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Abstract—In this paper we present a 4-element Vivaldi antenna
array and beamsteering receiver IC for fifth-generation mobile
network (5G) New Radio (NR). The implemented receiver utilizes
a delay-based local-oscillator (LO) phase-shift technique for
accurate beamsteering, and it exhibits 1 to 2.4 degree phase
tuning capability for 2–5 GHz bandwidth accordingly. On-chip
delay measurement is performed with pilot signal generation and
delay estimation capable of 2 ps accuracy. The IC is fabricated on
28 nm CMOS technology, it occupies an area of 1.4 × 1.4 mm2

including bonding pads and consumes 22.8 mW at 2 GHz
for single receiver path operation. The receiver demonstrates
wideband over-the-air reception with the prototype antennas.

Index Terms—Beamsteering, calibration, delay estimator, delay
line, local oscillator (LO) phase-shifting, phased arrays, RF front
ends, self-test, sub-6 GHz, Vivaldi antenna, wideband receiver.

I. INTRODUCTION

THE FIFTH-GENERATION mobile technology (5G) targets
for higher data rates and lower latency through im-

proved spectral usage of sub-6 GHz and millimeter-wave
frequency ranges. 5G New Radio (NR) aims to enhance
capacity of existing LTE networks by exploring unused sub-
6 GHz bands through LTE-NR dual-connectivity [1]. Extensive
use of phased arrays and beamsteering elevate signal-to-noise
ratio and filter interference signals through spatial power
combining. Beamsteering receiver architectures incorporate
phased array antennas and receiver front-ends with phase-
shifting capability to electronically steer the beam towards the
desired direction. These beamsteering and array radio tech-
niques for multiple-input multiple-output [2], [3], millimeter-
wave transceivers [4]–[6] and W-band car radar [7] offer
potential solutions for 5G networks.

Phase-shifting needed for beamsteering can be realized at
radio frequency (RF), local oscillator (LO), baseband (BB)
or in the digital domain. RF phase-shifting features low
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Fig. 1. Beamsteering receiver with LO phase-shifting and calibration.

power consumption, compact design and relaxed linearity
requirements for signal blocks following the summation node.
However, RF phase-shifters introduce phase-dependent gain
variation, it complicates gain calibration especially of large
phased arrays that suffer from amplitude tapering. Baseband
and digital phase-shifting offer highly flexible architecture
leveraging advanced signal processing techniques. Despite
their adaptability, wideband baseband and digital phase-
shifters require high dynamic range for analog signal blocks
and the digital interface preceding the summation node. In this
work we focus on LO phase-shifting, shown in Fig. 1, because
of its moderate area and power consumption, RF-signal path
linearity, reduction of phase-shift dependent gain variation and
relaxed dynamic range requirements for the digital interface.

This paper demonstrates beamsteering receiver with a 2×2
Vivaldi antenna array combined with receiver IC for 2–
5.5 GHz frequency range. As 5G NR frequency range 1 (FR1)
spans over several GHz, it requires an easily stackable wide-
band antenna element to realize a wideband array. Antenna
array design is a trade-off between multiple factors including
beamshape, bandwidth, size, and efficiency. Vivaldi antenna
array is chosen because it provides wide operating frequency
band and wide beamsteering range, is efficient, and can be
conveniently realized on a PCB. We propose a delay-based LO
phase shift technique to realize beam steering. The design is
based on digitally-controlled delay lines, it inherently exhibits
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wide frequency operation as compared to RF phase-shift based
approaches. The proposed LO phase shifting is power efficient,
compact and passive-less, and therefore scalable.

In practical beamsteering implementations, concurrent sig-
nal paths are subject to gain and phase mismatches due to
PVT variations in the receiver, which in turn skew the incident
angle of the beam away from the desired direction. It is
common practice to have gain and phase tuning capability in
beamsteering receivers [8]–[13]. On-chip calibration methods
typically incorporate a self-test apparatus based, for example,
on coherent signal summation in the baseband [14], [15] and
a tuning scheme for controlling individual channel gains or
delays, or both. In this work, we present a delay estimation
technique that utilizes an undersampling blocker detector
hardware for measuring relative path delays in digital domain.
It consists of Successive-Approximation-Register (SAR) ADC,
and FFT computation blocks usually present in baseband
signal processing in systems utilizing OFDM modulation.
By moving the delay measurement into digital domain, the
proposed estimator achieves time resolution of 2 picoseconds.

The rest of the paper is organized as follows. Section II
discusses the implementation details of the antenna array and
the receiver IC. Section III presents the experimental results
for a single receiver path, delay estimator and the signal
detector. Furthermore, the overall operation of the system is
verified with over-the-air measurements. Finally, conclusions
are drawn in section IV.

II. RECEIVER IMPLEMENTATION

Beamsteering operation can be demonstrated with different
types of antennas, such as patch, dipole, spiral, or Vivaldi an-
tennas. Patch and dipole-antennas are too narrowband, whereas
spiral antennas can be difficult to implement on the same
PCB as the IC. The chosen Vivaldi elements provide very
wide usable frequency range and are suitable for picocell
applications. A 2× 2 antenna array configuration was chosen
here instead of 1× 4 configuration to enable beam steering in
two orthogonal planes.

Fig. 2 presents the implemented prototype that includes
direct down-conversion receiver paths and 4-element wideband
Vivaldi antenna array. A single receiver path is composed of

(a)

(b)

Fig. 3. (a) Layout of the antenna PCB, showing pair of Vivaldi antennas
(middle) and extension parts for impedance matching (outer edges). (b) Layout
of the test PCB, showing IC footprint (middle), pilot distribution network (in
blue) and directional couplers at each receiver path (corners). Bottom layer
copper shown in gray.

low-noise transconductance amplifier (LNTA), 4-phase passive
mixers, and LO phase tuning elements to circumvent blocker-
induced nonlinear distortion and receiver desensitization. The
receiver front-end features a coil-less compact design with
3 dB gain tuning capability for gain mismatches. Furthermore,
delay characterization between the antenna paths is imple-
mented with sensing ADCs combined with FFT computations.
Any of the four antennas can be connected to either of
the sensing ADCs through a switch matrix amplifier. Delay
characterization with the FFT units provides delay informa-
tion for digitally-controlled beamsteering implemented with
digitally-controlled delay lines [16], [17]. The proposed tuning
structure provides wide frequency band for LO phase-shifting
architecture. To realize the beamsteering, the received and
phase-shifted signals are summed at the base-band filter input,
supporting 200 MHz instantaneous signal bandwidth. The IC
contains pilot signal generator for measuring gain and phase
mismatches, distributed via coupler-based distribution network
on the PCB.

A. Vivaldi Antenna Array

Fig. 3a shows one of two Vivaldi antenna PCBs [18].
The Vivaldi antenna element spacing is set to λ

2 at 3 GHz,
corresponding to 5 cm. The outermost extended parts of the
antenna array guarantee good matching below 3 GHz, where
the opening of the Vivaldi antenna is small compared to the
half-wavelength. On the other hand, the spacing of elements
is small enough to enable operation at the highest frequency.
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The presented prototype includes 2×2 antenna array with a
coupler-based via 100 Ω tree type distribution network shown
in Fig. 3b. The directional couplers, that are used to couple
the pilot signal to the RF path, exhibit 25 dB coupling. The
coupling is low enough not to attenuate the RF signal while
being strong enough to enable amplitude and phase calibration
with the pilot signal.

B. Front-End
The direct-conversion receiver, shown in Fig. 2, comprises

of low-noise transconductance amplifier (LNTA) and in-phase
and quadrature passive mixers that are driven by 25% duty-
cycle LO clock signals, tunable baseband transconductance
amplifier and common-source output buffer. The receiver
front-end targets to provide 50 Ω matching for 2–5.5 GHz,
compact design, moderate 5 dB amplification before signal
summation and instantaneous bandwidth of 200 MHz. Current-
mode architecture is adopted to circumvent voltage amplifi-
cation before spatial filtering of blockers at the summation
node [19] as strong blockers in nonlinear signal chain lead to
receiver desensitization.

LNTA, presented in Fig. 4, is a complementary common-
source amplifier with a tunable resistive feedback. The feed-
back voltage buffer is a complementary source follower added
to improve the large-signal linearity of the amplifier [20]. The
designed LNTA achieves wideband input matching, 5 dB noise
figure, and 3 dB gain tuning capability with 1 dB step. ADC
switches (M1, M2/M3) that interface the RF signal to delay
estimator cause minimal deterioration to main LNTA amplifier
performance.

The baseband amplifier (Fig. 4) is composed of two par-
allel operational transconductance amplifiers with common-
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mode feed-forward as in [21]. The resistor-capacitor feedback
network, shown in (Fig. 2), exhibits 3–8 dB gain-bandwidth
tuning capability.

C. LO Phase Tuning

The developed LO phase tuning block was designed to
achieve phase-shifts down to 1 - 2.4◦ for 2–5 GHz along
with 25% duty cycle 4-phase generation required for the
mixer. Digitally-controlled delay lines can provide both tun-
able phase-shifts and 25% duty-cycle IQ signal generation
without dividers or passive components, which facilitates the
integration of a large number of beamsteering array elements.
External LO reference is input buffered and distributed by a
clock tree to all delay lines for multi-phase signal generation.
Fig. 5 shows the block diagram of the proposed LO phase-
shifter based on delay lines, capable of generating full LO
cycle relative phase-shift, and 4-phase generation capability
by means of a branched structure and control logic.

Branch points break the delay line into three functional
domains: beamsteering, path calibration and pulse generation.
Beamsteering section tunes the relative delay differences ∆τ
between receiver front-ends for beam rotation. Path calibra-
tion section can reduce the relative phase variation between
different elements thanks to the wide delay-tuning capability
of individual time-delay cells in the delay line. The combi-
nation of delay tuning paths provide 1–500 ps tuning range.
Pulse generation section is responsible for 4-phase generation
capability. The last section delay line is branched into four
independent delay paths. The four distinct delays are combined
using AND gates to generate four 25% duty cycle non-
overlapping LO waveforms. The branched structure reduces
the power consumption in comparison to architectures with
frequency divider that require four fully independent signal
paths, and imbalances between IQ signals [16].

Presented in Fig. 5, the designed time-delay (TD) cell
generates coarse and fine delays between 1-45 ps respectively
to cover the full range of the frequency band and realize fine-



4

-1

Re

Im
FFTSAR

Re

Im

Re

Im
τ

Implemented on chip

UN-
FOLD

LIN
FITAVGFFT

RFin 1

RFin 2
SAR

PHA

Fig. 6. Structure of implemented signal detector (grey box) showing the
post-processing chain for Cross-PSD based delay estimation.

resolution beamsteering. The inverter-based delay grid pro-
vides three concurrent paths for coarse delays (15–45 ps). Fine
delays (1-4 ps) are produced through current blending regime
(nodes INT1 and INT2 in 5) in the asymmetrical multiplexers
with slow and fast transmission gates [22]. The designed time-
delay cell independently controls each transmission gate in the
multiplexers to enable a particular delay using 4-bit control
code, this design offers modular extensible architecture.

The reference LO signal (Fig. 5) generates a pilot signal
for phase calibration of parallel receiver paths. The reference
LO is multiplied, through an XOR operation, with its down-
converted version (flip-flop based divide-by-32 circuit) to
produce a frequency-shifted pilot signal for delay estimation
or coherent detection with ∼100 MHz baseband signal. The
pilot signal is amplified and delivered to receiver input via a
25 dB coupler on the PCB.

D. Delay Estimation

The delay estimator presented in Fig. 6 complements
the functionality of the beamsteering front-end with delay
detection capabilities. The designed apparatus utilizes two
parallel sets of ADC and FFT units, where one set serves
as a primary calibration channel and other as a zero-delay
reference, enabling digitally-assisted self-test for estimation of
relative delays between receiver paths. The on-chip section
of delay estimator is an extension of our prior work [16]
about the RF blocker detector, both of these functions can be
performed with this hardware. The RF signal can be passed to
the undersampling ADC output of any LNTA via specialized
switch matrix amplifier, which consists of source followers
and tri-state buffers (Fig. 4).

Each ADC block consists of four successive approximation
registers (SAR) utilizing 7-bit split-capacitor array digital-to-
analog converters.

Within one block, four SAR units are time-interleaved by a
factor of four to allow wider undersampling bandwidth.

Radix-22 single delay feedback (SDF) architecture [23] was
chosen for the on-chip FFT implementation. The exceptional
property of this pipelined structure is the combination of radix-
4 and radix-2 FFT architectures which gives best utilization
of multipliers and adders while preserving the small memory
footprint. The output of both pipelined FFT units is serialized
and sent off-chip via LVDS drivers for consequent post-
processing. Differing from self-test apparatus based on analog
coherent signal summation [14], [15], we implement self-test
by signal summation in the digital baseband. The implemented

receiver system performs the delay estimation fully in the
digital domain via cross-correlation of undersampled reference
RF signals. This approach provides a 2 ps delay resolution
through averaging of the spectral energy observed at the RF
front-end.

For two deterministic discrete-time signals x and y, their
cross-correlation product over a window of N samples is
defined as

Rxy[m] =

N−1∑
n=0

x[n]y∗[n−m]. (1)

The discrete Fourier transform of the cross-correlation is
called the cross-power spectral density (cross-PSD), denoted
as Cxy(k) , F(Rxy[m]). If both signals x and y are N -
periodic, the cross-PSD can be written as

Cxy(k) = X(k)Y ∗(k), (2)

where X(k) = F(x[n]) and Y (k) = F(y[n]). Assuming that
y is a version of the signal x delayed by τ and attenuated by
factor γ, i.e., y[n] = γx[n−τ ]⇔ Y (k) = γX(k)e−

j2πkτ
N , we

obtain

Cxy(k) = |γ| |X(k)|2 ejα(k) (3)

where α(k) = 2πkτ
N − ∠γ.

From (3), a first-order polynomial can be fitted to the phase
α(k) in order to estimate the delay τ between x and its
delayed replica y. The corresponding post-processing chain
is illustrated in Fig. 6. After undersampling by on-chip signal
detector, complex multiplication of two signal spectra is per-
formed in software, yielding the delay information embedded
in the phase of the complex product. To reconstruct the
undersampled RF signal, the corresponding frequency bins of
the reference tone and its harmonics are selected and unfolded,
producing a clean spectrum from which the Cross-PSD phase
is extracted and averaged. The slope of the Cross-PSD phase
is obtained from a linear model of the averaged data, yielding
a coefficient directly proportional to the time delay between
received signals.

III. MEASUREMENTS

The Vivaldi antennas were implemented on FR4 PCB and
the chip was fabricated in 28 nm FDSOI-CMOS process.
Chip micrograph is depicted in Fig. 7. It occupies an area
of 1.4x1.4 mm2 including the bonding pads. Following exper-
imental results, we verified the Vivaldi antenna array receiver
with over-the-air measurements and further details of the
functionality of the IC prototype.

A. Single Receiver Chain
Figure 8 shows the measured gain, noise figure (NF) and

third-order input intercept point (IIP3) of one receiver path
from 2 to 5.5 GHz. Other signal paths were disabled at the
BB input by switching off LO distribution to passive mixers.
The gain of the receiver path is 8 to 13 dB over the frequency
range. Due to low voltage gain LNTA amplifier, the receiver
achieves a high -7 dBm inband IIP3 with 47 and 67 MHz
offset tones. The noise figure (NF) varies from 9 to 13 dB in
the RF frequency range of interest with baseband bandwidth
of 200 MHz.
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B. Delay Estimator

The performance of complete delay estimator was then eval-
uated by feeding two antenna ports with identical RF signals
of equal frequency and power while sweeping the phase offset
of one signal. Vector signal generator is used to produce the
test RF signals and the LVDS output is captured with a logic
analyzer. The post-processing of FFT data was implemented in
software and interfaced to the chip hardware as shown Fig. 6.
Resulting Cross-PSD is averaged by a factor of 4096 in order
to further suppress the measurement noise. The frequency of
the reference signal is selected to be 2002.4060 MHz and the
time-interleaving ADC sampling clock is set to 19.9936 MHz,
providing coherent undersampling under constraint

fsig = nFs +
kFs
NFFT

, (4)

where fsig is the signal frequency and Fs is the sampling
frequency, and integer parameters are chosen to be n = 100
and k = 39. NFFT = 256 is defined by implementation.
Thus, a particular FFT bin is allocated for each RF harmonic.
A single measurement sequence provides a 256-point FFT
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after averaging of 4096 consequent FFT windows, and takes
approximately 5.24 ms to complete.

The delay estimator outputs for a linear delay sweep are
shown in Fig. 9. The results show a linear dependency between
the relative delay of test RF signals and the angle of Cross-
PSD extracted by the undersampling delay estimator. The fit
residual indicates an absolute error up to 2 ps, in relation to
the fit slope per picosecond. Time delay of 2 ps corresponds to
phase step of 1.44 degrees and 3.96 degrees for 2 GHz signal
and 5.5 GHz signals accordingly.

The results demonstrate that the proposed undersampling
estimator enables self-test capabilities for in-system charac-
terization of RF front-end delays due to temperature, aging or
process variations. The system is capable of high-precision
measurements, enabling estimation of relative path delays
from antenna to mixer input, which are typically within
tens-of-picoseconds range for wide-band LNA implementa-
tions [13], [24]. Together with the proposed LO phase-tuning
block described in Section II-C and external post-processing
chain described in Section II-D, the proposed estimator can
be incorporated into a closed-loop system for compensation
of phase mismatches due to PVT variations and aging. The
application of phase compensation is beyond the scope of this
paper and will be considered in our future work.

C. Over-the-Air Measurements

The far-field beam patterns for the Vivaldi antenna array and
the receiver prototype were measured in anechoic chamber.
RF and LO signals for the measurements were produced with
dual channel vector signal generator and the receiver baseband
signal was measured with vector network analyzer.

The width of the main beam is determined by the angle
between points where the power is reduced by 3 dB and known
as half-power beamwidth (HPBW). Fig. 11 presents over-the-
air measurement results for 2 GHz and 5 GHz in both E- and
H-plane. Due to the wide frequency band, the far-field patterns
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Fig. 10. Vivaldi antenna array with RF-IC attached to the rotator in the
measurement chamber.
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Fig. 11. Measured normalized far-field pattern at 2 GHz in E- (a) and H-plane
(b) and at 5 GHz in E- (c) and H-plane (d). Forward beam in solid black and
steered beams in dotted and dashed gray.

are not identical at all frequencies. The far-field pattern at
2 GHz have wide HPBW and beamsteering is demonstrated
for approximately -30◦, 0◦, and 30◦. HPBW becomes more
narrow at 5 GHz and grating lobes appear. The beamsteering
is demonstrated for approximately -13◦, 0◦, and 13◦.

The over-the-air measurements demonstrate the logical
beamsteering capability of the receiver prototype over a wide
frequency range providing extensive coverage and suggesting
improved capacity.

Table I compares the presented beamsteering receivers with
its counterparts, the proposed design produces higher phase
resolution with moderate power consumption. Moreover, this
work demonstrates wide beamsteering capability with Vivaldi
antenna array.

IV. CONCLUSION

We have presented a 2–5.5 GHz beamsteering receiver pro-
totype including 4-element receiver IC and 2×2 array of
Vivaldi antennas. Implemented in 28 nm CMOS, the prototype
is capable of beamsteering with 1◦ – 2.4◦ phase tuning through
the proposed delay-based LO phase shifter. The IC has pilot
signal generator and signal detector for phase calibration.
Implemented signal detector has been demonstrated to achieve

picosecond accuracy for delay estimation. PCB assembly inte-
grates the Vivaldi antenna array and coupler-based distribution
network for calibration.

Our beamsteering receiver achieves a high -7 dBm IIP3, 8–
13 dB gain and 9–13 dB NF with instantaneous baseband
bandwidth of 200 MHz. A single receiver path consumes
22.8 mW at 2 GHz from 1V supply. The proposed delay-based
LO generator is capable of wide frequency operation with
1◦ – 2.4◦ phase tuning capability, and the signal detector
can estimate delays with 2 ps accuracy ( 1.44◦ at 2 GHz).
Beamsteering has been demonstrated through over-the-air
measurements in E- and H-plane for 2 and 5 GHz. Overall,
this work demonstrated integrated antenna-IC wideband op-
eration in sub-6 GHz range, accurate beamsteering, on-chip
calibration and compact architecture to facilitate integration
of large arrays for 5G FR1.
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