deviation (SD) of the results are shown 
in the last two rows. Original voxel spacing (VS) shown in the second column.
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To analyse the segmentation performance of the model relative to the anatomical position, the curve distance 
was evaluated at 100 uniformly spaced points for both the canals in the primary evaluation data. The mandibular 
foramen was selected as the first point and the mental foramen as the last. The relative positional errors for the 
left and right canals, are illustrated in Fig. 1. The segmentation error can be seen to be relatively large and volatile, 
near the foramina. However, in the middle part of the canal, the error stabilises to approximately 0.5 mm.

Secondary test data.  As the voxel-level annotations of the primary test data required a large amount of 
manual labour we have also studied a second set of data, (secondary test data) containing 128 scans with coarsely 
annotated mandibular canals. The total number of left and right canals was 128 and 124, respectively, and they 
were annotated using, on average, 10 manually assigned control points, spline interpolation, and a static 3.0 mm 
canal diameter. In this test there were scans with variable degree of the mandibular canal visibility, which the 
medical experts had in their coarse annotations graded either as clear or unclear, if the canal could be annotated 
with high confidence or not, respectively. These grades were used as a basis to divide the secondary test data to 
“Clear” set, with 86 left and 86 right canals, and “Unclear” set, with 42 left and 38 right canals.

The results for the Clear and Unclear sets are presented in Fig. 2, along with the results of the primary test data, 
for comparison. The model performance on the larger Clear set using the DSC, MCD, ASSD, and RHD meas-
ures turns out to be similar to those obtained for the primary test data. When comparing the Clear set results to 
those of the Unclear set, the model performance decreases for each of these measures, while at the same time the 
dispersion increases. The mean values for the DSC, precision, and recall are approximately 0.10-0.15 higher for 
the Clear set than for Unclear set, for both the left and right canals. For the distance measures, MCD, ASSD, and 
RHD, the means are significantly larger for the Unclear set, while the medians turn out to be only slightly larger. 
The fact that the means differ significantly from the medians shows that a few erroneously segmented canals cause 
the large average errors for the entire Unclear set. This is also illustrated in more detail in the Supplementary 
Table S1 and Fig. S1, which show that the model performance is poor in few of the more difficult cases, resulting 
in causing the increased mean values of the MCD, ASSD, and RHD for the Unclear set.

Discussion
In this study we have shown that a fully convolutional deep neural network model can outperform the previous 
state-of-the-art results for mandibular canal segmentation. Interestingly, our model produces highly accurate 
voxel-level predictions for the mandibular canals, even though the data used in model training is as coarsely 
annotated as the secondary test data. The coarse annotations used many approximations for the canal segmenta-
tion, which introduced errors that can be attributed to inaccuracies in labelling, called label noise, against which 
the deep neural networks are known to have robustness18.

As a matter of fact, when the voxel-level annotations are used as the ground truth and the DSC is calculated 
for the coarse annotations, it turned out to be 0.39 and 0.49 for the left and right canals, respectively. On the other 
hand, when we calculated the DSC for the model segmentations, the results were 0.57 and 0.58 for the left and 
right canals. This result shows that the model outperforms the coarse segmentations and the approximation errors 

Metric Ours Kainmueller et al.5 Abdolali et al.9

Left MCD (mm) 0.61 (SD = 0.16) 1.2 (SD = 0.9) 0.92 (SD = 0.15)

Right MCD (mm) 0.50 (SD = 0.19) 1.0 (SD = 0.6) 0.82 (SD = 0.25)

Left ASSD (mm) 0.45 (SD = 0.12) — 0.79 (SD = 0.22)

Right ASSD (mm) 0.45 (SD = 0.11) — 0.84 (SD = 0.18)

Table 2.  Comparison of the primary results to the reported values by Kainmueller et al.5 and Abdolali et al.9.

Figure 1.  The mean, median, and the area within mean ± SD of the curve distance calculated on the basis of 
location from the mandibular foramen to the mental foramen for the primary test data. (A) Left canals. (B) 
Right canals.

https://doi.org/10.1038/s41598-020-62321-3


4Scientific Reports |         (2020) 10:5842  | https://doi.org/10.1038/s41598-020-62321-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

do not fully translate to the predictions of the model, thus demonstrating its robustness to the label noise. Full 
comparison of the coarse segmentations and the voxel-level segmentations are presented in the Supplementary 
Table S3.

The prediction accuracy of the model turned out to be of the order of 0.5 mm for about 90 percent of the 
mandibular canal length, which is more than sufficient for dental implantology. Outside this region, near the 
mandibular and the mental foramina, the prediction accuracy decreases rapidly. This is understandable because 
clinically the annotation of these two foramen regions is demanding due to the anatomy of the human mandible, 
and leads to larger approximation errors in the training annotations near the two foramina. However, from the 
point of view of dental implantology, the decreased performance in the region near the mandibular foramen is 
less important, since there is no dentition.

As summary, we conclude that an automated deep learning neural network based system when applied to 
CBCT scans can produce high quality segmentations of mandibular canals. In the future we extend this study 
to more diverse datasets, including patients’ ethnicity, inaccuracies in labelling, and different CBCT scanners, 
to evaluate more extensively the robustness of the model under these variabilities. Our results also encourage us 
to apply deep learning approach in other recognition and segmentation tasks, such as maxillofacial key-point 
detection and bone density estimation.

Materials and Methods
Data.  The CBCT dataset consisted of 637 scans from 594 patients. The scans were reconstructed from dento-
maxillofacial area CBCT scans ranging from partial scans to whole head scans. The scanning devices were 
Soredex Scanora 3Dx, (Soredex Oy, Tuusula, Finland) and Planmeca ProMax 3D, ProMax 3D Max, ProMax 3D 
Mid, (Planmeca Oy, Helsinki, Finland). All the scans had isotropic spatial resolution, with 492 scans with voxel 
spacing of 0.2 mm, 141 scans with voxel spacing of 0.4 mm, and one scan each with 0.1 mm, 0.15 mm, 0.3 mm, 
and 0.6 mm voxel spacings. The size of the volumes ranged from 291 251 251× ×  voxels to × ×825 825 825 
voxels. The CBCT scans had the grey values in the (approximated) Hounsfield unit scale, ranging from -1000 to 
3095, except for a few erroneously reconstructed scans with artefacts. The data was scanned in the Cranio and 
Dentomaxillofacial Radiology Department of The University Hospital of Tampere, Finland. All the acquired 
CBCT scans were pseudonymized.

Figure 2.  Tukey’s boxplot visualisation of our results for the Clear and Unclear sets as well as for comparison 
the results for the primary test data. The rectangles contain data within the first and the third quartile. The 
endpoints of the whiskers are selected as the first quartile −1.5 times the interquartile range (IQR) and third 
quartile +1.5 IQR. The medians are visualised as orange lines and the means as green triangles. The x-axis 
label shows the name of the set, the anatomical side of the canal, and the ratio of outliers to the total number of 
canals. The outliers are defined as the points that are outside the interval defined by the whiskers.
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The dataset was divided into a training, validation, and test sets, with 457, 52, and 128 CBCT scans, respec-
tively. The model parameters were trained on the training set, the model architecture and hyperparameters 
selected using the validation set, and the final trained model was evaluated on the test set. In order to avoid over-
optimistic results due to over-fitting, that is, memorising patient specific features, each of these sets had a unique 
set of patients. Moreover, the patients with multiple scans were not included in the validation and test sets. As the 
number of the 0.1 mm, 0.15 mm, 0.3 mm, and 0.6 mm voxel spacing volumes was very small, they were included 
in the training set. The scans with the 0.2 mm and the 0.4 mm voxel spacing were randomly divided in similar 
proportions to the different sets. In addition, each set was constructed to maintain a similar distribution of the 
two measurement devices. However, all the scans were rescaled to 0.4 mm voxel spacing as a preprocessing step, 
described later.

In a number of cases the patients’ CBCT scans were taken during preoperative and postoperative radiological 
examinations, which introduced abnormalities of facial anatomy in the scans of these patients. The scans of the 
operated patients can also include foreign, mostly metallic material, such as dental implants and fixation mate-
rials, causing artefacts of varying degree. Other heterogeneities in the scans include motion artefacts, as well as 
rotations and translations of the head.

Each scan in the test set was scrutinised for various types of abnormalities. The total number of canals affected 
by a certain abnormality included 8 cases of osteoporosis, 3 cases of pathological condition, such as benign or 
malignant tumour, 4 cases of difficult anatomy, 49 cases of difficult bone structure, 9 cases of post bisagittal 
osteoma operation, 4 cases of metal artefacts, and 11 cases of movement artefacts. Also, 2 of the scans were from 
cadavers, amounting to 4 canals. The total number of canals affected by heterogeneities was 72, with some of the 
canals having multiple abnormalities affecting them. Additional results considering model performance for each 
of these heterogeneities are shown in the Supplementary Table S2.

The mandibular canals were annotated by two medical professionals. One of them is a dentomaxillofacial 
radiologist, with 34 years of experience in dentistry, and the other is a resident of dentomaxillofacial radiology, 
with 10 years of experience in dentistry. These experts annotated the training set and the secondary test data using 
Romexis® 4.6.2.R software by Planmeca, specifically the built-in tool for mandibular canal annotation. This tool 
requires the user to specify control points for the canal, and the software interpolates the pathway of the canal 
based on the control points. The pathway is then expanded to a 3.0 mm diameter tube and finally discretised to 
provide the ground truth segmentation volumes. This methodology was used in creating the annotations for the 
training, validation, and test sets. A visualisation of the model segmentation and the annotation is presented 
in Fig. 3 for a representative scan. Informed consent was obtained from the subject shown in this figure for the 
publication.

Figure 3.  Comparison of the model segmentation and the ground truth, from the secondary test data 
annotations, for a CBCT scan. (A) visualises the segmentation of the model, in green, (B) the interpolated 
control point annotation, in red, and (C) the overlap between the model segmentation and the annotation, in 
yellow. The five rows represent, from top to bottom, a cross section parallel to the sagittal plane centred to the 
mandibular foramen and the mental foramen, a cross section parallel to the coronal plane and to the axial plane, 
and a maximum intensity projection (MIP) of the lower region of the head.
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The sparse specification of the control points and the discretisation of the interpolated tube introduced noise 
to the ground truth annotations. For accurate evaluation, 15 CBCT volumes were selected from the test set and 
annotated at the voxel level. The selection was based on clear visibility of the mandibular canals, while preserving 
the distribution of voxel spacings. As such, there was not any canals affected by the abnormalities in the set. Due 
to the more labour-intensive and time-consuming nature of the voxel-level annotation, these annotations were 
only made for model evaluation purposes. The software used for the voxel-level annotation was Mimics inPrint 
3.0 software (Materialise, Leuven, Belgium). The 15 CBCT scans with voxel-level annotations served as our pri-
mary test data. The full test set with coarse annotations was used as the secondary test data.

In order to standardise the data three preprocessing steps were used. First, all the scans were resized to the 0.4 
mm voxel spacing using linear interpolation. This procedure reduced significantly the memory footprint of the 
largest volumes, such as the whole head scans with 0.2 mm voxel spacing. Second, the values outside the valid 
Hounsfield unit scale were clipped to the valid range of  −[ 1000, 3095]. Third, the grey values were then normal-
ised to the interval [0, 1].

The segmentation model.  As the backbone of our segmentation method, we used a 3D fully convolutional 
neural network. A graphical illustration of the model is presented in Fig. 4. The neural network architecture is 
similar to the U-net16, and can be divided to a contractive pathway and an expanding pathway. In the contractive 
pathway, the feature maps are down-sampled with stride 2 convolutions, and in the expanding pathway, the fea-
ture maps are up-sampled with stride 2 transpose convolutions. With the exception of the last layer of the neural 
network, all convolutions and transpose convolutions have the kernel size of × ×3 3 3, and are followed by a 
batch normalisation operation19 and a rectified linear unit (ReLU) non-linearity. The last layer of the network has 
a convolution with the kernel of size 1 1 1× × , and the link function is chosen as the logistic sigmoid. Between 
the contracting and the expanding pathways are long skip connections, which concatenate the hidden layers along 
the channel dimension. The network also utilises residual connections20 within each of the down-sampling and 
up-sampling blocks.

The CBCT volumes had spatial dimensions that were too large to fit into a workstation graphical processing 
unit (GPU), using our model. Thus, a patch sampling method was employed, in which 323 sized patches were 
randomly sampled using a stride of 22. To reduce the class imbalance, the patches without any mandibular 
canal voxels were not included in the training set. Each of the sampled patches were augmented with random 
flips in all the spatial dimensions. The model was trained for 400 epochs using a mini-batch size of 24. 
Parameter updates were calculated using the Adam algorithm21, with the learning rate set to 0.0001, 1β  as 0.9, 
and 2β  as 0.999.

The network was trained using a differentiable version of the Dice similarity coefficient, which alleviates the 
class-imbalance problem when calculated for the minority class. The DSC is defined as the intersection of two 
sets, normalised with the cardinalities of the sets. However, this definition is not differentiable, as it assumes 
thresholded binary predictions. The Dice loss (DL) used to train our network is based on the soft Dice coefficient 
objective function, proposed in17, and is defined as follows, in the Eq. (1): 

Figure 4.  Graphical illustration of our fully convolutional neural network architecture. Each block depicts a 
hidden layer of the network. The height of each of the blocks visualises the evolution of the spatial size in the 
network. As a comparison, the depth visualises the evolution of the number of the feature maps in the network. 
The number of the feature maps of each layer is also shown as a number on each block. The blocks containing 
concatenation are shown in dark grey. BN and ReLU correspond to the batch normalisation operation and the 
rectified linear unit non-linearity, respectively.
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Here tn is a binary variable which represents the ground truth label of the voxel indexed by n, and is 0 for the neg-
ative class and 1 for the positive class. pn is the probability that the voxel indexed by n belongs to the positive class, 
and is determined by the model.

In addition, we developed a post-processing method to refine the model predictions. The raw model output 
had large quantities of false positives, likely due to sampling the training patches close to the mandibular canal. 
The output was filtered with a connected-component algorithm that connects neighbouring voxels to larger struc-
tures, from which the two largest structures were chosen as the predicted canals. In the model evaluation, the 
number of canals was known for each volume, and this information was used to select the appropriate number 
of structures.

Performance measures.  In order to measure the performance of the deep learning model, we calculated 
the DSC, precision, and recall using the following Eqs. (2)–(4): 
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Recall TP
TP FN (4)
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+
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Here TP denotes the true positives, FP false positives, and FN false negatives.
The DSC, precision, and recall give us insight into the voxel-level segmentation performance of the model. 

However, these measures do not consider the distance from the predictions to the ground truth canal in the 
patient’s mandible, which is of key importance for example from the dental surgery point of view. In order 
to include the location based performance measures, we also evaluate the segmentation performance of our 
model using the following three distance based measures: average symmetric surface distance (ASSD), mean 
curve distance (MCD) and robust Hausdorff distance (RHD), calculated using the Eqs. (5), (6), and (7), 
respectively: 
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∑=
∈

=


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

∈ ∈





.t p t pd S P d S T S T S PRHD max max ( , ( )), max ( , ( )) ( ), ( )
(7)P P95 95

Here b a bd B( , ) min { }b B 2= −∈ . The t denotes the coordinates of a ground truth canal voxel, p the coordinates 
of a predicted canal voxel, T  the set of ground truth canal voxel coordinates, P the set of predicted canal voxel 
coordinates, S( )⋅  an operation which extracts the surface voxels of a set of voxels, ⋅C( ) an operation which extracts 
the curve line of a set of voxels, in practice implemented as a skeletonization algorithm, and Pk denotes the k:th 
percentile.

Data availability
The datasets used in model training, validation, and testing were provided by TAYS, and as such is not publicly 
available and restriction apply to their use according to the Finnish law and General Data Protection Regulation 
(EU).

Code availability
The codes used for preprocessing and deep learning includes proprietary parts and cannot be released publicly. 
However, preprocessing and deep learning algorithms can be replicated using the information in the Methods 
section.
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