
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Xu, Xi; Fan, Ming; Jia, Ang; Wang, Yin; Yan, Zheng; Zheng, Qinghua; Liu, Ting
Revisiting the Challenges and Opportunities in Software Plagiarism Detection

Published in:
SANER 2020 - Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution,
and Reengineering

DOI:
10.1109/SANER48275.2020.9054847

Published: 01/02/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Xu, X., Fan, M., Jia, A., Wang, Y., Yan, Z., Zheng, Q., & Liu, T. (2020). Revisiting the Challenges and
Opportunities in Software Plagiarism Detection. In K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M.-E. Fokaefs,
& M. Zhou (Eds.), SANER 2020 - Proceedings of the 2020 IEEE 27th International Conference on Software
Analysis, Evolution, and Reengineering (pp. 537-541). Article 9054847 IEEE.
https://doi.org/10.1109/SANER48275.2020.9054847

https://doi.org/10.1109/SANER48275.2020.9054847
https://doi.org/10.1109/SANER48275.2020.9054847

1

Revisiting the Challenges and Opportunities in
Software Plagiarism Detection

Xi Xu ∗†, Ming Fan ∗†, Ang Jia ∗†, Yin Wang ∗†, Zheng Yan ‡§, Qinghua Zheng ∗†, and Ting liu ∗†
∗Key Laboratory of Intelligent Networks and Network Security, Ministry of Education, China

†Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, China
‡ State Key Lab on Integrated Services Networks, School of Cyber Engineering, Xidian University, China

§ Department of Communications and Networking, Aalto University, Finland
xx19960325@stu.xjtu.edu.cn; mingfan@mail.xjtu.edu.cn; jiaang@stu.xjtu.edu.cn; wy0724@stu.xjtu.edu.cn;

zyan@xidian.edu.cn; qhzheng@xjtu.edu.cn; tingliu@mail.xjtu.edu.cn

Abstract—Software plagiarism seriously impedes the healthy
development of open source software. To fight against code
obfuscation and inherent non-determinism of thread scheduling
applied against software plagiarism detection, we proposed a
new dynamic birthmark called DYnamic Key Instruction Sequence
(DYKIS) and a framework called Thread-oblivious dynamic Birth-
mark (TOB) for the purpose of reviving the existing birthmarks
and a thread-aware dynamic birthmark called Thread-related
System call Birthmark (TreSB). Though many approaches have
been proposed for software plagiarism detection, they are still
limited to satisfy the following highly desired requirements: the
applicability to handle binary, the capability to detect partial
plagiarism, the resiliency to code obfuscation, the interpretability
on detection results, and the scalability to process large-scale
software. In this position paper, we discuss and outline the
research opportunities and challenges in the field of software
plagiarism detection in order to stimulate brilliant innovations
and direct our future research efforts.

Index Terms—software plagiarism detection, software birth-
mark, source code similarity, binary code similarity

I. PUBLISHED WORK

Software plagiarism plagues software industry. The problem
is exacerbated by the growing popularity of open source
software, whose licenses typically grant the recipient of a
piece of software extensive rights to modify and redistribute
that software, but not without restriction. For companies and
individuals who are willing to disregard the stipulations of
licenses, it has become trivial to simply copy the source code
for unauthorized usage.

The goal of software plagiarism detection is to determine
whether a defendant program contains plagiarism code by
comparing it to a plaintiff program. In this paper, we use the
plaintiff and the defendant to represent the original program
and the program suspected of plagiarism, respectively. In the
past few years, we focused on binary based software plagia-
rism detection and published three works. The descriptions of
the works and main contributions are summarized as follows:

A. Software Plagiarism Detection with Birthmarks Based on
Dynamic Key Instruction Sequences

The burst of mature automated code obfuscation techniques
and tools make the plagiarism detection daunting. Obfuscation

Corresponding author: Ting Liu.

is intended initially to protect software intellectual property
but is now applied to hidden stolen code by plagiarists to
avoid detection. To make the matter worse, such plagiarism
is difficult to detect and prove because different compilation
processes of the same source code naturally produce different
binary code representations forming a kind of obfuscation.

The dynamic approaches make it possible to focus more on
the program semantics, rather than its syntax, for the execution
sequences can clearly reflect how the inputs are processed.

Thus, to fight against code obfuscation, we propose a new
dynamic birthmark extracted from the execution sequences,
called DYnamic Key Instruction Sequence (DYKIS) [30]. Ana-
lyzing the complete execution sequences is neither effective
(e.g., there are many instructions which are irrelevant to
the program logic) nor efficient (e.g., a complete execution
sequence of a program is usually extensive). Thus, we only
keep key instructions that are inherent to program logic,
and any change to such instructions leads to malfunction
of copied code. To achieve the desired properties of key
instructions, the instructions that both generate new values
(value-updating instructions) and propagate taints from the
input (input-correlated instructions) [36] are considered as
key instructions. For the operands in the key instructions are
sensitive to code obfuscation, an operand stripper is added to
remove them. Since a particular sequence is an abstraction of
the whole program, we use multiple executions and the k-gram
algorithm [22] to compute the similarity of birthmarks.

Moreover, we implement a DYKIS-based software plagia-
rism detection tool DYKIS-PD, is publicly available for down-
load at [2]. Our experiments on 342 versions of 28 different
programs show that our approach is not only resilient to
almost all the state-of-the-art semantics-preserving obfuscation
techniques but also able to detect cross-platform plagiarism.
Furthermore, the comparison with SCSSB [32] indicates that
our approach achieves higher accuracy and superior perfor-
mance with respect to any of the three performance metrics
including URC (Union of Resilience and Credibility), F-
Measure and MCC (Matthews Correlation Coefficient).

2

B. Reviving Sequential Program Birthmarking for Multi-
threaded Software Plagiarism Detection

With the popularity of multithreaded programs, a gap is
created between the current software development practice and
the software plagiarism detection technology, as the existing
dynamic approaches are applicable only to the plagiarism on
sequential programs.

To address the challenge, a systematic solution [28] is
proposed. First, a new concept called thread-aware birthmarks
is introduced to shield the influence of thread schedules on
executions. Then, we propose a framework called Thread-
oblivious dynamic Birthmark (TOB), that revives existing
techniques so they can be applied to detect plagiarism of
multithreaded programs.

Given a multithreaded execution trace, the trace is first
projected to multiple thread slices, each of which belongs
to an individual thread. Then, the thread slice birthmarks
can be extracted from the thread slices applying the existing
birthmark generate techniques, and the thread slices are not
sensitive to thread scheduling. Finally, individual thread slice
birthmarks are combined into a thread-oblivious birthmark for
the multithreaded program by using Slice Aggregation (SA) or
Slice Set (SS).

Furthermore, we have implemented a set of tools collec-
tively called TOB based Plagiarism Detection tool (TOB-PD)
by applying TOB to three existing representative dynamic
birthmarks, including SCSSB [32], DYKIS [30], and JB [26].
The source code of TOB-PD are publicly available at [4].

We have conducted extensive experiments on 418 versions
of 35 different multithreaded programs. Our empirical study
shows that TOB-PD is highly effective in detecting multi-
threaded plagiarism and is resilient to most state-of-the-art
semantics-preserving obfuscation techniques.

C. Exploiting Thread-Related System Calls for Plagiarism
Detection of Multithreaded Programs

The inherent non-determinism of thread scheduling severely
impacts plagiarism based on dynamic analysis. Despite thread
interleavings are complex, there exist characteristics or rules
that ensure the correct execution under the chaos. We found
some system calls that govern thread synchronization, priority
setting, thread initiating, and disposing. They can enforce
thread scheduling rather than being affected. They are also
essential to the semantics and correct executions of a multi-
threaded program. We call them thread-related system calls
and believe they form a favorable basis for generating thread-
aware birthmarks.

Based on analyzing Linux system calls [15], we treat
65 system calls as thread-related. They accomplish tasks,
including thread and process management (such as creation,
join and termination, capability setting and getting), thread
synchronization, signal manipulating, as well as thread and
process priority setting.

Based on the above discussions, to address the challenge of
plagiarism detection of multithreaded programs, we propose a
thread-aware dynamic birthmark called Thread-related System
call Birthmark (TreSB) [27]. For it is difficult to compare

the thread-related system call sequences across multiple runs
directly, the k-gram algorithm [22] is adopted to bound the
sequences with a length k window. Moreover, a birthmark tool
based on TreSB is implemented.

Our extensive experiments on a publicly available bench-
mark [3] consisting of 234 versions of 35 different multi-
threaded programs show that TreSB is resilient to most state-
of-the-art semantics-preserving obfuscation techniques imple-
mented in the best commercial and academic tools. In addition,
a comparison of our method against two recently proposed
thread-aware birthmarks SCSSBSA and SCSSBSS [29]
shows that TreSB outperforms both of them in terms of URC,
F-Measure and MCC.

D. Contribution

1. We propose a new dynamic birthmark called DYKIS,
which is obfuscation-resilient and platform-independent, to
enrich the birthmark-based plagiarism detection family.

2. We propose a framework called TOB that revives existing
techniques to address the challenge of nondeterministic thread
interleavings so they can be applied to detect plagiarism of
multithreaded programs.

3. We propose a thread-aware dynamic birthmark called
TreSB that can effectively detect plagiarism of multithreaded
programs.

4. In the domain of software plagiarism detection, our
three works were widely cited by top conferences and top
journals [21], [10], and many favorable comments were made
upon the good resilience to code obfuscation techniques and
the capability to work on multithreaded programs.

II. RECENT STATE OF THE ART AND PRACTICE

Although our proposed approaches demonstrate fairly good
performance on constructed datasets, unfortunately, their prac-
tical feasibility in real-world scenarios has not been well
evaluated due to several realistic requirements. For the appli-
cation of existing approaches in practical software plagiarism
detection, it is difficult for the plaintiff to file a software
plagiarism lawsuit since it needs to provide clear evidence
to prove that its software is illegally used by the defendant,
which violates the current copyright laws.

Specifically, the analysis objects are always in the form of
binaries since the source code of the defendant program is
typically unavailable in real world. Therefore, the evidence
should be extracted from the binaries that are hard for humans
to understand. Note that most existing approaches only provide
a similarity score between the plaintiff program and defendant
program, which cannot be used as evidence. In our opinion,
we should explain “where” and “why” we declare plagiarism
between the plaintiff program and defendant program.

To better understand the actual need of software plagiarism
detection, we identify the following five requirements:

• R1. The applicability to handle binary. The approach
should have the ability to analyze binaries since the
source code of the defendant program is generally dif-
ficult to obtain [13].

3

TABLE I: The Evaluation of Existing Software Plagiarism Detection Ap-
proaches

Approach R1 R2 R3 R4 R5

Moss [1]
JPlag [24]
AST [35]

GPLAG [19]
SKB [22]

SWKB [33]
SFB [17]

WSPB [18]
Cop [20]

DYKIS [30]
TOB [28]

TreSB [27]
LoPD [21]

• R2. The capability to detect partial plagiarism. The
defendant program may only steal the core code that
constitutes a small portion of the plaintiff program, which
is problematic to perform a comparison at a coarser
granularity [31]. For example, the approaches that only
calculate a similarity score for two whole programs would
be unsound to detect the partial plagiarism.

• R3. The resiliency to advanced code obfuscation. The
mature obfuscation techniques would make the detection
harder since they can easily change the structure of
the code while preserving the code semantics [20]. For
example, different compilation options are always used as
a type of obfuscation techniques to change the assembly
code, resulting in a low similarity score.

• R4. The interpretability of detection results. The detec-
tion results of existing approaches are usually reported
in the form of similarity scores (e.g., [18], [21]), which
cannot be used as evidence in law. In other words, the
results only weigh the degree of similarity between two
programs rather than pinpointing on the exact cause.

• R5. The scalability to process large-scale software. Soft-
ware plagiarism is always detected in a limit number of
suspicious programs in existing approaches. However, in
reality, the number of suspicious programs is much bigger
than those in the experiments of existing approaches,
thus making the scalability to process large-scale software
becomes a critical need [31].

With respect to the above requirements, we summarize and
compare the existing plagiarism detection approaches in Table
I by applying the following criteria:

• : The approach satisfies the requirement.
• : The approach satisfies the part of the requirement.
• : The approach does not satisfy the requirement.

According to the results presented in Table I, we observe
that none existing approach can meet all the five requirements,
which motivates us to enhance the software plagiarism tech-
niques in the future.

For R1, the source code based approaches (e.g., Moss [1],
JPlag [24], AST [35], and GPLAG [19]) cannot satisfy since
they require the source code of the defendant program.

For R2, most dynamic analysis binary based approaches,
(e.g., DYKIS [30], TOB [28], TreSB [27], and LoPD [21])
would fail because they detect whole program plagiarism and
only generate a similarity score. The approaches based on

static analysis (e.g., SKB [22], SWKB [33], SFB [17] and
WSPB [18]) can satisfy R2, because static analysis make it
possible to be applied at different granularities, such as basic
blocks, functions, which can be detected locally.

For R3, Moss [1] and JPlag [24] fail to satisfy because
they rely on token matching, which would be unsound for the
code obfuscation such as junk code insertion and statement
reordering. R3 is not satisfied in SKB [22] and SWKB [33],
because they ignore the program syntax and semantic infor-
mation. AST [35] based on abstract syntax tree only partially
satisfy R3, as a result of failing to handle advanced code
obfuscation, for example, instruction rearrangement, statement
splitting. SFB [17] and WSPB [18] also only partially satisfy
R3, because they are vulnerable to control flow obfuscation.
GPLAG [19] which relies the analysis on Program Depen-
dency Graphs (PDGs) can perform better robustness against
advanced semantics-preserving code obfuscation techniques
and satisfies R3. By combining rigorous program semantics
with longest common subsequence based fuzzy matching,
Cop [20] is obfuscation-resilient and can satisfy R3. Since
the dynamic approaches can concentrate more on the program
semantics, DYKIS [30], TOB [28], TreSB [27], and LoPD [21]
meet R3 quite well.

For R4, Moss [1] and JPlag [24] satisfy well. In addition to
providing the similarity scores, Moss [1] and JPlag [24] show
the code fragments in defendant program that are matched
to the plaintiff program to support the detection results.
Thus, the detection results of Moss [1] and JPlag [24] have
good interpretability. Unfortunately, there is no binary based
approach considering the interpretability of detection results.

Finally, R5 is a real challenge for the most graph-based
approaches. For example, Cop [20] is based on graph isomor-
phism, which is time consuming since it is a NP-hard problem.
In addition, symbolic execution combined with theorem prov-
ing is not scalable due to the explosion of state space.

Except for the above approaches, there are many related
works in other domains (e.g., [12], [9], [11]), such as clone de-
tection and bug detection. However, clone detection (e.g., [16],
[14]) assumes the availability of source code and minimal
code obfuscation. Bug search (e.g., [7], [23]) is based on
binary code, and it does not consider obfuscation in general.
Meanwhile, the results of these approaches are ill-suited as
plagiarism evidence because of the interpretability problem.
In a sense, the results of plagiarism detection are much more
elaborate than conventional these approaches.

III. DISCUSSION

Capitalizing on the performed literature review, we find
although the researches of software plagiarism detection have
made significant progress, we still suffer from great limitations
in terms of the resiliency to code obfuscation, the interpretabil-
ity of detection results, and the scalability to process large-
scale software, in the practice of software plagiarism detection.

In this section, we revisit the challenges by reviewing
related work and pointing their weakness on satisfying the
expected requirements. Moreover, we explore new research
opportunities, and identify possible research directions that can
be followed to address the challenges effectively in future.

4

 push rbp
 mov edx, esi
 mov rbp, rdi
 mov rsi, rdi
 push rbx
 sub rsp, 8
 mov edi, cs:ifd
 call read_buffer
 test eax, eax
 mov ebx, eax
 jz short loc_411D0E

 call read_error

 cmp eax, 0FFFFFFFFh
 jz short loc_411D17

 add rsp, 8
 mov eax, ebx
 pop rbx
 pop rbp
 retn

 mov esi, eax
 mov rdi, rbp
 call updcrc
 mov cs:crc, rax
 mov eax, ebx
 add cs:bytes_in, rax

D

A

C

B

E

(a) G1

 push rbp
 mov rbp, rsp
 sub rsp, 20h
 mov [rbp+var_10], rdi
 mov [rbp+var_14], esi
 mov edi, ds:ifd
 mov rsi, [rbp+var_10]
 mov edx, [rbp+var_14]
 call read_buffer
 mov [rbp+var_18], eax
 cmp [rbp+var_18], 0
 jnz loc_41073A

 call read_error

 cmp [rbp+var_18], 0FFFFFFFFh
 jnz loc_410749

 mov eax, [rbp+var_4]
 add rsp, 20h
 pop rbp
 retn

 mov rdi, [rbp+var_10]
 mov esi, [rbp+var_18]
 call updcrc
 mov ds:crc, rax
 mov esi, [rbp+var_18]
 mov eax, esi
 add rax, ds:bytes_in
 mov ds:bytes_in, rax
 mov esi, [rbp+var_18]
 mov [rbp+var_4], esi

d

a

c

b

e

 mov eax, [rbp+var_18]
 mov [rbp+var_4], eax
 jmp loc_410778

f

(b) G2

Fig. 1: The CFG of file read

A. The Resiliency to Advanced Code Obfuscation

Although many efforts are being made to fight against code
obfuscation, we are still facing many challenges. Specifically,
the compilation processes of a program is a “grey box”, the
input is source code, and the output is the corresponding binary
program. The property provides the cradle for the hiding of
plagiarism since the source code of the defendant program
is generally not public. The plagiarist can modify any of
the compilation parameters (i.e., compiler vendor, compiler
version, optimization level, target architecture, and platform)
in the “grey box” to produce a different binary for the plagia-
rized code. Especially if the changed target architecture uses
a different instruction set, the produced binary can be totally
different. Plagiarism could also be hidden with deliberate use
of existing mature obfuscation tools.

Taking the function file read in the single-file lossless data
compression utility gzip for example, Fig. 2(a) and Fig. 2(b)
present the control flow graphs of the same source code
compiled with gcc 4.8 [6] and clang 3.9 [5], respectively.
For presentation purposes, the basic blocks in G1 and G2 are
displayed in colours and marked with letters. Matching blocks
are in the same colour, and blocks in white only exist in G2.
We use capital letters for basic blocks in G1 and corresponding
lowercase letters for matching blocks in G2.

The two graphs demonstrate that with different compilation,
the control flow graphs are quite different, even for the same
function. The differences between the two graphs include the
structural differences (e.g., basic block adding or deleting) and
syntactical differences (e.g., operand substitution, instruction
adding or deleting). The best way to tackle this problem
is to identify the similar program based on the program
semantics abstracted from the obfuscated code. However, it is
challenging to extract program semantics from binary. Thanks
to the availability of the source code of the plaintiff program,
the problem gets much easier when the binary-to-binary com-
parison can be turned into the source-to-binary comparison.
The more program semantics can be easily extracted from
source code and potentially improve accuracy compared with
binary. We can first select the unique and stable part from
the source code of the plaintiff program. Then we generate its
corresponding binary signature, and extract features from the
signature to compare with the defendant program.

Predictably, fighting against code obfuscation should be paid
much attention to in the future study.

B. The Interpretability of Detection Results

As mentioned above, there is a blindingly obvious and yet
long-ignored problem in software plagiarism detection, the
interpretability of detection results.

The detection results of the most existing plagiarism detec-
tion approaches are usually reported in the form of similarity
scores between the plaintiff and defendant program. Further-
more, there is no evidence presented to explain and describe
the similarity between the plaintiff and defendant program.
To this extent, these approaches are only a program for idea
demonstration, but not a practical tool.

Therefore, when proposing a software plagiarism detection
approach, the consideration of the interpretability of detection
result as an additional design driver can improve its practi-
cality. Interpretability can act as insurance that guarantees the
accuracy and reliability of the detection results.

Moss [1] and JPlag [24] provide the matching code to
support the decision. Although these approaches are limited
in practice for the requirement of source code and weakness
in the presence of obfuscation techniques, we can scale that
idea into other detection approaches to improve significantly
the interpretability of detection results.

Based on providing the matching code, identifying the core
codes, checking their semantics equivalence, and reproducing
the transformation process from the plaintiff program to the
defendant program can make the evidence more compelling.
Although this problem is full of challenges and difficulties, it
must be solved before applying in practical detection.

C. The Scalability to Process Large-Scale Software

Although many approaches are proposed to improve the
detection accuracy, the scalability to process large-scale soft-
ware plagiarism remains insufficiently addressed to date. For
example, the semantics-based approach COP [20] took an hour
in the comparison thttpd and sthttpd, and half a day in the
comparison between Gecko and Firefox.

There are many existing software plagiarism detection ap-
proaches based on the graph feature (e.g., Control Flow Graph
(CFG)) which can depict the program semantics. However, the
similarity calculation between the graph-based features is lim-
ited by the efficiency of existing graph matching approaches,
which is known as an NP-hard problem. These approaches are
not effective to process large-scale software plagiarism. Thus,
the further development of scalability is needed to improve
the detection approaches.

Qian et al. [25] propose a real-time bug search engine, Ge-
nius, by converting the CFGs into high-level numeric vectors.
Eschweiler et al. [8] implement a bug search phototype dis-
covRE, which allows for a fast similarity comparison between
binary functions based on a set of robust numeric features.

In addition to these, deep learning is well combined with
binary analysis because of high accuracy and high efficiency.
Xu et al. [34] propose a neural network-based vulnerability
detection method, Gemini, to generate the embedding, based

5

on the Attributed Control Flow Graph (ACFG) of each binary
function. Even though these approaches have achieved a lot in
scalability, they cannot be used in plagiarism detection directly
due to some limitations. Genius [25] and discovRE [8] rely
on graphs which would cause the loss of concrete instruction-
level semantics. Gemini [34] labels each basic block with a set
of manually selected attributes, which would ignore important
semantic information. Moreover, it overlooks the importance
of the order of the nodes.

Many challenges still remain, but we believe these ap-
proaches can be combined with software plagiarism detection
to improve scalability.

IV. CONCLUSION

In this paper, we first summarize our three previous publi-
cations on software plagiarism detection. Then, we identify
five highly desired requirements by seriously considering
the demand of practical application. Employing the specified
requirements, we further evaluate the existing approaches and
discuss their advantages and limitations. Finally, we point
out the main research challenges and propose a number of
potential research directions to motivate our future work.

ACKNOWLEDGMENT

This work was supported by National Key RD Program of
China (2016YFB1000903), National Natural Science Founda-
tion of China (61632015, 61772408, U1766215, 61721002,
61532015, 61833015), Ministry of Education Innovation Re-
search Team (IRT 17R86), and Project of China Knowledge
Centre for Engineering Science and Technology.

REFERENCES

[1] Moss: A system for detecting software plagiarism. http://theory.stanford.
edu/∼aiken/moss/, 2013.

[2] DYKIS-PD. http://labs.xjtudlc.com/labs/wlaq/dbpd/site/, 2015.
[3] Benchmark. http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site/download.

html, 2017.
[4] TOB-PD. http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site/, 2017.
[5] clang. https://clang.llvm.org, 2019.
[6] gcc. https://gcc.gnu.org, 2019.
[7] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static

detection of common vulnerabilities in firmware. In ACM SIGPLAN
Notices, volume 53, pages 392–404. ACM, 2018.

[8] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
discovre: Efficient cross-architecture identification of bugs in binary
code. In Proc.NDSS, 2016.

[9] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua
Zheng, and Ting Liu. Android malware familial classification and
representative sample selection via frequent subgraph analysis. IEEE
TIFS, 13(8):1890–1905, 2018.

[10] Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and Ting Liu.
Dapasa: detecting android piggybacked apps through sensitive subgraph
analysis. IEEE TIFS, 12(8):1772–1785, 2017.

[11] Ming Fan, Xiapu Luo, Jun Liu, Chunyin Nong, Qinghua Zheng, and
Ting Liu. Ctdroid: leveraging a corpus of technical blogs for android
malware analysis. IEEE Transactions on Reliability, 2019.

[12] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua
Zheng, and Ting Liu. Graph embedding based familial analysis of
android malware using unsupervised learning. In Proc.ICSE, pages 771–
782. IEEE, 2019.

[13] Yoon-Chan Jhi, Xinran Wang, Xiaoqi Jia, Sencun Zhu, Peng Liu, and
Dinghao Wu. Value-based program characterization and its application
to software plagiarism detection. In Proc.ICSE, pages 756–765. IEEE,
2011.

[14] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of code
clones. In Proc.ICSE, pages 96–105. IEEE, 2007.

[15] Michael Kerrisk and P Zijlstra. Linux programmer’s manual. Linux
Man-Pages Project, 2017.

[16] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. Mecc:
memory comparison-based clone detector. In Proc.ICSE, pages 301–
310. IEEE, 2011.

[17] Hyun-il Lim and Taisook Han. Analyzing stack flows to compare
java programs. IEICE TRANSACTIONS on Information and Systems,
95(2):565–576, 2012.

[18] Hyun-il Lim, Heewan Park, Seokwoo Choi, and Taisook Han. Detecting
theft of java applications via a static birthmark based on weighted
stack patterns. IEICE TRANSACTIONS on Information and Systems,
91(9):2323–2332, 2008.

[19] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection
of software plagiarism by program dependence graph analysis. In
Proc.KDD, pages 872–881. ACM, 2006.

[20] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
Semantics-based obfuscation-resilient binary code similarity comparison
with applications to software plagiarism detection. In Proc.FSE, pages
389–400. ACM, 2014.

[21] Jiang Ming, Fangfang Zhang, Dinghao Wu, Peng Liu, and Sencun
Zhu. Deviation-based obfuscation-resilient program equivalence check-
ing with application to software plagiarism detection. TRELIAB,
65(4):1647–1664, 2016.

[22] Ginger Myles and Christian S. Collberg. K-gram based software
birthmarks. In Proc.SAC, 2005.

[23] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and
Christian Rossow. Leveraging semantic signatures for bug search in
binary programs. In Proc.ACSAC, pages 406–415. ACM, 2014.

[24] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. JPlag: Finding
plagiarisms among a set of programs. Citeseer, 2000.

[25] Feng Qian, Rundong Zhou, Chengcheng Xu, Cheng Yao, Brian Testa,
and Heng Yin. Scalable graph-based bug search for firmware images.
2016.

[26] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic
birthmark for java. In Proc.ASE, pages 274–283. ACM, 2007.

[27] Zhenzhou Tian, Ting Liu, Qinghua Zheng, Ming Fan, Eryue Zhuang,
and Zijiang Yang. Exploiting thread-related system calls for plagiarism
detection of multithreaded programs. JSS, 119:136–148.

[28] Zhenzhou Tian, Ting Liu, Qinghua Zheng, Eryue Zhuang, Ming Fan,
and Zijiang Yang. Reviving sequential program birthmarking for
multithreaded software plagiarism detection. IEEE TSE, 44(5):491–511,
2017.

[29] Zhenzhou Tian, Qinghua Zheng, Ting Liu, Ming Fan, Xiaodong Zhang,
and Zijiang Yang. Plagiarism detection for multithreaded software based
on thread-aware software birthmarks. In Proc.ICPC, pages 304–313.
ACM, 2014.

[30] Zhenzhou Tian, Qinghua Zheng, Ting Liu, Ming Fan, Eryue Zhuang,
and Zijiang Yang. Software plagiarism detection with birthmarks based
on dynamic key instruction sequences. IEEE TSE, 41(12):1217–1235,
2015.

[31] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Behavior
based software theft detection. In Proc.CCS, pages 280–290. ACM,
2009.

[32] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Detecting
software theft via system call based birthmarks. In Proc.ACSAC, pages
149–158. IEEE, 2009.

[33] Xin Xie, Fenlin Liu, Bin Lu, and Lin Chen. A software birthmark based
on weighted k-gram. In Proc.ICIS”, volume 1, pages 400–405. IEEE,
2010.

[34] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform binary
code similarity detection. In Proc.CCS, pages 363–376. ACM, 2017.

[35] Liping Zhang, Dongsheng Liu, Yanchen Li, and Mei Zhong. Ast-based
plagiarism detection method. In IOT, pages 611–618. Springer, 2012.

[36] Xiaodong Zhang, Zijiang Yang, Qinghua Zheng, Yu Hao, Pei Liu, and
Ting Liu. Tell you a definite answer: Whether your data is tainted during
thread scheduling. IEEE TSE, 2018.

