
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Ding, Wenxiu; Yan, Zheng; Qian, X.R.; Deng, R.H.
Computing Maximum and Minimum with Privacy Preservation and Flexible Access Control

Published in:
IEEE Global Communications Conference

DOI:
10.1109/GLOBECOM38437.2019.9013937

Published: 01/01/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Ding, W., Yan, Z., Qian, X. R., & Deng, R. H. (2019). Computing Maximum and Minimum with Privacy
Preservation and Flexible Access Control. In IEEE Global Communications Conference Article 9013937 (IEEE
Global Communications Conference). IEEE. https://doi.org/10.1109/GLOBECOM38437.2019.9013937

https://doi.org/10.1109/GLOBECOM38437.2019.9013937
https://doi.org/10.1109/GLOBECOM38437.2019.9013937

Computing Maximum and Minimum with Privacy
Preservation and Flexible Access Control

Wenxiu Ding∗, Zheng Yan∗†, Xinren Qian∗, and Robert H. Deng‡
∗School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China

†Department of Communications and Networking, Aalto University, Espoo, Finland
‡School of Information System, Singapore Management University, Singapore

Emails: {wxding, zyan}@xidian.edu.cn, xinrenqian@gmail.com, robertdeng@smu.edu.sg

Abstract—With the fast development of Internet of Things,
huge volume of data is being collected from various sensors and
devices, aggregated at gateways, and processed in the cloud.
Due to privacy concern, data are usually encrypted before being
outsourced to the cloud. However, encryption seriously impedes
both computation over the data and sharing of the computation
results. Computing maximum and minimum among a data set
are two of the most basic operations in machine learning and
data mining algorithms. In this paper, we study how to compute
maximum and minimum over encrypted data and control the
access to the computation result in a privacy-preserving manner.
We present four schemes to realize privacy-preserving maximum
and minimum computations with flexible access control that can
adapt to various application scenarios. We further analyze their
security and show their efficiency through extensive evaluations
and comparisons with existing work.

Index Terms—maximum & minimum, privacy preservation,
access control, homomorphic encryption, attribute-based en-
cryption

I. INTRODUCTION

With the fast growth of Internet of Things (IoT), huge
volume of data is being generated and then outsourced to
the cloud for analysis and processing, which greatly releases
the storage and computation burdens of cloud users. However,
outsourcing data to the semi-trusted cloud incurs security and
privacy risks to data owners. In order to overcome this issue
while benefiting from cloud computing, a commonly accepted
approach is to outsource encrypted data to the cloud. But it
incurs several new issues as described below.

First, encryption seriously complicates data computations.
Fully homomorphic encryption (FHE) in principle enables
arbitrary computations to be performed on encrypted data.
Though significant research progress has been made since
Gentry’s breakthrough work on FHE [2], FHE is still far
from being practical in data analytics applications. There are a
number of efforts in recent years realizing computations over

This work is sponsored by the National Natural Science Foundation of
China (Grants 61802293, 61672410 and U1536202), National Postdoctoral
Program for Innovative Talents (grant BX20180238), the National Key
Research and Development Program of China (Grant 2016YFB0800700), the
Academy of Finland (Grant 308087 and 314203), the Project funded by China
Postdoctoral Science Foundation (grant 2018M633461), the Fundamental
Research Funds for the Central Universities (grant JB191504), the open
grant of the Tactical Data Link Lab of the 20th Research Insti-tute of China
Electronics Technology Group Corporation, P.R. China (grant No. CLDL-
20182119), the Key Lab of Information Network Security, Ministry of Public
Security (Grant C18614), and the 111 project (Grants B16037).

ciphertexts based either on partially homomorphic encryption
(PHE) [3], [5] or secure multi-party computation (SMC) [6].
Compared with FHE, these schemes are much more efficient
but require several rounds of interactions among multiple
servers instead of using a single server in FHE.

Second, another important issue associated with secure
computation is how to share the computation results among
multiple data users. Homomorphic encryption schemes are
always a single-user system, while those realizing flexible
access control on outsourced encrypted data are not designed
to handle access control of the computation results from
ciphertexts but merely outsourced data. However, in this big
data era, data processing or analysis results always need to
be shared among authorized users. For example, outcome of
a clinical decision based on Naı̈ve Bayesian Classifier [5]
needs to be shared with patients, doctors in charge and other
caregivers according to some policy and procedure.

Specifically, most of the multi-server computation schemes
mentioned above support basic arithmetic operations such as
addition, subtraction, and comparison, but ignore maximum
or minimum which are two of the most basic computations
in data analysis (e.g., data classification and clustering [7]).
Though the schemes in [1], [5] support maximum computa-
tion, they are not efficient when the data set is large – the
maximum computation in [1] requires too many interactions
between servers while the one in [5] introduces a very
high computation overhead. Although Chameleon [10] can
support privacy-preserving maximum computation in machine
learning, it ignores the access control issue. Bost et al.
[7] also designed some computations including maximum
that underlie classification protocols. However, it needs two
entities to first obtain a comparison result through interac-
tion before calculating the maximum value, which increases
computation rounds, and thus has a high communication
overhead. CryptDB [21] can easily solve the order issue and
get the maximum/minimum of a column by order-preserving
encryption (OPE), but it applies different encryptions to
realize other SQL operations (such as SUM, JOIN) and is
not efficient for complex computations.

Generally speaking, most aforementioned works mainly
focus on encrypted data computations, but ignore the require-
ments on the flexible access control over computation results,
which is highly requested in many application scenarios. Our

previous work [8] is one of the few efforts in the literature
dealing with the problem of access control over results of
basic computations over encrypted data (such as addition,
multiplication, and comparison), but maximum and minimum
is ignored.

In this paper, we explore the challenging issue of how to
compute maximum and minimum over ciphertexts together
with access control over the computation results in a privacy-
preserving manner, which can extend and complement our
previous work. Our concrete contributions are as follows:
• We extend our previous work [8] and enhance the

scalability of our previous system to realize maximum
and minimum computations. Hence, the system can be
more general and flexible.

• We apply secret share to realize the homomorphism of
Attribute-Based Encryption (ABE) for fine-grained ac-
cess control over the computation results, which guaran-
tees that the results are not disclosed to any unauthorized
entities including the servers Computation Party (CP)
and Data Service Provider (DSP) and hence that a fully-
trusted cloud server is not needed in our system.

• We propose four schemes for maximum and minimum
computation to support a variety of application scenarios
when dealing with different number of data providers and
requesters.

• We further analyze the security of the four schemes and
show their efficiency through extensive evaluations and
detailed comparison with existing work, especially in the
case that multiple users access the computation results.

The rest of this paper is organized as follows. In Section II,
we briefly review related work about HE-based secure data
processing and secure data access control. Section III presents
the notations and preliminaries, followed by the system model
and our proposed schemes in Section IV. Security analysis
and comparisons as well as performance evaluation are given
in Section V. Finally, conclusion remarks are summarized in
the last section.

II. RELATED WORK

A. Homomorphic Encryption based Secure Data Processing

HE is commonly applied to support data analysis over ci-
phertexts, but most HE-based schemes are designed to achieve
data aggregation [3] and cannot support multi-user access.
The evidence aggregation in [9] enables multi-party access
to computation result, but it ignores other computations. In
order to flexibly support more application scenarios, more
computations [10]–[12] over encrypted data were designed.
FHE algorithms [13], [14] aim to support arbitrary computa-
tions over ciphertexts, but they are not satisfactory in practical
applications owing to their heavy computation and storage
burdens.

ABY [15] combines arithmetic sharing, garbled circuits
and Boolean sharing to support several standard operations,
such as addition, multiplication and comparison, etc. Further,
Chameleon [10] revised ABY to precompute in an offline

phase and help reduce its heavy computation cost. Liu et al.
[4] also proposed a framework to support privacy-preserving
and efficient computations over securely outsourced data,
which realizes maximum and minimum operations. But their
framework cannot flexibly issue the access rights of data
processing results to any number of eligible parties. Though
the privacy-preserving classification scheme in [5] realizes
maximum computation over multiple inputs, it needs the
cloud users to be involved in the computation and the compu-
tation over multiple provided data incurs complex interactions
among users and servers.

The work in [1] enables privacy-preserving maximum
computation based on PHE, which applies the ciphertext
transformation in [3] to provide the capability of multi-user
access. However, this scheme incurs too many interactions,
which aggravates computational overhead, as shown in our
experimental tests in Section V.

B. Secure Data Access Control

ABE can realize fine-grained access control with high
flexibility, which has been widely applied in cloud for storage
management [16]–[18]. It enables multiple attributes for ac-
cess judgement and enhances cloud data security. However,
few existing works investigate flexible access control over
encrypted data computation results in cloud computing. Our
previous work [8] realized an access control scheme over
seven basic computation results based on PHE and ABE, but
did not consider the maximum and minimum computations.

TABLE I
NOTATION DESCRIPTION

Symbols Description
g The public system generator;
n The basic parameter for generating modulus;
(ski, pki) The key pair of entity i;
PK = pk

skCP
DSP =

PK
skDSP
CP

The public key for data outsourcing;

[m] The ciphertext of m encrypted with PK;
[m]pki

The ciphertext of m encrypted with pki;
L(∗) The bit length of input data;
r The random number;
N The number of data involved in computation;
(cki, pkcki

) The key pair chosen by servers for access control;
CK′ The ABE encryption result;
MSK′ The master key in ABE for issuing keys;
(SK′, PK′) The key pair for ABE encryption and decryption;
PK′ The public key for ABE encryption.

III. NOTATIONS AND PRELIMINARIES

1) Notations: For easy presentation and understanding,
Table I summarizes the notations used throughout this paper.

2) Preliminaries: To extend our previous work [8] to
support maximum and minimum computation with flexible
access control, we also apply our previous Homomorphic Re-
Encryption System (HRES) [19] as theoretical basis. A brief
introduction is as below, refer to [19] for details.
• System Setup: KeyGen generates basic key pairs

(ski, pki) =
(
ski, g

ski
)

for users and servers. Further

two servers (i.e., DSP and CP in our system) negotiate
and publish the Diffie-Hellman key PK = pkskCP

DSP =
pkskDSP

CP for data outsourcing.
• Encryption: Enc(m, pki)→ [m]pki

• Decryption: Dec([m]pki
, ski)→ m

• Data Outsourcing: EncTK(m,PK)→ [m] = [m]PK

• Partial Decryption: PDec1([m], skDSP)→ [m]pkCP

• Final Decryption: PDec2([m]pkCP
, skCP)→ m

In addition, HRES has the following features:
1) ([m]pki

)t = [t ∗m]pki
;

2) ([m]pki
)n−1 = [−m]pki

;

3) ([m]pki
)1,t =

{
((1 +m ∗ n)pkri)

t
, gr
}

mod n2.

Besides HRES, we adopt KP-ABE [20] for access control.
Here we just list the main functions:
• System Setup: SetupABE(γ, U)→ (PK ′,MSK ′)
• Data Encryption: EncABE(M,γ, PK ′)→ CK ′

• Key Issue: KeyGenABE(T ,MSK ′)→ SK ′

• Data Decryption: DecABE(CK ′, PK ′, SK ′)→M
• Multiplicative Homomorphism of KP-ABE:
HEABE=EncABE(M1 ∗ M2, γ, PK

′) =
EncABE(M1, γ, PK

′) ∗ EncABE(M2, γ, PK
′).

IV. PROPOSED SCHEMES

This section describes the system and security model,
followed by the design details of our schemes.

A. System and Security Model

1) System Model: Our schemes can be applied into a
system consisting of five different types of entities as shown
in Fig. 1. The cloud servers (DSP and CP) cooperate with
each other to provide services for cloud users (DRs and DPs)
through the following steps:

1) DPs perceive or produce data, and then outsource them
for further processing; 2) DSP as a public server takes
the responsibility of data storage and computation; CP is
mainly responsible for the computation and access control
of computation results. DSP and CP cooperate to process
encrypted middle result and deliver final processing results
to DR; 3) DRs that are interested in the data computation
results acquires analysis results from cloud servers according
to their own demands; 4) Authority controls the access and
issues keys to the authorized DRs.

2) Security Model: In our system model, we have the
following assumptions. Authority is regarded as a fully trusted
party that never colludes with others. Other entities including
DSP and CP are semi-trusted and curious about others’
private data but follow the design of system protocols strictly.
Moreover, owing to interest conflict (e.g., user resources)
and legal responsibilities, DSP and CP would never collude
with each other for gaining their own reputation and market
division.

3) Design Goal: Data Confidentiality that any unautho-
rized user cannot get the data provided by each DP or the
computation results.

Fig. 1. System model

B. Proposed Schemes

In this subsection, we present four schemes for privacy-
preserving maximum and minimum computations over en-
crypted data that can adapt to four different application
scenarios. First, all schemes need to setup system and collect
data in the same procedure as follows:

Step 1 (@ All Entities): The system calls KeyGen to
complete the setup of HRES, while the Authority should call
SetupABE(γ, U) to generate the basic parameters PK ′ and
MSK ′ of the ABE algorithm. Then it publishes PK ′ to its
service users.

Step 2 (@ DPs): DP encrypts their personal data mi by
directly invoking EncTK(mi, PK) and then outsources it to
DSP: (Unless otherwise specified, L(mi) < L (n) /4 where
L(∗) indicates the bit length of input): [mi] =

{
Ti, T

′

i

}
=

{(1 +mi ∗ n) ∗ PKri , gri} mod n2.
Then four schemes are further designed for four scenarios.

The basic design idea is to split secret key into two parts,
which are respectively handled by two non-colluding servers
and encryted with ABE. And then the secret key can be
recovered by making use of the homomorphism of ABE.

1) Maximum and minimum computations over two inputs
for a single DR : The first scheme named Two-to-One (T2O)
aims to obtain the maximum and minimum values from two
encrypted data for a specified DR. Given two ciphertexts [m1]
and [m2], T2O can provide the sorting results [max]pkDR

and
[min]pkDR

, the ciphertexts of the maximum and the minimum
data, to the targeted DR. The detailed interaction procedure
between DSP and CP is described as below:

Step 3 (@ DSP): First, DSP randomly selects some
numbers R1, R2 and R3 where L(R1) < L(n)/4 and then
computes:

1) [1] =
{

(1 + n) ∗ PKr′ , gr
′
}

2) [m−] = [m1 −m2] = [m1] ∗ [m2]
n−1

3) [R2 ∗m+ +R3] = ([m1 +m2])
R2 ∗ [R3]

4) [R2 ∗m−] = (T−, T
′

−) = [m1 −m2]R2

5) [2 ∗m− + 1] = (T, T ′) = [m−]2 ∗ [1]

where m− = m1 −m2 and m+ = m1 +m2.

Then it flips a coin s. If s = −1, then compute
(T

(1)
1 , T

′(1)
1) =

{
Tn−R1 , (T ′)skDSP ∗(n−R1)

}
= [−R1 ∗

(2 ∗ m− + 1)]pkCP
and (T2, T

′

2) = [−R2 ∗ m−]pkCP
={

Tn−1
− , (T

′

−)skDSP ∗(n−1)
}

. Otherwise, (s = 1), it computes:

(T
(1)
1 , T

′(1)
1) =

{
TR1 , T ′skDSP ∗R1

}
= [R1∗(2∗m−+1)]pkCP

and (T2, T
′

2) = [R2 ∗m−]pkCP
=
{
T−, (T

′

−)skDSP

}
.

It further calls PDec1([R2 ∗ m+ + R3], skDSP) to get
[R2 ∗m+ +R3]pkCP

. Finally, it forwards CP the data packet{
(T

(1)
1 , T

′(1)
1), [R2 ∗m+ +R3]pkCP

, (T2, T
′

2)
}

.
Step 4 (@ CP): CP further processes the data packet

from the DSP. It first decrypts (T
(1)
1 , T

′(1)
1) and (T2, T

′

2) with
PDec2(∗, skCP) to obtain raw data m̂ = R1 ∗ (2 ∗m− + 1)
mod n, m̂− = (R2m−) mod n if s = 1 or m̂ = −R1 ∗ (2 ∗
m− + 1) mod n, m̂− = (−R2m−) mod n if s = −1.

Then the CP needs to compare L(m̂) with L(n)/2. If
L(m̂) < L(n)/2, it sets u = 1; otherwise, u = −1. The
CP further encrypts the raw data u ∗ m̂− with the public
key of the targeted DR as: [u ∗ m̂−)]pkDR

= (T̄ , T̄ ′) =
{(1 + um̂− ∗ n)pkrDR, g

r} .
Decrypt [R2∗m++R3]pkCP

and then encrypt it with pkDR

to get [R2 ∗m+ +R3]pkDR
. Finally, the CP forwards the data

packet to DSP: {[u ∗ m̂−]pkDR
, [R2 ∗m+ +R3]pkDR

}.
Step 5 (@ DSP): The DSP first removes the mask R3 by

computing [R2∗m+]pkDR
= [R2∗m++R3]pkDR

∗[−R3]pkDR
.

Then it can get the maximum and minimum with r =
(2R2)−1 mod n:
[max]pkDR

= ([u ∗ m̂−]pkDR
∗ [R2m+]pkDR

)
r

[min]pkDR
=
(

[u ∗ m̂−]
(n−1)
pkDR

∗ [R2m+]pkDR

)r
.

Step 6 (@ DR): The DR with the corresponding secret
key can decrypt the ciphertexts ([max]pkDR

and [min]pkDR
)

to obtain the maximum and minimum values.
2) Maximum and minimum computations over more than

two inputs for a single DR : The second scheme named
Multiple-to-One (M2O) aims to obtain the maximum and
minimum values from more than two pieces of encrypted
data for a specified DR. Given an example of n pieces of
ciphertexts ([m1], [m2], · · · , [mi], · · · , [mn]) , it can get the
maximum and minimum results [max]pkDR

and [min]pkDR

for the targeted DR without revealing the raw data. Note that
the T2O scheme can provide the maximum and minimum
values from [m1] and [m2] for DR. If we use the PK to
replace the public key of DR (pkDR) in T2O, we can get the
ciphertexts [max] and [min].

In order to get the final maximum (as an example) from
more than two ciphertexts, the computation of M2O follows
the tree structure in Fig. 2. It divides the data into many
groups and each group has no more than two pieces of data.
Then T2O is executed over every two ciphertexts with PK
to get the ciphertext [max]. Until the last two pieces of data
are obtained in the layer dlb(n)e − 1 , DSP and CP execute
T2O with pkDR to get the final ciphertext [max]pkDR

.
3) Maximum and minimum computations over two inputs

for a group of DRs with flexible access control: The third
scheme named Two-to-Multiple (T2M) aims to enable fine-

Fig. 2. The procedure of maximum computation over n ciphertexts for a
targeted DR

grained and flexible access control over the maximum and
minimum computation results for a group of DRs. Given
two ciphertexts [m1] and [m2], this scheme can provide the
sorting results [max]pkck

and [min]pkck
, which indicates the

ciphertexts of maximum and the minimum results under the
public key pkck. Moreover, the corresponding secret key ck
of pkck is encrypted with ABE, which guarantees the fine-
grained access control over computation results and supports
a group of DRs to access the results.

In order to improve the security of each processed result,
two non-colluding servers DSP and CP randomly select secret
share to generate their Diffie-Hellman key pkck for each
computation task. The ciphertext of corresponding secret key
ck is obtained by combining two ABE ciphertexts, which
finally protects the processed data from any unauthorized
users including servers. The detailed procedure is presented
as below.

Step 3 (@ DSP): DSP randomly selects four numbers:
R1, R2, R3, ck1 which satisfies R1 = R2 ∗ ck1 mod n2 and
L(R1) < L(n)/4 and then preprocesses the data from DPs
as follows:

1) [1] =
{

(1 + n) ∗ PKr′ , gr
′
}

2) [m−] = [m1 −m2] = [m1] ∗ [m2]
n−1

3) [R2 ∗m+ +R3] = ([m1 +m2])
R2 ∗ [R3]

4) [R2 ∗m−] = (T−, T
′

−) = [m1 −m2]R2

5) [2 ∗m− + 1] = (T, T ′) = [m−]2 ∗ [1]

By taking the same operations as
T2O, DSP also generates the data packet{

(T
(1)
1 , T

′(1)
1), [R2 ∗m+ +R3]pkCP

, (T2, T
′
2)
}

.

Step 4 (@ CP): CP decrypts (T
(1)
1 , T

′(1)
1) and (T2, T

′

2)
from DSP to obtain raw data m′ = R1∗(2∗m−+1) mod n,
m̂− = (R2m−) mod n if s = 1 or m′ = −R1∗(2∗m−+1)
mod n , m̂− = (−R2m−) mod n if s = −1.

The CP checks the sign of m′ by comparing L(m′) with
L(n)/2. If L(m′) < L(n)/2, it sets u = 1; otherwise,
u = −1. And it further encrypts the raw data u ∗ m̂−
with a randomly chosen key pair (ck2, pkck2 = gck2):
[u ∗ m̂−]pkck2

= (T̄ , T̄ ′) =
{

(1 + um̂− ∗ n)gck2∗r, gr
}

.
Decrypt [R2 ∗ m+ + R3]pkCP

to get R2 ∗ m+ + R3 and
re-encrypt it as [R2 ∗m+ + R3]pkck2

. Moreover, it needs to

encrypt ck2 with ABE to get CK
′

1 = EncABE(ck2, γ, PK
′).

Finally, the CP forwards the data packet to DSP:{
[u ∗ m̂−]pkck2

, [R2 ∗m+ +R3]pkck2
, CK

′

1

}
.

Step 5 (@ DSP): First, the DSP sets{
T̄ , T̄ ′

}
= [R2 ∗ m+ + R3]pkck2

, and computes
[R2 ∗ m+]pkck2

=
{
T̄ ∗ (1−R3 ∗ n), T̄ ′

}
. Then, the

DSP computes r = (2R1)−1 mod n and finally
obtains the encrypted maximum and minimum:
[max]pkck

=
((

[u ∗ m̂−]pkck2
∗ [R2 ∗m+]pkck2

)1,ck1
)r

,

[min]pkck
=
((

([u ∗ m̂−]pkck2
)n−1 ∗ [R2 ∗m+]pkck2

)1,ck1
)r

,
where ck = ck1 ∗ ck2 and pkck = (pkck2

)ck1 = (pkck1
)ck2 =

gck1∗ck2 . The DSP calls HEABE to obtain CK =
CK

′

1∗EncABE(ck1, γ, PK
′
) = EncABE(ck1∗ck2, γ, PK

′
).

Step 6 (@ DR): DR can decrypt and access the computa-
tion results if it satisfies the access policy.

4) Maximum and minimum computations over more than
two inputs for a group of DRs with flexible access control:
The fourth scheme named Multiple-to-Multiple (M2M) aims
to enable flexible access control over the computation results
from more than two pieces of data. The first dlb(n)e − 1
rounds of operations in M2M is the same as that in M2O.
But in the last round of computation over [maxdlb(n)e−1,1]
and [maxdlb(n)e−1,2], DSP and CP invoke the T2M rather than
the T2O to obtain the final result [maxdlb(n)e,1]pkck

. Due to
paper length limitation, we skip the details of above process.

V. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

In this section, we prove the security of the proposed
schemes, and show their advanced functionalities and per-
formance through comprehensive simulation and comparison
with existing work.

A. Security Analysis

The security of the four schemes inherits from the se-
mantic security of HRES [19] and ABE. HRES realizes
secure data outsourcing with the Diffie-Hellman key of two
non-colluding servers. In order to prove their security, we
apply the security model for achieving scheme functional-
ities with the presence of semi-honest (non-colluding) ad-
versaries, which include four kinds of entities except the
Authority in our system. Then, we construct four simulators
Sim = (SimDP , SimDSP , SimCP , SimDR) to fight against
their corresponding adversaries (ADP ,ADSP ,ACP ,ADR)
that corrupt DP, DSP, CP and DR, respectively.

Theorem 1. T2O can securely obtain the maximum and
minimum values through computations over encrypted data
in the existence of semi-honest (non-colluding) adversaries
(ADP ,ADSP ,ACP ,ADR).

Proof. Here we construct the four independent simulators
Sim = (SimDP , SimDSP , SimCP , SimDR).

DP only needs to invoke the EncTK(mi, PK) to out-
source its personal data, hence its security can directly inherit
from the original HRES. SimDP receives the two inputs of
m1 and m2, and then it simulates ADP and encrypts mi as

[mi](i = 1, 2). Finally, it returns [m1] and [m2] to ADP ,
which is the entire view of ADP . The view of ADP are
indistinguishable owing to the security of HRES.
SimDSP simulates ADSP as follows: first SimDSP calls

EncTK(∗, PK) to encrypt random messages m̃1 and m̃2;
then it chooses some random numbers and flips a coin s
to obtain [sR2m̃−]pkCP

, [sR1(2m̃− + 1)]pkCP
and [R2 ∗

m̃+ + R3]pkCP
by calling PDec1(∗, skDSP). By accessing

SimCP , it receives [u ∗ ˆ̃m−]pkDR
, [R2 ∗ m̃+ + R3]pkDR

,
which is encrypted under the public key of targeted DR. Then
it applies the additive homomorphism to obtain [m̃ax]pkDR

and [m̃in]pkDR
. Finally, SimDSP outputs [sR2m̃−]pkCP

,
[sR1∗(2∗m̃−+1)]pkCP

and [R2∗m̃++R3]pkCP
, [m̃ax]pkDR

and [m̃in]pkDR
to ADSP . If ADSP replies with ⊥, SimDSP

returns ⊥.
The view of ADSP only includes the ciphertexts under

the public keys of DR and CP. Owing to intrinsic security
of HRES and the honesty of challenged cloud users, the
outputs to ADSP in the real and ideal executions are the same.
As DSP chooses random numbers in operations, ADSP still
cannot obtain any other information by analyzing the results
obtained from several challenges. Thus, the views of ADSP

are also indistinguishable.
SimCP simulates ACP as follows: SimCP first chooses

two random numbers m̂− and m̂+ , and calls Enc(∗, pkDR)
to encrypt them with the public key of DR to obtain [u ∗
m̂−]pkDR

, [R2 ∗ m̂+ + R3]pkDR
. Then it further sends them

to ACP . If ACP replies with ⊥, SimCP returns ⊥. ACP

receives the ciphertexts under the public of targeted DR. The
security can be ensured by the semantic security of HRES.
SimDR simulates ADR as follows: Besides the challenged

data, any two random ciphertexts [m̂1]pkDR
and [m̂2]pkDR

are
chosen and decrypted to obtain m̂1 and m̂2. Then they are sent
to ADP . If ADP replies with ⊥, SimDR returns ⊥. The view
of ADP is the decrypted data. The semantic security of HRES
guarantees the indistinguishability of two views from real and
ideal executions. Moreover, the randomly chosen numbers in
the challenges have no relation to the originally challenged
data but make it difficult to execute exhaustive attacks.

The security proofs of other schemes (i.e., T2M, M2O,
M2M) are similar to that of the T2O. The main difference of
T2M and M2M from T2O and M2O is that DSP and CP apply
ABE to encrypt shares of secret key respectively and then
combine the ciphertexts together, which can be guaranteed
by the security of ABE [20] and HRES.

B. Experimental Results

As discussed in Section I, most existing works did not
consider multi-user access, while the work [1] can be ex-
tended to support multi-user access based on the technique
in [3]. Hence, we selected it as a benchmark and further
compared it with our work through simulations to show the
superiority of our designs in the following subsections. We
implemented our four schemes and exisiting work [1] to check
the aforementioned theoretical analysis and compared them
with each other to show the efficiency and feasibility of our

246

486

1668

T2O T2M [1]
0

200

400

600

800

1000

1200

1400

1600

1800
Ti

m
e

(m
s)

Fig. 3. Comparison of T2O, T2M and
[1]

1406 1595

9386

M2O M2M [1]
0

2000

4000

6000

8000

10000

Ti
m

e
(m

s)

Fig. 4. Comparison of M2O, M2M
and [1]

2511 3538 4250
5513

7280

9446
11216

2296

4570
6566

9235

12607

18622

22847

1282
2160

3009
4084

5701
7578

9474

0 10 20 30 40 50 60 70 80 90 100 110
0

5000

10000

15000

20000

25000

Ti
m

e
(m

s)

Number of DRs

 [1]
 T2O
 T2M

Fig. 5. Performance of T2O, T2M,
and [1] with different numbers of DRs

14156

28390

42573

56864

70802

3335 4462 5631 6776 804410212 11193 12932 14497 15686

10 20 30 40 50
0

10000

20000

30000

40000

50000

60000

70000

80000

Ti
m

e
(m

s)

Number of DRs

 M2O
 M2M
 [1]

Fig. 6. Performance of M2O, M2M,
and [1] with different numbers of DRs

work. We performed our simulations on a laptop with Intel
Core i5-5200U CPU @ 2.20GHz and 8 GB SDRAM and
applied the Java Paring-Based Cryptography (jPBC) library
(http://gas.dia.unisa.it/projects/jpbc/docs/ecpg.html#TypeA).

In our tests, we choose the TYPE A curve in jPBC and
set L(ck1) = L(ck2) = 250 bits, which should satisfy
that L(ck1) + L(ck2) < 512 bits. The curve of TYPE
E can also be applied, which can support longer keys of
L(ck1) + L(ck2) < 1024 bits and provide higher security.
Unless particularly specified, we set the parameters as default
values: N = NR = 10, |U | = |γ| = 5, ϑ = 1, L(n) = 1024,
L(p) = L(q) = 512 bits, L(m) = 255 bits, L(ski) = 500
bits and L(r) < L(n)/4 bits. Hence, the modulus n2 in
HRES achieves 2048 bits and guarantees the security. We
calculated the average of the simulation results by performing
each algorithm for 100 times to improve the test accuracy. In
our simulation environment, it takes about 9.4 milliseconds
(ms) to complete one bilinear pairing.

Test 1: Performance comparison of T2O, T2M, and [1]
In this test, we tested and compared the performance of

three schemes: T2O, T2M, and [1]. As the servers in [1]
need complex interactions and the tests are executed for 100
times to calculate its average, it is difficult to separate the
computation time of two servers. In addition, we note DP and
DR only need to do one encryption and one decryption for
data outsourcing and access to both maximum and minimum,
respectively. Hence, we directly give the total computation
time of the whole procedure in each scheme including the
data outsourcing time of one DP and the decryption time of
one DR in Fig. 3. From the simulation result, we can observe
that T2O is much more efficient than [1] and T2M. But T2M
can support multi-user access.

Test 2: Performance comparison of M2O, M2M, and [1]
Different from Test 1, we only tested the performance of

4 12 27 47
20

80

234

399

12
41

101
153

17

100

363

713

2 7 17 25

0 512 1024 1536 2048 2560
0

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

T2O length of n (bit)

 DP
 DSP-Step3
 CP
 DSP-Step5
 DR

Fig. 7. Efficiency of T2O when the
bit length of n increases

4 12 27 4716
67

205

359

13 43
112

165

19

117

434

855

4 13 31 47

0 512 1024 1536 2048 2560
0

200

400

600

800

1000

Ti
m

e
(m

s)

T2M length of n (bit)

 DP
 DSP-Step3
 CP
 DSP-Step5
 DR

Fig. 8. Efficiency of T2M when the
bit length of n increases

maximum computation in M2O, M2M and [1] when dealing
with multiple pieces of provided data in all related tests. In
this test, we implemented the schemes M2O and M2M and
compared them with [1] when there are 10 pieces of encrypted
data input (N = 10) and one DR for data access. The
original work in [1] is designed for two DPs with different
keys (pks1, pks2) and its output ciphertext is under public
key pks1+s2. Hence, the output can also be regarded as a
new input for further computation with other data, which can
provide the capability of dealing with multiple inputs.

Due to the same reason as described in Test 1, we also only
give the total computation time of one data outsourcing, data
processing and one data access in Fig. 4. We can observe that
M2O and M2M do not vary too much but they are superior
to [1] since they have smaller number of interaction rounds.

Test 3: Performance test of T2O, T2M, and [1] with
different numbers of DRs

We further tested and compared the performance of our
proposed schemes and [1] with two inputs and a changing
number of DRs. We execute T2O for each DR to support
multi-user access. Fig. 5 presents the total running time of
DSP, CP, Authority and all involved DRs. We can find that
T2O is time-consuming to support multi-user access, which
takes much longer time than other two schemes. Compared
with T2O and [1], T2M performs very efficiently and can
flexibly support the access of multiple DRs. Moreover, T2M
embeds the access policy into data encryption, which is more
secure than the ciphertext transformation [3]. We can see that
T2M is very scalable to support many DRs.

Test 4: Performance test of M2O, M2M, and [1] with
different numbers of DRs

In this test, we compared the performance of M2O, M2M
and [1] when dealing with multi-user access to the results
of maximum and minimum computations. Fig. 6 shows the
performance of three schemes with ten pieces of input data
and a varying number of DRs. We can observe that M2M is
much more efficient than [1] and M2O, while M2O is not
suitable for supporting multiple DRs.

Test 5: Efficiency test of T2O, T2M, M2O, and M2M when
the bit length of n changes

Furthermore, we demonstrated the efficiency of T2O, T2M,
M2O, and M2M with different length of modulus n. With
|U | = |γ| = 5 and ϑ = 1, ABE encryption in DSP and

290

1317

3796

7579

365

1420

3872

7670

0 512 1024 1536 2048 2560
0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(m

s)

Length of n (bit)

 M2O
 M2M

Fig. 9. Efficiency of M2O and M2M when the bit length of n increases

CP takes about 75 ms, and key issue by Authority needs
72 ms. ABE decryption executed by DRs is efficient and
takes only 7 ms. As ABE algorithm for encrypting key shares
is not related to the length of modulus n, thus we exclude
the computation time of ABE algorithms and give a clear
relationship of modulus n and encrypted data computation
procedures. Figs. 7 and 8 show the computation time of all
involved entities in each system entity, while Fig. 9 merely
gives the total computation time of M2O and M2M due to
the complex interactions between DSP and CP.

DPs have the same operations in all proposed schemes.
DRs have the same computation in both T2O and M2O, while
they also have the same computation in both T2M and M2M
although different from that in T2O and M2O. From Fig. 9,
we can find that M2M does not increase the computation
cost seriously. Moreover, DP and DR only need to do one-
time computation. Hence, from the three figures we can find
that most computation overhead is moved to the cloud servers,
especially the DP and DR have little computation cost, which
is suitable for resource-constrained user devices.

Based on the above tests, we can see that each scheme
shows great advantages on operation performance when being
applied into its specific application scenario. We suggest
executing them adaptively according to concrete application
demands.

CONCLUSION

In this paper, we extended our previous work to support
maximum and minimum computation with privacy preserva-
tion, which can be selectively applied into various applica-
tion scenarios. We realized maximum/minimum computation
over two or more than two pieces of encrypted data with
flexible and fine-grained access control. Security analysis,
performance evaluation and comparison further demonstrated
that our schemes are secure, efficient and scalable in their
specific application scenarios. In the future, we are going to
extend the current schemes to support other types of data (not
only integers, but also fractions and decimals) and apply them
into complex data analytics.

REFERENCES

[1] X. Liu, R. H. Deng, K. K. R. Choo, and J. Weng, “An Efficient Privacy-
Preserving Outsourced Calculation Toolkit With Multiple Keys,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 11,
pp. 2401-2414, 2016.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” 47th
ACM Symposium on Theory of Computing (STOC). pp. 169-178, 2009.

[3] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing
multiparty computation under multiple keys,” IEEE Transactions on
Information Forensics and Security (TIFS), vol. 8, no. 12, pp. 2046-
2058, 2013.

[4] X. Liu, R. Choo, R. Deng, R. Lu, and J. Weng, “Efficient and
privacy-preserving outsourced calculation of rational numbers,” IEEE
Transactions on Dependable and Secure Computing (TDSC), vol. 15,
no. 1, pp. 27-39, 2018.

[5] X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin, “Privacy-preserving
patient-centric clinical decision support system on naive Bayesian
classification,” IEEE journal of biomedical and health informatics, vol.
20, no. 2, pp. 655-668, 2016.

[6] T. Krips, and J. Willemson, “Hybrid model of fixed and floating point
numbers in secure multiparty computations,” International Conference
on Information Security. pp. 179-197, 2014.

[7] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine Learning
Classification over Encrypted Data,” NDSS, vol. 4324, 2015.

[8] W. Ding, Z. Yan, and R. Deng, “Privacy-Preserving Data Processing
with Flexible Access Control,” IEEE Transactions on Dependable and
Secure Computing, 2017, doi:10.1109/TDSC.2017.2786247.

[9] Z. Yan, W. Ding, V. Niemi, and A. V. Vasilakos, “Two schemes
of privacy-preserving trust evaluation,” Future Generation Computer
Systems, vol. 62, pp. 175–189, 2015.

[10] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A Hybrid Secure Computation Frame-
work for Machine Learning Applications,” Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, Incheon,
Republic of Korea, 2018, pp. 707-721.

[11] E. M. Songhori, S. U. Hussain, A. R. Sadeghi, T. Schneider, and F.
Koushanfar, “TinyGarble: Highly Compressed and Scalable Sequential
Garbled Circuits,” 2015 IEEE Symposium on Security and Privacy. pp.
411-428, 2015.

[12] K. Zhou, M. H. Afifi, and J. Ren, “ExpSOS: Secure and Verifiable Out-
sourcing of Exponentiation Operations for Mobile Cloud Computing,”
IEEE Transactions on Information Forensics and Security, vol. 12, no.
11, pp. 2518-2531, 2017.

[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” Proceedings of the
3rd Innovations in Theoretical Computer Science Conference. pp. 309-
325, 2012.

[14] Z. Brakerski, and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM Journal on Computing, vol.
43, no. 2, pp. 831-871, 2014.

[15] D. Demmler, T. Schneider, and M. Zohner, “ABY-A Framework for Ef-
ficient Mixed-Protocol Secure Two-Party Computation,” NDSS, 2015.

[16] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 1, pp. 131-143, 2013.

[17] W. C. Garrison III, A. Shull, S. Myers, and A. J. Lee, “On the prac-
ticality of cryptographically enforcing dynamic access control policies
in the cloud,” 2016 IEEE Symposium on Security and Privacy, pp.
819-838, 2016.

[18] H. Tang, Y. Cui, C. Guan, J. Wu, J. Weng, and K. Ren, “Enabling Ci-
phertext Deduplication for Secure Cloud Storage and Access Control,”
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, Xi’an, China, pp. 59-70, 2016.

[19] W. Ding, Z. Yan, and R. H. Deng, “Encrypted Data Processing with
Homomorphic Re-Encryption,” Information Sciences, vol. 409–410, pp.
35-55, 2017.

[20] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” 13th ACM
conference on Computer and communications security. pp. 89-98, 2006.

[21] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, Cascais, Portugal, pp. 85-100, 2011.

