
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Latvala, Sampsa; Sethi, Mohit; Aura, Tuomas
Evaluation of Out-of-Band Channels for IoT Security

Published in:
SN Computer Science

DOI:
10.1007/s42979-019-0018-8

Published: 01/01/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Latvala, S., Sethi, M., & Aura, T. (2020). Evaluation of Out-of-Band Channels for IoT Security. SN Computer
Science, 1(1), Article 18. https://doi.org/10.1007/s42979-019-0018-8

https://doi.org/10.1007/s42979-019-0018-8
https://doi.org/10.1007/s42979-019-0018-8

Vol.:(0123456789)

SN Computer Science (2020) 1:18
https://doi.org/10.1007/s42979-019-0018-8

SN Computer Science

ORIGINAL RESEARCH

Evaluation of Out‑of‑Band Channels for IoT Security

Sampsa Latvala1 · Mohit Sethi1,2 · Tuomas Aura1

Received: 9 August 2019 / Accepted: 21 August 2019 / Published online: 3 September 2019
© The Author(s) 2019

Abstract
Secure bootstrapping is the process by which a device gets the necessary configuration information and security credentials
to become operational. In many pervasive computing and Internet-of-Things scenarios, it is often not possible to rely on the
existence of a trusted third party or other network infrastructure for bootstrapping. Therefore, several device bootstrapping
protocols rely on an out-of-band (OOB) channel for initial device authentication and configuration. We begin this paper by
understanding the need for OOB channels and performing a literature survey of existing standards and devices that rely on
OOB channels. We then look at one candidate bootstrapping protocol: Nimble out-of-band authentication for EAP (EAP-
NOOB). We provide a brief overview of the EAP-NOOB protocol and describe its unique OOB channel requirements.
Thereafter, we implement three OOB channels for EAP-NOOB using near-field communication, quick response codes, and
sound. Using our implementation, we evaluate the usability, security, benefits, and limitations of each of the OOB channels.

Keywords IoT security · Out-of-band · Authentication · EAP-NOOB · QR code · NFC

Introduction

The number of internet-of-things (IoT) devices is growing
rapidly. According to a forecast [12], by 2022, the amount
of Internet connected devices will reach about 29 billion,
of which 18 billion will be IoT-related devices. IoT devices
include connected cards, machines, instruments, wearables,
and other consumer electronics. Internet connectivity for
these devices aims to improve user experience by automat-
ing various processes and exchanging information without
user involvement. While IoT provides great benefits and
opportunities, there exist severe security risks [28]. Insecure
IoT devices may act as gateways for attacks against the entire

Internet infrastructure. According to Oracevic et al. [28], the
biggest challenges in IoT are presently related to security
and privacy protection. Therefore, it is important that IoT
devices have robust security mechanisms.

Secure bootstrapping is the process by which an IoT
device gets the necessary configuration information and
security credentials to become an operational part of the
network and an IoT ecosystem. IoT device manufacturers
currently employ a variety of often proprietary secure boot-
strapping techniques for their IoT devices [44]. This con-
tradicts the idea of seamless interoperability of the devices
in the IoT while also adding costs and complexity to the
manufacturing process. Furthermore, users are often con-
fused when different devices require different processes for
initial bootstrapping and device configuration.

Extensible authentication protocol (EAP) is an authen-
tication framework that supports numerous methods for
authentication [42]. Nimble out-of-band authentication for
EAP (EAP-NOOB) is a new EAP method which provides a
nimble approach for IoT device bootstrapping. EAP-NOOB
is intended specifically for bootstrapping various IoT devices
with limited input and output capabilities [6]. Compared to
all other EAP methods, EAP-NOOB does not require any
pre-configured credentials on the device. Instead, the device
registration in a server database, ownership of the device,
and the authentication credentials for both network access

This article is part of the topical collection “Advances in Internet
Research and Engineering” guest edited by Mohit Sethi, Debabrata
Das, P. V. Ananda Mohan and Balaji Rajendran.

 * Sampsa Latvala
 sampsa.latvala@aalto.fi

 Mohit Sethi
 mohit.sethi@aalto.fi

 Tuomas Aura
 tuomas.aura@aalto.fi

1 Aalto University, Espoo, Finland
2 NomadicLab, Ericsson Research, Kirkkonummi, Finland

http://orcid.org/0000-0002-9730-1955
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0018-8&domain=pdf

 SN Computer Science (2020) 1:1818 Page 2 of 17

SN Computer Science

and application-level security are all be established at the
time of the device deployment. EAP-NOOB relies on a user-
assisted out-of-band (OOB) channel for ensuring security of
the bootstrapping and configuration process.

We begin this paper by discussing the reasons for which
many secure IoT bootstrapping protocols such as EAP-
NOOB rely on an OOB channel. We then perform a litera-
ture survey of existing security protocols and devices that
use OOB channels (“Background”). Thereafter, we briefly
summarize the EAP-NOOB protocol and its unique OOB
channel requirements (“EAP-NOOB”). We implement Near-
Field Communication (NFC), Quick Response (QR) codes,
and audio as OOB channels for the EAP-NOOB protocol
(“OOB channel implementation”). We also develop a custom
Android application for better understanding the security
and user experience of the three OOB channels. Using our
implementation, we evaluate the benefits and limitations of
each of the OOB channel against the unique requirements
of the EAP-NOOB protocol (“Evaluation”). Finally, we pro-
vide some concluding remarks and discuss potential future
research work (“Discussion and future work”).

To summarize, the contributions of this paper are as
follows:

1. A thorough literature survey of the use of OOB channels
in security protocols.

2. Summarize the EAP-NOOB protocol and its unique
OOB requirements.

3. Implement three different OOB channels for the EAP-
NOOB protocol.

4. Using EAP-NOOB as a candidate bootstrapping pro-
tocol, analyze the benefits and limitations of the three
OOB channels implemented.

Background

Many network protocols rely on an authenticated key
exchange (AKE) for setting up secure communication and
thwarting any network attackers. Indeed, AKE has become
one of the cornerstones for many widely deployed Internet
protocols such as Transport Layer Security (TLS). Typi-
cal AKE schemes require a trusted third party (TTP). This
TTP may need to be always online, as is the case for Ker-
beros. Alternatively, a somewhat offline TTP with certificate
authorities (CAs) and the public key infrastructure (PKI) is
used by protocols such as TLS.

Relying on a trusted third party is, however, not always
possible or desirable. For example, a protocol that uses
AKE for network access authentication and security can-
not rely on a scheme that requires connectivity to a remote
TTP. Similarly, the operational costs and network overhead
of deploying certificates maybe prohibitive. The certificate

issuance process itself can also have shortcomings leading
to vulnerabilities in an AKE scheme. Mayrhofer et al. [24]
also note that many pervasive computing and IoT scenarios
cannot rely on the existence of a globally trusted third
party.

Therefore, several network protocols have taken the
approach of involving the user to act as the trusted third
party for achieving AKE. These protocols often involve
human interaction through an out-of-band (OOB) commu-
nication channel. Out-of-band (OOB) refers to a separate
communication channel severed from the primary in-band
channel over which the actual network communication
occurs [11, 19]. OOB channel provides robustness against
attacks by introducing a second, independent communica-
tion channel. To eavesdrop or perform a man-in-the-middle
attack (MITM) on the primary channel, the attacker is also
required to gain access to the OOB channel during the pro-
tocol execution. This secondary channel is often either used
to transmit an authenticated shared secret or to verify infor-
mation exchanged over the primary communication channel.
Protocols that rely on OOB channels can be roughly divided
into four different classes based on the characteristics of the
OOB channel and the information communicated over it:

1. Direct key-provisioning In this method, the crypto-
graphic keys are provisioned directly over the OOB
channel. Currently, a security strength of 128 bits is
necessary for acceptable cryptographic protection.
Therefore, this approach requires a relatively long OOB
message for satisfying the key length requirements.
For stronger keys, such as 256 or 368 bits, the message
becomes even longer. Thus, the OOB channel bandwidth
plays an important role. In addition, each key update
requires repeated communication over the OOB channel.
Furthermore, when the cryptographic keys are provi-
sioned directly over the OOB channel, the confidential-
ity of the channel becomes extremely important.

2. Confirming key exchange In this method, the OOB chan-
nel is utilized for only verifying the Diffie–Hellman
(DH) key exchange performed over the in-band chan-
nel. Therefore, the OOB messages are often short.

3. Fuzzy OOB channels In this method, the nodes authen-
ticating each other use a lossy analogue OOB channel.
The OOB channel may be used directly for transferring a
secret to both the nodes. For example, keys sent directly
over a human-perceptible audio channel. Alternatively,
the fuzzy OOB channel may be used to confirm the key
exchange performed over the primary in-band channel.
For example, Sethi et al. [33] use synchronized user
drawn patterns as the OOB channel.

4. OOB channel for login services This approach provides
the user with additional secret information over the OOB
channel. For example, the user may receive a PIN code

SN Computer Science (2020) 1:18 Page 3 of 17 18

SN Computer Science

via the Short Message Service (SMS) for logging into
an online service.

While OOB channels provide an efficient mechanism for
bootstrapping security in ad-hoc IoT deployments, their ben-
efits can be questioned, since they typically require some
level of user interaction and involvement. Requiring users
to perform complex operations can not only have a negative
effect on the usability, but also the security of the system.
Kainda et al. [19] remind us that secure systems have a ten-
dency of being broken by their users. Security is determined
by the weakest link, and most often, the user is the weak-
est link [10, 19]. Therefore, protocols using OOB channels
need to also consider the added complexity for the user and
should attempt to reduce the number of steps or operations
required from the user.

Many modern smart home devices require the user to
have a smartphone or a tablet as a companion device for
performing the OOB steps. This companion device might
be used for both the initial setup process of the devices and
for remote control of the devices once they are functional.
We will now look at some existing protocols, standards, and
devices that make use of OOB channels for security.

Bluetooth

Bluetooth [9] is a widely deployed short-range wireless
communication standard. Bluetooth is used as the commu-
nication channel in wireless accessories, such as keyboards,
computer mice, headphones, and speakers. It takes advan-
tage of OOB channels for pairing devices before they can
securely communicate.

The Bluetooth Secure Simple Pairing process consists of
three steps [37]. In the first step, the devices being paired
perform a Diffie–Hellman (DH) key exchange. This is fol-
lowed by an authentication step, which is performed over
an OOB channel. The Bluetooth standard supports three
OOB authentication methods that verify the performed key
exchange [9, 37]:

1. Numeric comparison In this method, the user is required
to compare and confirm that the short six-digit codes are
identical on the displays of the two devices. In addition
to verifying the key exchange, it provides confirmation
that the user has paired the correct devices. This pairing
method is suitable for pairing devices with displays and
some input capabilities for the user to confirm the pair-
ing.

2. Passkey entry In this method, the first device displays a
six-digit passkey, which the user is required to enter into
the second device. This pairing method is suitable for
scenarios, where one device only has input capabilities
and lacks a display, e.g., a keyboard.

3. Out of band This method relies on an OOB channel, e.g.,
near-field communication (NFC). The channel is utilized
for discovering other devices and exchanging or transfer-
ring cryptographic information needed for completing
the device-pairing process.

Finally, in the third step, both devices confirm the DH key
exchange with message authentication codes (MAC) over
the in-band channel [37].

Bluetooth also supports an unauthenticated Diffie–Hell-
man key exchange for devices that have no input/output (I/O)
capabilities. This just-works method only protects against
passive eavesdropping while remaining vulnerable to man-
in-the-middle attacks.

Nest

Nest Labs1 is a smart home appliances manufacturer. These
smart appliances range from cameras, thermostats, door-
bells, and locks. To function correctly, Nest devices require
Internet access, a companion Nest smartphone application,
and a registered user account. Nest devices must be paired
over Bluetooth before they can be configured. The pairing
process is completed with the help of QR codes (or serial
number and PIN codes) which are affixed to the device or are
available in the retail packaging. Configuration information
such as the Service Set IDentifier (SSID) and passphrase of
the Wi-Fi network that the device should use for Internet
connectivity is then sent over the secure Bluetooth connec-
tion established.

Chromecast

Google Chromecast2 is a digital media player which allows
users to cast media from their smartphone or tablet onto a
television. Chromecast is attached to the television over a
high-definition multimedia interface (HDMI) port. Chrome-
cast creates its own local wireless network over which it
receives management commands issued by the user through
the companion Google Cast application.

To pair Chromecast with the corresponding companion
application, a user needs to connect to the wireless network
created by Chromecast. Information about the local wireless
network of Chromecast, i.e., SSID and passphrase is dis-
played on the television to which the Chromecast is attached.
After a user connects to the network created by Chromecast,
the application and the television display OOB verification
messages in the form of four-digit codes. This step requires
the user to compare and confirm that the codes are indeed

1 Nest Labs. https ://nest.com.
2 Chromecast. https ://suppo rt.googl e.com/chrom ecast /.

https://nest.com
https://support.google.com/chromecast/

 SN Computer Science (2020) 1:1818 Page 4 of 17

SN Computer Science

the same. Thereafter, the application asks the user for details
of the Wi-Fi network which provides Internet-access for
Chromecast.

Newer versions of Google Chromecast also use ultra-
sound as an additional OOB channel. This is used for pair-
ing Chromecast with guest devices.3 Instead of manually
entering or verifying any PIN codes, the Chromecast sends
PIN codes via the speakers of the television to which it is
attached. Chromecast uses high-frequency sound to send
ultrasonic tokens which are picked by the guest user’s smart-
phone. The pairing process then completes and the guest
user can cast digital media to the TV. PIN codes sent to guest
users are only valid for a day.

Apple

Apple manufactures various wireless accessories, such
as, keyboards and headphones for their smartphones, tab-
lets, and computers. As with other wireless devices, Apple
devices require pairing before they can securely commu-
nicate. Most Apple devices communicate with Bluetooth
and follow the pairing process defined by the Bluetooth
specification. Devices with limited I/O capabilities, such
as AirPod4 headphones, rely on the just-works pairing
method. The initial pairing process is triggered by open-
ing the charging case of the headphones near another Apple
device, e.g., iPhone. User is then required to accept the UI
prompt displayed on the smartphone, which finalizes the
pairing process.

For pairing Apple devices with displays, Apple employs
a custom moving image [4]. This method of pairing requires
users to already have a registered Apple product with a
functional camera. An example of this would be the pair-
ing process between an Apple Watch5 and an iPhone. After
turning on the watch, nearby iPhones with Bluetooth enabled
are prompted with a UI notification to pair with the watch.
Accepting the prompt opens the camera application on the
phone and the watch simultaneously displays a swirling
image. The watch and the iPhone are successfully paired
once the swirling image has been captured by the camera
application. For scenarios, where an iPhone camera is not
available, Apple Watch supports manual pairing. In this
method, the user identifies the watch on the phone with a
five-digit identifier. After choosing the watch from the avail-
able Bluetooth devices list, the watch displays a six-digit
code which the user is required to input into the phone. This

approach follows the passkey entry method of Bluetooth
Secure Simple Pairing.

Apple Home6 is an application that allows users to pair
and control many Apple Homekit certified smart home
devices. Although the pairing process may vary slightly for
each Homekit certified device, all of them rely on trans-
ferring static codes over an OOB channel. The codes are
either attached to the device itself or are found inside the
retail packaging. As an illustrative example, we describe
the pairing process between a Homekit FIBARO sensor7
and an iPhone. Once a FIBARO sensor device is powered
up by removing the battery blocker, it shows a blue light
indicating that it is ready to be paired. The user then selects
the sensor device from the list of nearby Bluetooth devices
shown on the iPhone. To complete the pairing process, the
user enters an eight-digit PIN code or scans a QR code when
prompted. This PIN code or QR code is found inside the
retail packaging.

Group Messaging

Popular group messaging applications, such as Telegram,8
WhatsApp9 and Signal,10 support end-to-end encryption
with OOB verification. The verification requires users to
compare information shown on each other’s devices.

In Telegram, encrypted communication is established
with a Diffie–Hellman key exchange [39]. Based on the
key exchange, a picture is generated with additional textual
representation of the keys [40]. To confirm that the end-to-
end connection is secure, users compare the pictures. If the
images are identical on the participating devices, then users
can have a strong guarantee that the connection is secure.

To confirm encrypted end-to-end communication in
WhatsApp, users visually compare a 60-digit string [43]
shown on each of their devices. The 60-digit string is con-
structed by hashing each user’s public identity key to a
30-digit string and concatenating the two strings. A study
conducted by Naor et al. [26] showed that the approach of
numerical comparison in WhatsApp remains vulnerable to
man-in-the-middle attacks when the users are lazy and only
compare half (or less) of the 60-digit string. WhatsApp also
provides the option of using QR codes instead of visually
comparing strings. In this method, users scan a QR code
shown on the other user’s device. After scanning the QR

3 Chromecast Guest mode. https ://devel opers .googl e.com/cast/docs/
guest _mode.
4 AirPods. https ://www.apple .com/airpo ds/.
5 Apple Watch. https ://www.apple .com/watch /.

6 Apple Home. https ://www.apple .com/ios/home/.
7 FIBARO Sensor. https ://manua ls.fibar o.com/hk-door-windo w-senso
r/.
8 Telegram. https ://teleg ram.org, and Secret chat. https ://teleg ram.
org/faq.
9 WhatsApp. https ://whats app.com.
10 Signal. https ://signa l.org.

https://developers.google.com/cast/docs/guest_mode
https://developers.google.com/cast/docs/guest_mode
https://www.apple.com/airpods/
https://www.apple.com/watch/
https://www.apple.com/ios/home/
https://manuals.fibaro.com/hk-door-window-sensor/
https://manuals.fibaro.com/hk-door-window-sensor/
https://telegram.org
https://telegram.org/faq
https://telegram.org/faq
https://whatsapp.com
https://signal.org

SN Computer Science (2020) 1:18 Page 5 of 17 18

SN Computer Science

code, WhatsApp displays a green check mark if the public
identity key embedded in the QR code matches with public
identity key originally registered with WhatsApp.

One‑Time Passwords

One-time password (OTP) sent via the short message service
(SMS) is one of the most used multi-factor authentication
and authorization schemes [32]. Users must have access to
a registered smartphone in addition to the typical user ID
and password information for logging into an online service
that uses OTPs. SMS is used by many banks, online stores,
and social networks [36] for sending OTPs. However, in
some cases, the way these methods are implemented does
not protect against phishing and man-in-the-middle (MITM)
attacks. Some service providers, including various Internet
forums, even use access to an email account as an OOB
channel to verify users. However, Grassi et al. [16] suggest
that email should no longer be considered a secure out-of-
band authentication channel.

Most banking systems in Finland take advantage of key
lists in online banking and authentication. These are small
paper sheets with printed random numbers which are asked
during login process and during confirmation of payments
and wire transfers. Furthermore, these numbers are used for
verifying the identity of the user when logging into public
services. However, most banks now provide an application
to generate OTPs instead.

EAP‑NOOB

In this section we provide a brief overview of the Nimble
Out-of-Band authentication for EAP (EAP-NOOB) protocol
[6]. We also document the unique OOB channel require-
ments of EAP-NOOB.

As stated in “Introduction”, EAP-NOOB is a new EAP
method that is specified as an open standard. It is intended
as a generic protocol for bootstrapping IoT devices. As is
the case with many IoT devices, EAP-NOOB specifically
supports devices that have limited input and output capabili-
ties. EAP-NOOB does not require the devices to have any
pre-configured authentication credentials. Instead, device
configuration and registration to a server database along
with ownership information and authentication of newly cre-
ated credentials are all performed during the initial device
deployment. In this regard, EAP-NOOB is unique compared
to most other EAP methods that assume some credentials
have been provisioned.

Since EAP-NOOB does not require any pre-configured
credentials, it follows the common device-pairing approach
of performing a Diffie–Hellman (DH) key exchange over
insecure network. However, the key exchange alone does

not provide authentication, and therefore, the key exchange
is authenticated with a message sent over an OOB chan-
nel. This prevents impersonation and man-in-the-middle
attacks on the in-band channel.

EAP-NOOB contains two security features used in the
OOB message. The protocol relies on the secret nonce
(Noob), which is used as the first authentication feature.
The secret nonce is utilized for mutually authenticating
the session key established between the peer IoT device
and the server. The second authentication feature is the
cryptographic fingerprint (Hoob), which is used to ver-
ify the integrity of the key exchange. The end point that
receives the OOB message uses this fingerprint to detect
impersonation and man-in-the-middle attacks on the in-
band channel.

Another feature of EAP-NOOB protocol is that it allows
peer devices to scan for possible wireless networks and,
based on the results, generate multiple dynamic OOB mes-
sages. These messages are relatively long and require partly
automated means of transfer. The main purpose of an OOB
message is to mutually authenticate the peer devices and
the server. OOB messages can be sent from the peer device
to the server (shown in Fig. 2) or from the server to the
peer device (shown in Fig. 1). If the IoT device being boot-
strapped has an output interface, such as a smart TV, then
the OOB message is generated and shown to the user by the
peer device. If on the other hand, the IoT device being boot-
strapped has only an input interface, such as a web camera,
then the OOB message is generated and shown to the user by
the server. Lastly, if a peer device has both input and output
interfaces, the protocol allows both the server and the peer
to show an OOB message and let the user deliver any one of
them to the other endpoint. However, in this paper, we only
focus on scenarios, where the OOB message is sent from the
peer to the server.

EAP Peer EAP Server

(PeerID, Noob, Hoob)
OOB

Fig. 1 OOB message is generated at the EAP server and is delivered
to peer over the OOB channel [6]

EAP Peer EAP Server

(PeerID, Noob, Hoob)
OOB

Fig. 2 OOB message is generated at the EAP peer and is delivered to
server over the OOB channel [6]

 SN Computer Science (2020) 1:1818 Page 6 of 17

SN Computer Science

EAP-NOOB requires the side generating the OOB mes-
sage to show additional metadata so that a user can correctly
deliver the OOB message between the peer IoT devices and
the server. If the OOB message is generated on the peer
device, then information such as the server name and the
SSID of the wireless network is shown along with each of
the OOB messages. If, on the other hand, the OOB message
is generated on the server, then information such as the peer
IoT device make, model and serial number are shown by
the server.

OOB messages in the EAP-NOOB protocol have a lim-
ited lifetime within which they must be delivered from the
peer to the server or vice-versa. The protocol recommends a
fairly generous timeout value of 3600 s but leaves the actual
choice to the deployment scenario. During this time, the
OOB message is valid and should be accepted for complet-
ing the EAP-NOOB authentication. The side generating the
OOB message is expected to generate new OOB messages
containing fresh nonces (Noob) at regular intervals. The pro-
tocol specification recommends a refresh cycle that is half
of the OOB message lifetime.

Although EAP-NOOB requires a user-assisted OOB
channel, it is up to the specific deployment to choose from
options such as audio, QR code, NFC etc. The protocol spec-
ification suggests that it may be convenient to encode the
OOB message as a Universal Resource Locator (URL). This
method is suitable for scenarios, where the OOB message
is sent from the peer device to the server (Fig. 2). The OOB
message can be delivered to the server by simply visiting
the URL in any standard web browser. The URL consists of
the server domain name and additionally carries the PeerId,
secret nonce (Noob) and fingerprint (Hoob) as query string
parameters.

The EAP-NOOB protocol specification sets some restric-
tions and suggestions for the URL. The server domain name
has a maximum length of 60 characters. The PeerId pro-
vided by the server and carried in the OOB message has
a maximum length of 60 bytes and should not include the
‘+’ sign. To shorten the query parameters, the specifica-
tion suggests a PeerId length of 22 characters resulting from
base64url encoding. The secret nonce (Noob) and the fin-
gerprint (Hoob) are both specified as 16-byte values, which
are encoded into character strings with base64url encoding.
After encoding the length of both strings is 22 characters.
This results in approximately a 70–130 character string that
needs to be transferred over the OOB channel. The length
may vary depending on the varying length of the used data
fields, i.e., server domain name and PeerId.

OOB messages encoded as URLs can easily be opened by
users with a smartphone if they are embedded in QR codes
or NFC tags. This is ideal for IoT devices with limited input
or output. For instance, a simple printer may output a printed
QR code on paper, or it may have an NFC module that can

be tapped with a smartphone. Another example could be
a digital signage display that during the setup process can
display the OOB message embedded in a QR code. Both
scenarios rely on the user for transferring the OOB message
and finalizing the registration process by visiting the URL
in the web browser of the smartphone. Such a deployment
of EAP-NOOB requires the user’s smartphone to have an
Internet connection. Users will typically have access to the
Internet on their smartphones through the traditional mobile
network (3G, 4G, and 5G) as shown in Fig. 3. However,
there may be scenarios, where both the peer IoT device and
the user’s smartphone are accessing the Internet through the
same wireless network (shown in Fig. 4). The later scenario
requires greater user alertness. This is because if the access
point (AP) itself is compromised, the user might be exposed
to phishing attacks and may inadvertently register the peer
IoT device to the wrong server.

Example data fields in the OOB message when encoded
as URL are shown in Table 1. ?P= indicates the PeerId
which the server has allocated for the peer device.&N=
indicates the secret nonce (Noob) and&H= indicates the
cryptographic fingerprint (Hoob).

The EAP-NOOB specification [6] has undergone mul-
tiple iterations. Experimental implementations have been

EAP Server

Base StationSmartphone

Peer Device Access Point

Internet

OOB Channel

Fig. 3 EAP-NOOB setup

EAP Server

Smartphone

Peer Device

Access Point

Internet

OOB Channel

Fig. 4 EAP-NOOB setup, where peer device and smartphone share
the same network

SN Computer Science (2020) 1:18 Page 7 of 17 18

SN Computer Science

developed to examine the protocol [25, 41]. Furthermore,
the EAP-NOOB protocol has been modeled with mCRL211
formal modeling language [30] to simulate protocol behavior
and with ProVerif12 tool for verifying its security character-
istics [34].

OOB Channel Implementation

In this section we describe the implementation of three dif-
ferent OOB channels. We begin by describing the tools used
in this process, followed by the implementation of NFC, QR
code and audio as OOB channels. Finally, we describe the
development process of the Android application.

Tools and Setup

Android Studio13 is an Integrated Development Environ-
ment (IDE) that provides various software development
tools including an Android emulator. This tool was used in
developing and testing the Android application during the
implementation process.

Furthermore, a laptop computer is used for simulating
the peer IoT device behavior, i.e., for generating and sending
OOB messages. The laptop is equipped with an NFC card
reader, speakers and a display. The messages are encoded
as URLs and transmitted over NFC, QR codes and sound.
While NFC and QR codes are natively supported by Android
devices, we developed a custom Android application to
interpret OOB messages sent over the audio channel. We
added support for NFC and QR codes to our own Android
application so that all the three OOB channels can be used
within the same application. Our Android application was
written in the Java programming language. For simulating
the peer device behavior, we used Java for generating OOB
messages sent via NFC. At the same time, we used Python
for generating OOB messages sent via QR codes and audio
channel.

NFC

ACR122U-A9 is a contactless smart card reader manufac-
tured by Advanced Card Systems Ltd. It is compliant with
both the ISO 14443 and ISO 18092 standards. ACR122U-
A9 supports MIFARE and ISO 14443 Type A/B cards, as
well as FeliCa and NFC tags [1]. It is equipped with NXP
Semiconductor’s PN531 NFC controller chip. In addition
to the basic read-write and peer-to-peer modes, this smart
card reader can also enter a card emulation mode via the
TgInitAsTarget command. The card emulation mode allows
the reader to act as an NFC target to which contents can
be written [27]. However, the device does not have its own
memory. This means that all operations and commands need
to be issued from the computer to which the device is con-
nected. To send NFC signals via the NFC card reader, the
device needs its own native Application Protocol Data Unit
(APDU) commands. Fortunately, there exists a collection
of Java libraries14 for issuing these commands to the card
reader.

NFC Data Exchange Format (NDEF) is a standard data
format which can be used for exchanging information
between NFC devices and tags. For delivering the OOB
message, i.e., URL from the peer IoT device to the user’s
mobile device, we use the standard NDEF message for-
mat. The URL is, therefore, encoded as a well-known type
(TNF value of 0x01) with full URI reference urn:nfc:wkt:U.
Although we developed our own native Android application,
we also wanted to investigate the default Android behavior
for smartphones which do not have our application installed.
Therefore, we chose to use the Simple NDEF Exchange Pro-
tocol (SNEP) for communicating the NDEF records (Fig. 5).
SNEP is a stateless request–response protocol and it is sup-
ported in Android since version 4.0.

As we recall from “EAP-NOOB”, the EAP-NOOB pro-
tocol allows the peer to scan for available networks and,

Table 1 OOB message format as URL

Data field Prefix Example data

ServerURL https:// https ://examp le.com/Noob
PeerId ?P ?P=ZrD7qkczNoHGbGcN2bN0
Nonce &N &N=rMinS0-F4EfCU8D9ljxXA
Fingerprint &H &H=QvnMp4UGxuQVFaXPW_14UW

Code

NDEF Records

SNEP

NDEF Message

LLCP
FeliCa DESFire MiFare

Ultralight
MiFare
Classic

ISO-18092 ISO-14443A

ISO-14443-3

ISO-14443-2

Hardware controllers (e.g. PN532)

UART SPI USBI2C

CPU

User Interface

Record Format

Message Format

Command
Protocols

Data Packet
Specification

Radio Specification

Radio Controllers
Device-to-Device
Communication

PC, Embedded System,
Microcontroller

Software

Tags /
Peer-to-Peer

Hardware

Fig. 5 The NFC protocol stack [17]

11 mCRL2. https ://www.mcrl2 .org/web/user_manua l/index .html.
12 ProVerif. https ://prose cco.gforg e.inria .fr/perso nal/bblan che/prove
rif/.
13 Android Studio. https ://devel oper.andro id.com/studi o. 14 NFC tools. https ://githu b.com/grund id/nfcto ols.

https://example.com/Noob
https://www.mcrl2.org/web/user_manual/index.html
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://developer.android.com/studio
https://github.com/grundid/nfctools

 SN Computer Science (2020) 1:1818 Page 8 of 17

SN Computer Science

based on the scan, generate multiple OOB messages. When
multiple OOB messages encoded as URLs need to be sent
over NFC, there are the following options available:

1. Encoding each URL as a separate record, i.e., each
scanned network is encoded as a separate record within
the NDEF message. However, most Android Internet
browsers declare an NFC intent filter for URLs and as
such, only process the first record by opening the link
while discarding rest of the information.

2. Encoding the first URL as an NDEF well-known text
record type and the remaining URLs as NDEF well-
known full URI records. The first text record includes
information of the peer device such as its make and
model.

3. Encoding all URLs as NDEF well-known text records.
This allows additional information to be included with
each URL. However, some Android devices may not
identify included URLs as links, and therefore, they may
not be clickable.

Android devices always use the first record in an NDEF
message to determine how the rest of the message should
be interpreted. We can take advantage of this and encode
the first record as a well-known text record (urn:nfc:wkt:T).
This method circumvents the automatic behavior of open-
ing URLs on most Android devices. The user is thus able to
access all the following NDEF records in the NDEF message
on default reader and choose which URL to open. Moreover,
the text record can include identifying information regarding
both the peer device as well as the available networks.

Opening the URL contained in an OOB message author-
izes the peer device to access the network and registers it
to the user’s account on the server. Therefore, it is essential
for the user to identify the correct server. In the presence of
multiple networks, the user needs to carefully choose the
familiar server URL from the list. This may be a difficult
task on Android devices that do not display the full server
address. Therefore, in some scenarios it could be beneficial
to include an Android Application Record (AAR) within
the NDEF message to open a custom application. AAR is
encoded as External NDEF type (TNF = 0x04) with URI
reference android.com:pkg and the application name as the
payload. AAR can either prompt the smartphone user to the
Google Play Store or launch the application if it is already
installed. This can be used to guide users to a custom appli-
cation designed for the OOB channel. However, including
an AAR within the NDEF message may be infuriating for
users who do not wish to use designated applications or do
not have access to the application store.

QR Codes

QR codes are generated with the Python qrcode15 library
package. In addition, Python Imaging Library (PIL)16 is
used for adding metadata such as the server name into the
QR code image above the quiet zone. This metadata helps
the user to identify the correct OOB message in scenarios,
where the peer device has scanned multiple available net-
works. The added human-readable information also gives
the user some indication of the QR code content. The QR
codes follow the standard URI scheme and begin with prefix
https://.

There are two ways for encoding multiple URLs contain-
ing different OOB messages. Since most of the default QR
code readers do not support multiple URLs in a single QR
code, each URL can naturally be encoded as a separate QR
code. Alternatively, each included URL is partitioned with a
null character and encoded into a single QR code. However,
as more characters are encoded into a single QR code, the
pattern becomes more complex. Dense and complex patterns
require more time to be successfully decoded. We also cycle
through the first URL when multiple URLs are encoded into
the same QR code. This allows the default readers to scan a
different entry on each scan. Advanced QR code readers can
read the complete QR code with all the URLs in one scan.

Audio Channel

Chirp.io17 provides a Software Development Kit (SDK)
for multiple platforms and programming languages. In this
paper, we use the Chirp.io SDK for transmitting the OOB
message from a peer device (Python Chirp SDK) to a smart-
phone (Android Chirp SDK). Chirp SDK uses a proprietary
protocol and supports four acoustic transmission methods
shown in Table 2. These are labeled as standard, 16 kHz,
16 kHz-mono and ultrasonic. Each method has a maxi-
mum message length. The main differences between these

Table 2 Supported acoustic transmission methods of proprietary
Chirp protocol

Mode Max. message
length

Transmission
time

Data rate

Standard 32 bytes 4.52 s 56.6 bps
16 kHz 90 bytes 8.16 s 88.2 bps
16 kHz-mono 32 bytes 4.48 s 57.1 bps
Ultrasonic 8 bytes 4.08 s 15.7 bps

15 qrcode 6.1. https ://pypi.org/proje ct/qrcod e/.
16 Pillow 6.0.0. https ://pypi.org/proje ct/Pillo w/.
17 Chirp. https ://chirp .io.

https://pypi.org/project/qrcode/
https://pypi.org/project/Pillow/
https://chirp.io

SN Computer Science (2020) 1:18 Page 9 of 17 18

SN Computer Science

methods are the sound frequency, message length and data
transfer rates. In the standard audio transmission mode, the
length of the message is limited to 32 bytes, which is sent in
a 4.52-second time frame. This results in a data rate of 56.6
bps. In the 16 kHz mode, the maximum message length is 90
bytes, which is sent in 8.16 s. This provides the fastest option
with a data rate of 88.2 bps. For 16 kHz-mono option the
data rate is 57.1 bps, while the ultrasonic option has the low-
est transfer speed of 15.7 bps. To achieve faster data rates,
the protocol supports multiple channels within the modes;
however, this option requires special developer privileges.

Chirp SDK expects the payload as an array of bytes and
the SDK transforms it into audible sound. In the standard
mode, the audible sound follows a melodic pattern. Each
message follows a recognizable pattern consisting of an
initial chirp pattern which is followed by the encoded data
and the end-of-message pattern. We found from our experi-
ments that the standard and ultrasonic options proved to be
the most robust transfer methods in the presence of noise
(music or chatter did not disrupt message), while the 16 kHz
option did not work on laptop speakers and required high-
end speakers for the smartphone to interpret the signal. Fur-
thermore, closer examination of the sound profile confirmed
that the ultrasonic mode is not technically ultrasound, since
the operating frequencies are between 18 and 20 kHz, as
shown in Fig. 6a. In the standard mode the frequency range
is between 1.8 and 13 kHz, shown in Fig. 6b. Both figures
display the same message that contains a URL. In addition,
it displays the spectrogram visualization of the transmission

of the 32-byte message. In the ultrasonic mode, the message
is required to be split into 8-byte parts, while the standard
mode was able to transmit the whole message in one burst.

The transmission was recorded with a Samsung Galaxy
S8 with the Spectroid18 application. Since the standard mode
provided reasonable data rates, good robustness against
noise, and was audible; we chose it as the transfer method
for the final implementation of the sound-based channel
between the computer and the smartphone. To combat data
corruption and modification attacks, the audio channel is lis-
tened to only when the user presses a button, i.e., is prepared
to perform the OOB step.

As described in “EAP-NOOB”, the OOB messages of
the EAP-NOOB protocol are relatively long when encoded
as URLs. Therefore, most of the URLs need to be split into
multiple messages. To indicate the end of a URL, the mes-
sage is terminated with ‘+’ sign, which is then removed
from the final URL. The Chirp protocol could be used for
two-way communication to take advantage of acknowledge-
ments; however, this would significantly lengthen the dura-
tion of transferring the OOB message. It would also increase
the time window for any possible attacks. To indicate that
the message is being received, the user is displayed a status
bar. This also makes the wait time more pleasant for the user
and keeps the user’s attention [23]. Furthermore, each part of
the message received is shown to the user as a visual confir-
mation that the message parts are being received correctly.

Android Application for EAP‑NOOB

To avoid the identified problems with default NFC and QR
code reader applications, we developed our own Android
application for investigating if the security and usability can
be improved. Our application supports NFC, QR codes and
audio OOB channels.

Android includes NFC data handlers in their Android
framework API [14]. We take advantage of Android NFC
tag dispatch system. Our application is declared to filter for
both HTTPS as well as plain-text NDEF tags. Therefore,
each time a NDEF tag is scanned, the Android operating
system launches our application and passes the NDEF data
without requiring any further actions. If there are multiple
applications that filter for this, the user needs to choose the
application to handle the data. This is less intrusive approach
compared to the AAR approach discussed in “NFC”.

Our application is capable of decoding QR codes. There
were two options available for decoding QR codes: taking
a picture and then processing the image or decoding the
QR code from the camera feed. We implement the latter

Fig. 6 Screen capture of monitored audio graph of Chirp transmis-
sion with ultrasonic and standard setting

18 Spectroid. https ://play.googl e.com/store /apps/detai ls?id=org.intoo
rbit.spect rum.

https://play.google.com/store/apps/details?id=org.intoorbit.spectrum
https://play.google.com/store/apps/details?id=org.intoorbit.spectrum

 SN Computer Science (2020) 1:1818 Page 10 of 17

SN Computer Science

method, because it decodes the QR codes immediately with-
out requiring access to the device’s storage. This way, the
user is only required to click the register button once the
correct server is identified. We take advantage of Google’s
Barcode API,19 which is a part of Google’s Mobile Vision
API. While supporting numerous barcode formats, the object
detection is restricted to only QR codes. Initially, the scan-
ning process was slow due to the camera being out of focus
most of the time. However, this was solved by utilizing the
camera’s auto focus capabilities, which expedited the scan-
ning process significantly. To indicate a successful scan, the
device vibrates. This notifies the user if the QR code is suc-
cessfully decoded.

The initial view of our application displays short instruc-
tions for navigating the application. The main view also
functions as an NFC reader and features a row of naviga-
tional buttons. These buttons allow the user to navigate to
the QR code reader, audio channel decoder or access appli-
cation options. Android features a default navigation bar,
which includes navigation options for back, home, and over-
view. Since most of the Android users are familiar with the
navigation bar, we use the back button for navigating back
to the main activity.

Our application contains an important additional security
feature: a list of trusted servers. Users can add custom entries
of trusted servers to this list using the application options
button. Whenever users tap an NFC tag, read a QR code, or
record Chirp audio; our application notifies if the URL in
the OOB message is from a trusted server. Furthermore, the
application supports optional HTTP basic authentication as
specified in RFC 7617 [31] and RFC 7235 [13]. HTTP basic
authentication is a simple challenge and response method
with which servers can request user authentication infor-
mation from the client. To take advantage of this feature,
users need to manually enter the authorization credentials
(username and password) when adding a new trusted server.
User credentials are automatically sent over secure HTTPS
if the URL in the OOB message belongs to a trusted server.

Adding a trusted server and entering login credentials
a priori allows the user to register new peer devices with a
single tap or scan without requiring any further action. The
requirements for singe-tap or scan authentication are that
the peer device does not find several trusted networks, the
server is added to the list of trusted servers, and the user
login credentials are configured. User login credentials are
stored within the application’s persistent storage using the
Android SharedPreferences.20

Both authorization credentials and the list of trusted serv-
ers take advantage of Android’s SharedPreferences. They are
stored as key-value pairs in XML files located in the applica-
tion’s data directory. User credentials is a string and stored
with the key token, while server list is stored as a string with
the key servers. They are secured by Android’s file permis-
sion system. However, anyone with root access or the same
application UID can access and modify them. Furthermore,
our application does not allow cleartext and thus web pages
without HTTPS will intentionally not work.

Android features Security-Enhanced Linux (SELinux) to
define boundaries for application sandboxing [3, 5]. There-
fore, each application runs in a limited-access sandbox. If
the application requires resources outside its own sandbox,
it is required to request for permissions [15]. To capture
QR codes or sound bursts for audio channel, the applica-
tion requests user’s permissions to camera and microphone.
These permissions are classified as “dangerous” and, there-
fore, explicitly require the user’s permission [15]. Further-
more, the application requests permissions for accessing the
Internet, NFC, and vibration engine. However, these permis-
sions are granted by the system automatically during instal-
lation, because they are classified as “normal” [15].

Evaluation

In this section, we evaluate the advantages, limitations, and
vulnerabilities of each of the three OOB channels imple-
mented. We also discuss the broader usability aspects of the
three OOB channels. Where relevant, we also highlight how
each of the three OOB channels perform against the special
requirements of EAP-NOOB. In the following subsections,
the ‘−’ sign indicates a negative feature and ‘ + ’ sign indi-
cates a positive feature.

NFC

Android supports NFC by default and it provides an intuitive
way of bootstrapping a device by a simple tap. The NDEF
data format provides multiple ways for conveying URL
encoded OOB messages. However, a potential weakness in
the Android default NFC reader is that it does not display
the full URLs when the NDEF record is encoded as well-
known URI record. In most cases the information left out is
the query parameters, such as the nonce and cryptographic
fingerprint. Therefore, OOB messages should be encoded as
text records with additional information. This method cir-
cumvents the behavior of automatically opening URLs and
provides information about the networks to the user so that
the user can choose the correct network. NFC also provides
a viable OOB channel for transferring multiple OOB mes-
sages at the same time.

20 SharedPreferences. https ://devel oper.andro id.com/guide /topic s/
data/data-stora ge.html#pref.

19 Google Barcode API. https ://devel opers .googl e.com/visio n/andro
id/barco des-overv iew.

https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developers.google.com/vision/android/barcodes-overview
https://developers.google.com/vision/android/barcodes-overview

SN Computer Science (2020) 1:18 Page 11 of 17 18

SN Computer Science

Usability

+ NFC follows the intuitive method of tapping the device.
This method of device interaction is becoming well-
known and it can be seen, for example, from the grow-
ing trend of contactless payment [38].

+ NDEF enables multiple options for encoding the mes-
sage. Applications can declare intent filters for associat-
ing with specific formats, and developers may include
an AAR within the NDEF message for the Android sys-
tem to either launch a specific application or to prompt
for installation from the Google Play Store.

+ NFC provides a high-bandwidth channel, which can
quickly transfer even relatively long OOB messages
without saturating the channel capacity.

− NFC requires specific hardware and is not supported
by all smartphones. Apple iPhones have been equipped
with NFC modules limited only to contactless payment
since iPhone 6; however, the latest iPhones are capa-
ble of reading NDEF tags without requiring third-party
applications.

− The NFC channel is imperceivable to the human user.
Peer devices need to have some indicators, such as a
LED light or a buzzer, to notify the user that it is ready
to transmit an OOB message.

Security

− The card reader was found to show unexpected behavior
when a contactless smart card was already present on
the card reader. If an NFC tag (NXP MIFARE Clas-
sic 1k, NXP MIFARE DESFire EV1 or NXP MiFARE
Plus) was already present on the ACR122U card reader,
the smartphone would not detect the tag. After a SNEP
command was issued by the reader, the smartphone
received the NDEF message of the NFC tag instead of
the SNEP command from the reader. If the NFC tag
was removed, the reader would successfully transmit
the OOB message. In some rare cases, the card reader
would malfunction and the only way to get it working
again was to remove the card reader and re-attach it. At
other times, the ACR122U card reader would get stuck
in a loop, where it tries to issue a SNEP command; how-
ever, the smartphone would detect the NFC tag instead.

 This behavior of the reader can potentially allow phish-
ing and misbinding attacks if the attacker has physical
access to the peer device before the honest user begins
the bootstrapping process. For a phishing attack, the
attacker needs to format an NFC tag with a malicious
URL that would mimic the appearance of a legitimate
server. Thereafter, the attacker needs to insert the NFC

tag over the NFC reader of the victim’s device. This
way, the victim could be fooled into entering credentials
or other sensitive information during the device regis-
tration process. A prudent user would likely notice the
inserted tag, but it could go unnoticed from an inexpe-
rienced user.

 To perform a misbinding attack, the attacker would first
have to initiate the EAP-NOOB protocol on another
device. Then, the attacker must scan and copy the OOB
message into an NFC tag. Thereafter, the attacker has to
insert the tag over the NFC terminal of the honest user’s
device. After the victim user taps the device, the scan
would reveal the OOB message of the attacker’s device
and thus the user could be fooled into associating it with
their account. Now the attacker is in possession of a
device that may have access to various user resources.
However, this type of attack might be quickly exposed,
since the victim would notice that its own device has not
completed the EAP-NOOB protocol and is still unreg-
istered on the server. A prudent user would then revoke
the unintended device association.

 These types of attacks are targeted attacks and they
require physical access to the peer device before the
bootstrapping begins. As stated by Sethi et al. [34], most
device-pairing protocols, where authentication is estab-
lished by physical access are vulnerable to misbinding.
The paper suggests a trusted path as one mitigation
mechanism. The authors mention that a LED light indi-
cating direct communication with the peer device hard-
ware could be one such example. The ACR122U card
reader includes programmable led lights and a buzzer
[2]. The LED light is red if there are no available NFC
terminals and green if there is an NFC-capable device
within range. Since these indicators are programmable
they cannot be considered as a trusted path [22]. How-
ever, they can expose the presence of a false NFC tag or
sticker on top of the reader. Furthermore, since SNEP is
a request–response protocol, the card reader can detect
failed transmissions and report them to the user. None-
theless, these mechanisms only help the user to detect
the attack and do not prevent the user from scanning the
malicious tag in the first place.

− NFC is vulnerable to eavesdropping. The maximum
range for a successful tag read was observed to be 3 cm
in passive mode and 8 cm in active mode.

QR Code

QR codes provide a viable option for displaying OOB mes-
sages. In scenarios, where there are multiple networks, the
peer device’s display plays a significant role. It limits how
many QR codes the device can output in a size that can be
scanned reliably. If the device has a small display, it might

 SN Computer Science (2020) 1:1818 Page 12 of 17

SN Computer Science

have to cycle through the QR codes. Both the length of the
QR code and the error correction level contribute to the size
of the QR code.

Multiple varying 126-character URLs were generated
to evaluate the performance of QR codes. Single-URL QR
codes smaller than 1.1 cm on a 326 Pixel-Per-Inch (PPI),
2.1 cm on a 227 PPI display, and 2.5 cm on a 109 PPI dis-
play were observed to be difficult for the default readers and
third-party readers without digital zoom. However, iPhone’s
QR code reader with the manual digital zoom capability was
able to decode even the smaller QR codes. Furthermore, it
was noted that the error correction level does not affect the
overall read speed of the QR code on test devices. How-
ever, it might be a factor for smartphones with less powerful
camera sensors. With multiple URLs, the QR code becomes
more complex and requires more area. This is shown in
Table 3.

If multiple QR codes were displayed close to each other,
all the readers displayed the contents of the first detected
QR code and ignored the rest. This issue was less prominent
in iPhone, since unlike the tested third-party readers, the
iPhone default QR reader features a digital zoom, which nar-
rows down the area of detection. Therefore, for peer devices
that display the OOB messages as QR codes, it may be more
reliable to display one QR code at a time.

Tampering a QR code on a display is unlikely to occur. To
produce a tampered QR code on a display, the peer device
needs to be compromised beforehand. In this scenario, the
user has no way of knowing that the device is compromised.
Therefore, it should be recommended to reset the peer device
before initiating the EAP-NOOB registration process. Tam-
pering of the QR code is also possible on printed surfaces.
This would require the legitimate user to leave the device
unsupervised during the initial device deployment. To com-
bat tampering, Krombholz et al. [21] suggest using complex
color schemes. This causes the attack on QR codes to be
costlier and makes it difficult to modify the QR code in an
undetectable way.

Usability

+ QR codes are widely supported by smartphones due to
large application stores. Furthermore, numerous URI
schemes are supported by the Android and iOS mobile
operating systems.

+ QR codes are easy to use by simply focusing the camera
towards the code. However, various studies have shown
the scanning of QR codes to be a difficult task for users
who are not familiar with them [34, 35].

− The QR code standard does not support multiple URLs
and, therefore, displaying multiple URLs requires a sep-
arate QR code for each URL. This can result in a cum-
bersome scanning task in environments with numerous
networks. In custom solutions, a single QR code can be
encoded with multiple URLs with delimiters. However,
this eliminates the compatibility with most readers. To
maintain some support for default readers, it is possi-
ble to separate the URLs with the null character, which
most readers interpret as the terminator. Default readers
would be able to read the first URL, while custom solu-
tions would be able to read the complete QR code. It is
also important to note that encoding multiple URLs in
the same QR code naturally makes it denser.

− Closely placed QR codes proved to be difficult to scan
reliably. Neither default readers nor third-party solu-
tions allowed the user to choose which QR code to
decode. Only the iPhone default QR code reader dis-
played a marker over the QR code which it had decoded.

− It is possible to generate QR codes that contain regular
text together with a URL. The URL in such cases is
not clickable on default readers. Only half of the tested
third-party readers identified the URL link accompany-
ing the text.

Security

− Since QR codes are only machine readable, the human
user cannot determine their content without a mobile
device. This is problematic with devices that process
the QR code content without user action. Therefore, it
is advisable to include the URL in plain-text form next
to the QR code to show the content to the user.

− QR codes provide a visual OOB channel, and there-
fore, the implementation is vulnerable to opportunistic
snooping attacks, such as shoulder surfing with a cam-
era in public environments. Furthermore, QR codes can
be spied over greater distances, e.g., by taking advan-
tage of optical telescopes.

Table 3 QR code readability

PPI QR code with 6 URLs (cm) Single-URL
QR code
(cm)

326 2.3 1.1
227 2.8 2.1
109 4.4 2.5

SN Computer Science (2020) 1:18 Page 13 of 17 18

SN Computer Science

− Printed QR codes are vulnerable to tampering. This
may occur in scenarios, where the peer device outputs
a printed QR code and the user leaves the printed QR
code unsupervised. However, using color schemes
increases the difficulty of unobtrusive tampering.

Sound

The sound channel provides a viable option in scenarios,
where there are only a few OOB messages to be sent. This
is mainly due to the low bandwidth of the audio channel.
Furthermore, since the relatively long OOB messages of
EAP-NOOB must be split into multiple shorter messages,
the initial and end-of-message patterns add to the duration
of the process. On average, a 126-character URL is success-
fully transferred in around 20 s. If the transfer is disrupted,
the whole process must be started over again.

A long waiting period of over 15 s is often seen as det-
rimental to productivity and lowers user satisfaction [23].
However, the animated loading bar in addition to the updated
status of the OOB message should significantly reduce the
user’s time estimation and, therefore, restlessness. Nonethe-
less, after the first OOB message, the user experience for
utilizing the sound-based channel may become annoying due
to the relatively long wait time.

While the transmitted data is not encrypted and can be
easily eavesdropped, the channel is resilient against man-in-
the-middle attacks. This is because the transmitted data is
authentic and users can correctly verify that the data origi-
nates from their peer device. Attempts to transmit audio data
over the original signal can be easily observed by listening,
which exposes spoofing attacks. The implemented audio
channel is also resilient against data modification attacks.
This is due to the fixed length of messages. Data insertion
attacks results in corrupted data, which also highlights the
main vulnerability of the channel: the channel is easily dis-
rupted. This can be achieved by playing louder noise at the
same frequency. A gust of wind reaching the device’s micro-
phone during transmission will similarly disrupt the process.

Usability

+ Sound signal strength is easily controlled with the
device’s speaker volume.

+ Audio channel is suitable for smart devices with only
speakers or microphone, in environments with only one
or two networks.

− The audio channel has very low bandwidth. Therefore,
transmitting relatively long OOB messages introduces
a lengthy waiting period for the user. Waiting for 20 s to

receive an OOB message and then requiring user action
can be extremely unpleasant.

− Humans have varying thresholds for which frequencies
are perceived as unpleasant. However, for close-range
transmissions the audible signal does not need to be
loud.

− The audio channel is unreliable in environments, where
the microphone picks up a lot of noise. Even a small
breeze of wind to the microphone is enough to corrupt
a message. Therefore, the audio channel is not viable for
outdoor scenarios in windy conditions.

− In our implementation with Chirp, users must initi-
ate the audio transmission on the peer device once
the smartphone has started recording. This is because
the Chirp SDK is not capable of sorting out-of-order
messages.

Security

+ Sound frequencies used by the Chirp protocol are lim-
ited to rooms and the high-frequency audible signal
does not travel through walls or windows.

+ Audible tune can be perceived and the user can confirm
the signal is coming from the device. One of the prob-
lems in device-pairing protocols is the human impercep-
tibility of the wireless signal [20]. The audio channel
mitigates this problem.

+ The sound protocol is immune to data modification
attacks during active data transfers. Attempts to alter
the data cause the messages to be corrupted.

− The channel can be easily disrupted. It is possible to
disrupt the channel by playing sound at similar frequen-
cies as the Chirp protocol.

− If ultrasound is used, the inaudible sound cannot be
monitored, and the disruptive signals are hard to detect
without tools.

− As with NFC, the channel is vulnerable to eavesdrop-
ping. This would require the attacker to be in the same
room or have an eavesdropping device in the room dur-
ing the OOB message transfer.

Android Application for EAP‑NOOB

Overall, the application enhances the security and usability
of the protocol. By filtering untrusted servers, it can prevent
against most phishing and misbinding attacks. However, this
requires the user to manually add trusted servers to the appli-
cation a priori. The added security results mostly from this
restraint. Usability is enhanced over default readers with the
NFC intent filter, support for HTTP basic access authentica-
tion, and the list of trusted servers.

 SN Computer Science (2020) 1:1818 Page 14 of 17

SN Computer Science

Usability

+ The application supports HTTP basic authentication. If
users add their authentication credentials a priori, then
each initial HTTPS request to the server will include
the credentials in the authorization header. Thus, users
do not need to input the credentials for each authenti-
cation attempt. This allows them to immediately regis-
ter the IoT device to the server without any user action
other than the initial NFC tap or QR code scan with the
smartphone.

+ The trusted list can also be utilized for filtering net-
works. This improves usability in environments with
multiple networks, since users do not have to manually
browse through a list of URLs or server names.

+ The application supports one handed use, because all
the UI buttons are placed within the functional area of
the thumb following the model specified by Bergstrom-
Lehtovirta and Oulasvirta [8] for touchscreen surfaces.

+ Due to the NFC intent filter, the application is immedi-
ately launched after scanning NDEF tags with HTTPS
URLs and the data is displayed to the user. If the scan
finds a trusted server, the OOB message is delivered
immediately. In this way, peer devices can be registered
with a simple tap on an unlocked Android device.

− The Google’s Barcode API does not support null-sepa-
rated data. Therefore, the application cannot decode QR
codes that have several null-partitioned URLs.

Security

+ URLs are not automatically opened and the server URL
is displayed to the user.

+ The application supports only HTTPS and insecure
HTTP links are discarded.

+ The application protects against phishing and Interna-
tionalized Domain Name (IDN) homograph attacks.
Users are informed if the URL contains Cyrillic char-
acters that are often used in phishing and IDN attacks.
This is done by parsing through the URLs and check-
ing if potentially compromising Cyrillic characters are
found. However, it is important to note that this imple-
mentation is only a proof of concept and does include
thorough character set checks. For protection against
phishing attacks, the application also supports a list of
trusted servers. This allows the user to identify which
scanned networks are trusted.

− While using third-party libraries, the application
becomes vulnerable to supply chain attacks. The appli-
cation developed for this paper takes advantage of a
proprietary third-party Chirp SDK, which allows the

application to interpret the data transmitted over sound.
Furthermore, the SDK sends anonymized analytical
data back to the Chirp developers. Chirp claims that the
data sent is used to improve the service and no payload
data is revealed.

− It is important to note that the Google Barcode API
employs a powerful QR code detector as it can detect
and process multiple barcodes in real time. This can
lead to security problems, where an attacker might be
able to insert another QR code within the camera frame
near the legitimate QR code. However, this problem
exists also on other Android QR code readers. Only the
iOS default QR code reader displays a marker over the
QR code which has been decoded.

Discussion and Future Work

From our experiments, we find that NFC is the fastest
method for transferring OOB messages. This is mainly due
to Android’s native support for NFC and the fact that it
allows applications to declare intent filters. We also exam-
ined the default NFC behavior on Android. This examination
showed that NDEF records formatted as URLs are automati-
cally opened with the smartphone’s Internet browser. For
avoiding this unwanted and insecure behavior, we noted that
encoding the first NDEF record as plain text eliminates the
intent filters set by the Internet browsers. Our implementa-
tion also shows that encoding URLs as text records allows
more information to be added to each OOB message.

The EAP-NOOB bootstrapping process naturally gets
more complex when there are multiple potential networks to
which peer devices can connect. However, this is not a prob-
lem that is unique to EAP-NOOB. RFC5113 [7] discusses
the challenges faced by a user when selecting the correct
access network in significant detail. EAP-NOOB addresses
this issue by providing server metadata to the peer during
the initial contact on the in-band channel. This metadata is
then shown to the user along with the OOB messages to aid
the selection process. Naturally, this metadata information
can be forged by malicious servers. However, if the user is
able to identify a familiar server URL, it should be safe to
follow. This is because tampered nonces or cryptographic
fingerprints result in the failure of IoT device authentication
and registration.

In general, the more OOB messages the user is required
to browse through, the more work the user needs to per-
form. This can be problematic in environments with many
candidate networks. Only NFC and QR code are potential
options from the user experience perspective in deployments
with many candidate networks. The low bandwidth of the
audio-based channel can be tedious for most users and is

SN Computer Science (2020) 1:18 Page 15 of 17 18

SN Computer Science

viable only in scenarios with one or two candidate networks
to which the peer device could connect.

To alleviate the problem of displaying many QR codes
each containing a different URL with an OOB message, we
implemented a flexible method which supports both stand-
ard QR code readers and more advanced readers. In this
method, the peer encodes a QR code with null-partitioned
URLs cycling the first entry. Therefore, advanced readers
can decode the complete QR code with all the URLs after
only one scan, while standard readers are able to decode the
first entry on each scan. When multiple OOB messages are
encoded into the same QR code, the server metadata from
multiple servers is shown along with a single QR code.

All the implemented OOB channels are vulnerable to
eavesdropping. For example, an audio-based channel is vul-
nerable to undetected recording by an attacker. Similarly, QR
codes can be spied over from great distances with a camera;
and NFC in the active mode is vulnerable to eavesdropping
from a distance of 10 m. These vulnerabilities can com-
promise the confidentiality of the OOB channel. However,
OOB messages have a configurable expiration time which
reduces the time frame for exploiting a captured OOB mes-
sage. These attacks also require physical access or proximity
to the device. Additionally, as we recall from “EAP-NOOB”,
EAP-NOOB specification protects against such attacks by
adding a cryptographic fingerprint to the OOB message. The
end point that receives the OOB message uses this finger-
print to detect impersonation and man-in-the-middle attacks
on the in-band channel. Thus, an attacker would need to
compromise both the confidentiality and integrity of any
OOB channel to carry out a successful MiTM attack on the
in-band channel.

As noted by Sethi et al. [34], all device pairing and boot-
strapping protocols are vulnerable to misbinding attacks.
These attacks require that the device being configured by
the user has already been compromised. We noted that mis-
binding attacks are easier to carry out and harder to detect
when NFC is used as an OOB channel. This is because the
attacker only needs to place a tag for a different device on
top of the reader. Even a device reset does not resolve this
issue. To combat this, the EAP-NOOB [6] specification sug-
gests a trusted path indicator such as a LED light or a buzzer.

In addition to implementing three OOB channels, we
developed an Android application for EAP-NOOB which
can protect users against most phishing attacks. The
application can also help the user in selecting the cor-
rect network when multiple candidate networks are avail-
able. Our application can significantly reduce the extra
work which is introduced by the user-assisted OOB chan-
nel. This is due to the application’s ability to filter out
unknown servers, cache user credentials, and use HTTP
basic authentication.

The performed literature survey shows that, overall,
device bootstrapping is a multi-step process. In current
commercial products, the process often begins with pair-
ing the device to an auxiliary device, such as a smart-
phone. This is followed by entering the Wi-Fi credentials
which the device should use for Internet access. In this
regard, EAP-NOOB can be a competitive alternative as a
secure device bootstrapping protocol. Our implementation
shows that the EAP-NOOB protocol can make the device
bootstrapping process as simple as an NFC tap when com-
bined with a designated smartphone application.

This paper focused on URL-formatted OOB messages.
However, NFC and QR codes can also be used for con-
structing OOB messages that are encoded using other URI
types. For example, consider an EAP-NOOB deployment,
where users deliver the OOB messages from the peer to
the server using the Short Message Service (SMS). The
SMS character limit can fit the PeerId, nonce and the cryp-
tographic fingerprint. The hostname in URL-formatted
OOB messages can be replaced with a telephone number.
A peer device in such a scenario can generate an SMS
message which can then be displayed as a QR code to
the user. One such QR code containing the OOB message
encoded in a SMS is shown in Fig. 7.

While this paper examined OOB channels based on
NFC, QR codes, and audio; other OOB channels can be
experimented with in the future. One such promising OOB
channel is Visible Light Communication (VLC) [18, 29].
Finally, additional studies on network discovery perfor-
mance of the peer device and correct server identification
in environments with multiple available networks could
also help improve the EAP-NOOB protocol specification.

Acknowledgements Open access funding provided by Aalto Univer-
sity. This study was funded by Academy of Finland (Grant number
296693).

Fig. 7 A stylized QR code with a logo featuring SMS URI scheme.
Generated using the QRcode Monkey tool https ://www.qrcod e-monke
y.com/

https://www.qrcode-monkey.com/
https://www.qrcode-monkey.com/

 SN Computer Science (2020) 1:1818 Page 16 of 17

SN Computer Science

Compliance with Ethical Standards

Conflict of interest The second author is a guest editor for the special
issue to which this article was accepted. The authors declare that they
have no other conflicts of interest.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Advanced Card Systems Ltd. ACR122U USB NFC Reader A
Product Presentation. ACS. https ://www.acs.com.hk/downl oad-
manua l/11/PPE-ACR12 2U-2.02.pdf. Accessed 8 May 2019.

 2. Advanced Card Systems Ltd. ACR122U USB NFC Reader Appli-
cation Programming Interface V2.04. ACS. https ://www.acs.com.
hk/downl oad-manua l/419/API-ACR12 2U-2.04.pdf. Accessed 8
May 2019.

 3. Android Open Source Project. Security-Enhanced Linux in
Android. 2019. https ://sourc e.andro id.com/secur ity/selin ux.
Accessed 8 May 2019.

 4. Apple: Set up your Apple Watch. 2019. https ://suppo rt.apple .com/
en-us/HT204 505. Accessed 5 May 2019.

 5. Asokan N, Davi L, Dmitrienko A, Heuser S, Kostiainen K,
Reshetova E, Sadeghi AR. Mobile platform security. Synth Lect
Inf Secur Priv Trust. 2014;4(3):1–108.

 6. Aura T, Sethi M. Nimble out-of-band authentication for EAP
(EAP-NOOB). Internet-Draft draft-aura-eap-noob-06. 2019. https
://datat racke r.ietf.org/doc/html/draft -aura-eap-noob-06 (Work in
Progress).

 7. Bari F, Arkko J, Aboba BD, Korhonen J. Network discovery and
selection problem. RFC 5113. 2008. https ://doi.org/10.17487 /
RFC51 13.

 8. Bergstrom-Lehtovirta J, Oulasvirta A. Modeling the functional
area of the thumb on mobile touchscreen surfaces. In: Proceed-
ings of the SIGCHI conference on human factors in computing
systems. ACM; 2014. p. 1991–2000.

 9. Bluetooth SIG. Bluetooth core specification version 5.1. 2019.
 10. Böhme R, Grossklags J. The security cost of cheap user interac-

tion. In: Proceedings of the new security paradigms workshop.
ACM; 2011. p. 67–82.

 11. Buttyan L, Gligor V, Westhoff D. Security and privacy in ad-
hoc and sensor networks: third European workshop, ESAS 2006,
Hamburg, Germany, September 20–21, 2006, revised selected
papers, vol. 4357. Berlin: Springer; 2007.

 12. Ericsson: Internet of things forecast. 2018. https ://www.erics son.
com/en/mobil ity-repor t/inter net-of-thing s-forec ast. Accessed 5
Mar 2019.

 13. Fielding RT, Reschke J. Hypertext Transfer Protocol (HTTP/1.1):
Authentication. RFC 7235. 2014. https ://doi.org/10.17487 /RFC72
35.

 14. Google. NFC Basics. 2019. https ://devel oper.andro id.com/guide
/topic s/conne ctivi ty/nfc/nfc. Accessed 14 Mar 2019.

 15. Google Developers. Request App Permissions, 2019. https ://devel
oper.andro id.com/train ing/permi ssion s/reque sting . Accessed 1
Mar 2019.

 16. Grassi PA, Garcia M, Fenton J. NIST special publication 800–
63-3 revision 3 digital identity guidelines. Los Altos: National
Institute of Standards and Technology; 2019.

 17. Igoe T, Coleman D, Jepson B. Beginning NFC: near field commu-
nication with Arduino, Android, and Phonegap. Newton: O’Reilly
Media Inc; 2014.

 18. Jovicic A, Li J, Richardson T. Visible light communication:
opportunities, challenges and the path to market. IEEE Commun
Mag. 2013;51(12):26–32.

 19. Kainda R, Flechais I, Roscoe A. Usability and security of out-of-
band channels in secure device pairing protocols. In: Proceedings
of the 5th symposium on usable privacy and security. ACM; 2009.

 20. Kobsa A, Sonawalla R, Tsudik G, Uzun E, Wang Y. Serial hook-
ups: a comparative usability study of secure device pairing meth-
ods. In: Proceedings of the 5th symposium on usable privacy and
security. ACM; 2009.

 21. Krombholz K, Frühwirt P, Kieseberg P, Kapsalis I, Huber M,
Weippl E. QR code security: A survey of attacks and challenges
for usable security. In: Proceedings of the international confer-
ence on human aspects of information security, privacy, and trust.
Springer; 2014. p. 79–90.

 22. Latham DC. Department of Defense Trusted Computer System
Evaluation Criteria. Department of Defense Standard. 1985.

 23. Li S, Chen CH. The effects of visual feedback designs on long
wait time of mobile application user interface. Interact Comput.
2019;31:1–12.

 24. Mayrhofer R, Gellersen H. On the security of ultrasound as out-
of-band channel. In: Proceedings of the parallel and distributed
processing symposium (IPDPS). IEEE; 2007. p. 1–6.

 25. Mudugodu Seetarama R. Secure device bootstrapping with the
nimble out of band authentication protocol. Master’s thesis, Aalto
University. 2017. http://urn.fi/URN:NBN:fi:aalto -20170 61354 12.

 26. Naor M, Rotem L, Segev G. The security of lazy users in out-of-
band authentication. In: Proceedings of the theory of cryptography
conference. Springer; 2018. p. 575–599.

 27. NXP Semiconductors. PN532 application note Rev. 01.00. NXP.
2006. https ://www.nxp.com/docs/en/nxp/appli catio n-notes /
AN133 910.pdf.

 28. Oracevic A, Dilek S, Ozdemir S. Security in internet of things:
A survey. In: Proceedings of the international symposium on net-
works, computers and communications (ISNCC). IEEE; 2017. p.
1–6.

 29. Pathak PH, Feng X, Hu P, Mohapatra P. Visible light communica-
tion, networking, and sensing: a survey, potential and challenges.
IEEE Commun Surv Tutor. 2015;17(4):2047–77.

 30. Peltonen A. Formal Modelling and Verification of the EAP-
NOOB Protocol. Master’s thesis, Aalto University. 2018. http://
urn.fi/URN:NBN:fi:aalto -20180 90348 96.

 31. Reschke J. The ‘Basic’ HTTP Authentication Scheme. RFC 7617.
2015. https ://doi.org/10.17487 /RFC76 17.

 32. Reyes ARL, Festijo ED, Medina RP. Securing one time pass-
word (otp) for multi-factor out-of-band authentication through
a 128-bit blowfish algorithm. Int J Commun Netw Inf Secur.
2018;10(1):242–7.

 33. Sethi M, Antikainen M, Aura T. Commitment-based device pair-
ing with synchronized drawing. In: Proceedings of the interna-
tional conference on pervasive computing and communications
(PerCom). IEEE; 2014. p. 181–189.

 34. Sethi M, Peltonen A, Aura T. Misbinding attacks on secure
device pairing and bootstrapping. In: Proceedings of the 2019
ACM Asia conference on computer and communications security,
Asia CCS ’19. ACM, New York; 2019. p. 453–464. https ://doi.
org/10.1145/33217 05.33298 13.

 35. Shin DH, Jung J, Chang BH. The psychology behind QR
codes: user experience perspective. Comput Hum Behav.
2012;28(4):1417–26.

 36. Siadati H, Nguyen T, Gupta P, Jakobsson M, Memon N. Mind
your SMSes: mitigating social engineering in second factor
authentication. Comput Secur. 2017;65:14–28.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.acs.com.hk/download-manual/11/PPE-ACR122U-2.02.pdf
https://www.acs.com.hk/download-manual/11/PPE-ACR122U-2.02.pdf
https://www.acs.com.hk/download-manual/419/API-ACR122U-2.04.pdf
https://www.acs.com.hk/download-manual/419/API-ACR122U-2.04.pdf
https://source.android.com/security/selinux
https://support.apple.com/en-us/HT204505
https://support.apple.com/en-us/HT204505
https://datatracker.ietf.org/doc/html/draft-aura-eap-noob-06
https://datatracker.ietf.org/doc/html/draft-aura-eap-noob-06
https://doi.org/10.17487/RFC5113
https://doi.org/10.17487/RFC5113
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://doi.org/10.17487/RFC7235
https://doi.org/10.17487/RFC7235
https://developer.android.com/guide/topics/connectivity/nfc/nfc
https://developer.android.com/guide/topics/connectivity/nfc/nfc
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
http://urn.fi/URN:NBN:fi:aalto-201706135412
https://www.nxp.com/docs/en/nxp/application-notes/AN133910.pdf
https://www.nxp.com/docs/en/nxp/application-notes/AN133910.pdf
http://urn.fi/URN:NBN:fi:aalto-201809034896
http://urn.fi/URN:NBN:fi:aalto-201809034896
https://doi.org/10.17487/RFC7617
https://doi.org/10.1145/3321705.3329813
https://doi.org/10.1145/3321705.3329813

SN Computer Science (2020) 1:18 Page 17 of 17 18

SN Computer Science

 37. Suomalainen J, Valkonen J, Asokan N. Security associations in
personal networks: a comparative analysis. In: Proceedings of the
European workshop on security in ad-hoc and sensor networks.
Springer; 2007. p. 43–57.

 38. Suomen Pankki: Payments statistics. 2018. https ://www.suome
npank ki.fi/en/Stati stics /payme nts-stati stics /. Accessed 9 May
2019.

 39. Telegram: End-to-End Encryption, Secret Chats. 2019. https ://
core.teleg ram.org/api/end-to-end. Accessed 6 May 2019.

 40. Telegram: Secret Chats. 2019. https ://core.teleg ram.org/black
berry /secre tchat s. Accessed 6 May 2019.

 41. Thagadur Prakash, S. Enhancements to Secure Bootstrapping of
Smart Appliances. Master’s thesis, Aalto University, 2017. http://
urn.fi/URN:NBN:fi:aalto -20170 90468 81.

 42. Vollbrecht J, Carlson JD, Blunk L, Aboba B, Levkowetz H. Exten-
sible Authentication Protocol (EAP). RFC 3748. 2004. https ://doi.
org/10.17487 /RFC37 48.

 43. WhatsApp: WhatsApp Encryption Overview, Technical white
paper. 2017. https ://www.whats app.com/secur ity/Whats App-
Secur ity-White paper .pdf.

 44. Wu L, Du X, Wang W, Lin B. An out-of-band authentication
scheme for internet of things using blockchain technology. In:
Proceedings of the international conference on computing, net-
working and communications (ICNC). IEEE; 2018. p. 769–773.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.suomenpankki.fi/en/Statistics/payments-statistics/
https://www.suomenpankki.fi/en/Statistics/payments-statistics/
https://core.telegram.org/api/end-to-end
https://core.telegram.org/api/end-to-end
https://core.telegram.org/blackberry/secretchats
https://core.telegram.org/blackberry/secretchats
http://urn.fi/URN:NBN:fi:aalto-201709046881
http://urn.fi/URN:NBN:fi:aalto-201709046881
https://doi.org/10.17487/RFC3748
https://doi.org/10.17487/RFC3748
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

