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Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can be
nonzero even in the absence of a bias. However, as the driving speed is increased, nonadiabatic excitations
gradually reduce the pumped charge, thereby limiting the maximal applicable driving frequencies. To
circumvent this problem, we here extend the concept of shortcuts to adiabaticity to construct a control
protocol which enables geometric pumping well beyond the adiabatic regime. Our protocol allows for an
increase, by more than an order of magnitude, in the driving frequencies, and the method is also robust
against moderate fluctuations of the control field. We provide a geometric interpretation of the control
protocol and analyze the thermodynamic cost of implementing it. Our findings can be realized using current
technology and potentially enable fast pumping of charge or heat in quantum dots, as well as in other
stochastic systems from physics, chemistry, and biology.
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Introduction.—Adiabatic driving makes it possible to
pump charge or heat by slowly modulating two or more
system parameters periodically in time. Even without an
applied bias, the slow driving can induce a nonvanishing
pumped charge, which resembles the Berry phase in
quantum physics and is solely determined by a closed
contour in parameter space [1–5]. This geometric descrip-
tion can be used to optimize the pumping protocol [6] and
may ensure a robust quantization of the pumped charge
[7–9]. Adiabatic pumps are important for a wide range of
phenomena [10–15], such as charge transport in nano-
structures [16], heat transfer in molecular junctions [17],
and Brownian motors [18–20]. Geometric pumping is also
of interest in relation to stochastic thermodynamics,
because it breaks the symmetry that leads to the steady-
state fluctuation theorem [21–25].
For practical purposes, it would be useful to increase the

driving frequency to produce a large output current.
However, as the frequency is increased, nonadiabatic
excitations tend to decrease the pumped charge, which
in turn restricts the frequencies for which efficient charge
pumping can be achieved. This situation resembles prob-
lems in quantum control theory, where fast driving speeds
generally reduce both the fidelity and robustness of a given
operation [26,27]. In this context, shortcuts to adiabaticity
have recently been developed [28,29] to realize adiabatic
protocols in finite time. In particular, by using counter-
diabatic driving fields [28–35], a quantum system can be
guided to follow a given adiabatic trajectory, and a desired
operation can thereby be sped up.
In this Letter, we develop a control scheme to speed up

adiabatic pumping in classical stochastic systems. To this

end, we construct a shortcut protocol which enables geo-
metric pumping well beyond the adiabatic regime. We
identify the target state of the system in the near-adiabatic
regime and provide a systematic way of constructing the
external control so that the system follows this target state
even in the nonadiabatic regime. We emphasize that our
method differs from existing shortcut protocols, such as the
one for non-Hermitian systems [35], since the required
target state contains a nonadiabatic correction. As a specific
application, we consider charge pumping through a quan-
tum dot, Fig. 1, for which we show that our method is
robust against moderate fluctuations of the control field.
We provide a geometric interpretation of the protocol and
analyze the thermodynamic cost of implementing it. Our
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FIG. 1. Adiabatic pumping. (a) Adiabatic pumping can be
implemented in a quantum dot with time-dependent tunneling
rates. (b) At low driving frequencies and without a bias, the
pumped charge can be expressed as an integral over the vector
potential AðΓÞ along a closed contour C defined by the time-
dependent rates Γ ¼ fΓþ

R ;Γ
þ
Lg. The pumped charge is purely

geometric, since it only depends on the contour C.
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shortcut to geometric pumping can be realized with existing
technology and, since it is universal (it does not rely on the
adiabatic driving or on specific system properties), it may
enable fast pumping of charge or heat in many different
systems from physics, chemistry, and biology [3–12].
Charge pumping.—We consider the classical stochastic

dynamics of a system coupled to left and right reservoirs
described by a master equation of the form ðd=dtÞjPðtÞi ¼
LðtÞjPðtÞi. Here, the vector jPðtÞi ¼ (p0ðtÞ; p1ðtÞ;…)T

contains the probabilities for the system to be in state
i ¼ 0; 1; 2;…. The system is subjected to a periodic
external drive, and the dynamics can be described by the
rate matrix, LðtÞ ¼ Lðtþ τÞ, where τ ¼ 2π=Ω is the period
of the drive. Below, we discuss adiabatic pumping in a two-
state system, because it is simple to analyze and relevant to
experiments. However, the approach that we develop is
more general, and it can be applied to systems with many
states. The two-state system is important as it is equivalent
to the orthodox model of a quantum dot in the strong
Coulomb blockade regime, for which p0ðtÞ and p1ðtÞ
would correspond to the probability of having 0 or 1
electrons on the dot. The rate matrix is now

LðtÞ ¼
�
−Γþ

L ðtÞ − Γþ
R ðtÞ Γ−

LðtÞ þ Γ−
RðtÞ

Γþ
L ðtÞ þ Γþ

R ðtÞ −Γ−
LðtÞ − Γ−

RðtÞ

�
; ð1Þ

where Γ�
α ðtÞ are the time-dependent rates for an electron to

tunnel on (þ) or off (−) the quantum dot via the left or right
reservoir, α ¼ L, R. In this case, the pumped charge per
period into the right reservoir reads

hni ¼
Z

τ

0

dt½Γ−
RðtÞp1ðtÞ − Γþ

R ðtÞp0ðtÞ�; ð2Þ

where the first term of the integrand is the average current
running from the dot into the right reservoir, and the second
term is the current in the opposite direction. To introduce a
more general notation, we define the matrices

JþðtÞ ¼
�
0 Γ−

RðtÞ
0 0

�
and J−ðtÞ ¼

�
0 0

Γþ
R ðtÞ 0

�
; ð3Þ

so that the pumped charge can be written as hni ¼R
τ
0 dth1jJðtÞjPðtÞi, where JðtÞ ¼ JþðtÞ − J−ðtÞ describes
the current running into the right reservoir, and h1j ¼
ð1; 1Þ. This expression generalizes Eq. (2) to systems with
many states under an appropriate identification of JðtÞ.
Adiabatic pumping.—To begin with, we consider charge

pumping for slow drivings. We thus rewrite the master
equation as ½LðtÞ−ðd=dtÞ�jPðtÞi¼0 to evaluate the peri-
odic state perturbatively in the frequency, jPðtÞi ¼
jπðtÞi þ jδπðtÞi þ � � �, treating the time-derivative −d=dt
as a perturbation of the instantaneous stationary state
defined by LðtÞjπðtÞi ¼ 0. Using standard perturbation
theory, we then find jδπðtÞi ¼ ℛðtÞj∂tπðtÞi, where ℛðtÞ

is the generalized inverse of LðtÞ [36], the normalization of
jPðtÞi implies that h1jδπðtÞi ¼ 0, and we have defined
j∂tπðtÞi ¼ ðd=dtÞjπðtÞi. Thus, we find for the near-adia-
batic state the expression

jPadðtÞi ¼ jπðtÞi þℛðtÞj∂tπðtÞi: ð4Þ

Moreover, the pumped charge can be written as hniad ¼
Ndyn þ Ngeom, where Ndyn ¼

R
τ
0 dth1jJðtÞjπðtÞi is the

period-averaged instantaneous current describing the
dynamical steady-state contribution and

Ngeom ¼
Z

τ

0

dth1jJðtÞℛðtÞj∂tπðtÞi ¼
I
C
dΓ · AðΓÞ ð5Þ

is a purely geometrical contribution. To obtain Eq. (5),
we use that the time dependence of JðtÞ, ℛðtÞ, and jπðtÞi
enters implicitly through the transition rates Γ�

L;RðtÞ.
Therefore, we can rewrite the integral over a period as
an integral along the closed contour C in the parameter
space Γ ¼ ðΓþ

R ;Γ
þ
L ;Γ−

R;Γ−
LÞ. We have also introduced the

vector potential AðΓÞ¼h1jJ½ΓðtÞ�ℛ½ΓðtÞ�ð∂=∂ΓÞjπ½ΓðtÞ�i,
which is consistent with the classical analog of the Berry
phase introduced by Sinitsyn and Nemenman in the context
of full counting statistics [3–5]. Similar expressions have
been obtained for pumped currents [10–12] and entropy
production [14], however, Eq. (5) is limited to adiabatic
driving, and the geometric picture typically breaks down at
higher frequencies.
Shortcut to adiabatic pumping.—We now develop a

shortcut to geometric pumping beyond the adiabatic
regime. To this end, we consider an external control that
allows us to retain the target state (4) beyond the limit of
slow driving. In this case, the non-Hermitian extension of
the counterdiabatic technique cannot be used [35], since the
target state is not the instantaneous stationary state jπðtÞi.
Instead, in the spirit of Ref. [34], we note that the time
evolution of the uncontrolled rate matrix LðtÞ generates
nonadiabatic excitations, such that the state cannot follow
the target state (4). Specifically, for a short time step δt,
we have jPadðtÞi → ½1þ LðtÞδt�jPadðtÞi ¼ jπðtþ δtÞi þ
jδπðtÞi þOðδt2Þ, since j∂tπðtÞi ¼ LðtÞjδπðtÞi, and this
time-evolved state is different from the desired target state,
jPadðtþ δtÞi. To circumvent this problem we construct an
external control described by the matrix

LcontðtÞ ¼ j∂tδπðtÞih1j; ð6Þ

which suppresses nonadiabatic excitations, so that the state
of the system follows the desired target state as jPadðtÞi→
ð1þfLðtÞþLcontðtÞgδtÞjPadðtÞi ¼ jPadðtþ δtÞiþOðδt2Þ.
Hence, with jPadð0Þi as the initial state, the solution to the
master equation using the rate matrix LðtÞ þ LcontðtÞ is
given by jPðtÞi ¼ jPadðtÞi for all t. Importantly, the
combined rate matrix LðtÞ þ LcontðtÞ must be physically
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meaningful at all times; specifically, all transition rates
must remain non-negative.
If the control is implemented without modifying the

current operator JðtÞ, we immediately find that the con-
trolled dynamics reproduces the dynamical and the geo-
metrical contribution to the pumped charge, i.e.,

hnicont ¼
Z

τ

0

dth1jJcontðtÞjPadðtÞi ¼ Ndyn þ Ngeom; ð7Þ

where JcontðtÞ is the current operator with the control, and
we have used JcontðtÞ ¼ JðtÞ to obtain the last equality in
Eq. (7). This condition is always satisfied, if we implement
the control solely on the left side of the system. On the other
hand, if the control is implemented on both sides, the
current operator gets modified, JcontðtÞ ≠ JðtÞ. However,
Eq. (7) still holds true, if we appropriately implement the
control on both sides of the system by modifying the
transition rates in LðtÞ ¼ LLðtÞ þ LRðtÞ as LLðtÞ →
LLðtÞ þ ð1 − ϵÞLcontðtÞ and LRðtÞ → LRðtÞ þ ϵLcontðtÞ.
Here, ϵ is a free parameter that determines on which side
the control is mainly implemented and LLðRÞðtÞ describes
transitions into the left (right) reservoir. For ϵ ¼ 0, the
control is implemented solely on the left side of the system,
and Eq. (7) is satisfied. For ϵ ¼ 1, a similar argument
implies that the pumped charge per period from the left
reservoir to the system satisfies hniLcont ¼ Ndyn þ Ngeom. By
using the conservation of the charge per period
hniLcont ¼ hnicont, Eq. (7) is again valid. For ϵ between 0
and 1, we take a linear combination of the two limits to
obtain Eq. (7).
In summary, we find that our control enables geometric

charge pumping beyond the limit of slow driving. The
explicit form of the control (6) and its consequences for
the charge pumping (7) are central results of this Letter.
We stress that the construction of the control (6) does not

depend on the specific details of the system, including the
number of states, and it is therefore universal in this sense.
Moreover, while we here have focused on classical sto-
chastic systems, it is clear that our control technique can
also be applied to open quantum systems described by
Markovian generalized master equations.
Applications.—To illustrate our control technique, we

consider the two-state model in Eq. (1) with the time-
dependent rates, Γþ

L ðtÞ ¼ Γ0ðAþ R cosΩtÞ and Γþ
R ðtÞ ¼

Γ0ðAþ R sinΩtÞ, plotted with full lines in Fig. 2(a), and
Γ−
L ¼ Γ−

R ¼ Γ0. The vector potential AðΓÞ is shown in
Fig. 1(b) together with the closed contour C defined by the
rates. The dynamical contribution vanishes, Ndyn ¼ 0,
while the geometrical term reads [3]

Ngeom ¼ 2πR2

½4ðAþ 1Þ2 − 2R2�3=2 : ð8Þ

In Fig. 2(b) we show the average pumped charge as a
function of the driving frequency. At low frequencies, the
driving is adiabatic, and the geometric description of the
pumped charge is valid. However, as the frequency is
increased and approaches the bare tunneling rate Γ0, the
driving becomes nonadiabatic, and the pumped charge
becomes drastically reduced below the geometric value.
To counteract the reduction of the pumped charge, we

now implement our control. The control matrix (6) reads

LcontðtÞ ¼ γðtÞ
�−1 −1

1 1

�
; ð9Þ

where γðtÞ ¼ ∂t½αðtÞ=ΓðtÞ� and αðtÞ ¼ ∂t½Γ−ðtÞ=ΓðtÞ�, and
we have defined Γ�ðtÞ ¼ Γ�

L ðtÞ þ Γ�
R ðtÞ and ΓðtÞ¼

ΓþðtÞþΓ−ðtÞ. We have also used that jπðtÞi¼
ðΓ−=Γ;Γþ=ΓÞT and jδπðtÞi ¼ ð−α=Γ; α=ΓÞT . The control
can be implemented by simply modifying the transition

(b)(a)

uncontrolled
controlled

R

L

FIG. 2. Transition rates and pumped charge. (a) The two time-dependent rates for the uncontrolled dynamics (full lines) and the
corresponding modified rates (dashed lines). (b) Average pumped charge as a function of the driving frequency for the controlled and
uncontrolled dynamics. The geometric description breaks down for the uncontrolled dynamics around Ω ≃ Γ0, where the pumped
charge gets significantly reduced. In contrast, for the controlled dynamics, the pumped charge is given by the geometric contribution up
until the breakdown frequency of aroundΩc ≃ 32Γ0, where the modified transition rates become negative. The error bars are obtained by
adding 3% noise to the control field, showing that our protocol is robust against moderate fluctuations. The parameters used here are
A ¼ 4, R ¼ 1, ϵ ¼ 0.5, with Ω=Γ0 ¼ 25 in (a) and c ¼ 0.03 in (b).
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rates as Γ�
L ðtÞ → Γ�

L ðtÞ � ð1 − ϵÞγðtÞ and Γ�
R ðtÞ →

Γ�
R ðtÞ � ϵγðtÞ, where ϵ can be between 0 and 1.
Figure 2(a) shows two of the modified rates (dashed

lines) for a fixed driving frequency, while the resulting
pumped charge is plotted as a function of the frequency in
Fig. 2(b). Using the external control, we find that the
geometric value is maintained for frequencies that are
more than an order of magnitude larger than the breakdown
frequency for the uncontrolled dynamics. At very large
frequencies, the modified transition rates become negative
and the control can no longer be implemented. The
breakdown frequency Ωc can be estimated as Ωc¼
Γ0f2½1þ

ffiffiffi
2

p ð1þAÞ=R�g3=2≃32Γ0 for A ¼ 4 and R ¼ 1,
which agrees well with our numerical results.
The robustness of our protocol is important for practical

realizations. To gauge the stability of our scheme, we show
in Fig. 2(b) the standard deviation of the pumped charge,
obtained by adding random Gaussian noise ξt to the control
field as γðtÞ → ð1þ cξtÞγðtÞ, where c is the noise strength
and hξti ¼ 0 and hξtξt0 i ¼ δðt − t0Þ. The smallness of the
error bars demonstrates that our scheme is stable against
moderate fluctuations.
Geometric interpretation.—The control itself has an

interesting geometric interpretation. To see this, we define
the distance between two states jpi and jqi with compo-
nents pi and qi as Lðp; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i jpi − qij2

p
. Now, by

considering the infinitesimal distance between two neigh-
boring states L½pðtþ δtÞ; pðtÞ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt½pðtÞ�
p

δtþOðδt2Þ,
we are led to define the metric as gtt½pðtÞ� ¼

P
i j∂tpiðtÞj2

[37]. We then see that Lcont is related to the geometry of the
correction to the stationary state as

jjLcontjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X
i

j∂tδπiðtÞj2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngtt½δπðtÞ�

p
; ð10Þ

where N is the number of states of the system and jjAjjF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j jaijj2

q
is the Frobenius matrix norm. This relation

indicates that, if jδπðtÞi depends strongly on time, a large
intensity of the control is required to suppress the non-
adiabatic excitations.
Equation (10) should be contrasted with the non-

Hermitian control field of Ref. [35], which is given as
LcdðtÞ ¼ j∂tπðtÞih1j, and which is related to the geometry
of the stationary state as jjLcdjjF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ngtt½πðtÞ�
p

. In this
respect, our control matrix can be regarded as a next-order
nonadiabatic generalization of Lcd. For the two-state case,
we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt½πðtÞ�

p ¼ ffiffiffi
2

p jαðtÞj and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt½δπðtÞ�

p ¼ ffiffiffi
2

p jγðtÞj.
A similar connection has been discussed between the
counterdiabatic Hamiltonian and the Fubini-Study metric
in quantum systems, which has led to several speed-limits
and trade-off relations [38–41]. Thus, we expect that
similar universal relations may also exist for the geometric
pumping considered here.

Thermodynamic cost.—Finally, we compare the entropy
production for the controlled dynamics with its adiabatic
counterpart. Since our system is interacting with two
reservoirs, a steady-state heat current (housekeeping heat)
can be generated even in the stationary state. We therefore
consider the Hatano-Sasa entropy production, which is the
entropy production of the reservoirs after subtracting the
entropy that is generated by the stationary dissipation.
The Hatano-Sasa entropy production for a stationary cycle
is defined as [42]

ΣHS ¼
Z

τ

0

dt
X
ji

Wjipi ln

�
pSS
j

pSS
i

�
≥ 0; ð11Þ

whereWji is the j, ith component of the rate matrixW and
pSS
i is the ith component of the corresponding instanta-

neous stationary state.
For the uncontrolled dynamics, we have pi ¼ πi þ δπi

as expressed by Eq. (4), and withW ¼ L and pSS
i ¼ πi, we

find that the entropy production vanishes, Σad ¼ 0 [43]. By
contrast, the control required to mimic the near-adiabatic
dynamics generates a finite amount of entropy. For the two-
state case, we have W01 ¼ Γ− − γ, W10 ¼ Γþ þ γ, p0 ¼
ðΓ− − αÞ=Γ, and pSS

0 ¼ ðΓ− − γÞ=Γ. The Hatano-Sasa
entropy production then becomes

Σcont ¼
Z

τ

0

dtðα − γÞ ln
�
1 − γ=Γ−

1þ γ=Γþ

�
−
Z

τ

0

dtγ ln

�
Γ−

Γþ

�
:

ð12Þ

The strength of the control, γ ∝ Ω2, vanishes at low
frequencies and we recover Σcont → Σad ¼ 0. On the other
hand, at large frequencies, the control can no longer be
implemented and the entropy production diverges. Hence,
we interpret the entropy production in Eq. (12) as the
thermodynamic cost of implementing our control.
Conclusions.—We have developed a shortcut to geo-

metric pumping in classical stochastic systems. Going
beyond existing protocols for non-Hermitian systems,
our shortcut makes it possible to recover the near-adiabatic
dynamics much beyond the adiabatic regime and thereby
maintain the geometrical description of the pumped charge.
The control protocol can be implemented by modifying the
transition rates of the uncontrolled system, and it is robust
against moderate fluctuations of the control field. Our work
opens several promising avenues for further developments.
Experimentally, our control can be realized in systems from
physics, chemistry, and biology. Theoretically, it would be
interesting to explore possible speed-limits and trade-off
relations, similarly to those that have been formulated
for counterdiabatic Hamiltonians in quantum systems.
Extending our ideas to adiabatic pumping in quantum
systems constitutes another interesting line of research [44].
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A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen,
and J. G. Muga, Shortcuts to adiabaticity, Adv. At. Mol. Opt.
Phys. 62, 117 (2013).
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