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Correlations disguised in various forms underlie a host of important phenomena in classical and quantum
systems, such as information and energy exchanges. The quantum mutual information and the norm of the
correlation matrix are both considered as proper measures of total correlations. We demonstrate that, when
applied to the same system, these two measures can actually show significantly different behavior except at
least in two limiting cases: when there are no correlations and when there is maximal quantum entanglement.
We further quantify the discrepancy by providing analytic formulas for time derivatives of the measures for an
interacting bipartite system evolving unitarily. We argue that to properly account for correlations one should
consider the full information provided by the correlation matrix (and reduced states of the subsystems). Scalar
quantities such as the norm of the correlation matrix or the quantum mutual information can only capture a
part of the complex features of correlations. As a concrete example, we show that in describing heat exchange
associated with correlations neither of these quantities can fully capture the underlying physics. As a byproduct,
we also prove an area law for quantum mutual information in systems with local and short-range interactions,
without need to assume Markovianity or final thermal equilibrium.

DOI: 10.1103/PhysRevA.101.042311

I. INTRODUCTION

With recent developments in the rapidly growing field of
quantum information science, numerous novel concepts have
been introduced and used for a plethora of systems and appli-
cations in physics, communications, and computation [1,2],
where correlations (quantum in particular) play a key role.
For example, in quantum thermodynamics [3], it is known that
correlations can be a resource in energy transfer [4,5], heat
and work conversion [6–10], entropy exchange [11–13], and
in the performance of quantum heat engines [14]. Correlations
can also have implications on the size of the gap in the energy
spectrum of correlated systems [15]. It has been proven that
almost all quantum states have nonclassical correlations and
thus can be a useful resource [16]; however, creating such
resources would in turn require thermodynamic cost [17–20].

In almost all the existing studies, the quantum mutual
information (QMI) measure has become a standard tool to
quantify correlations. There have been extensive studies to
formulate a set of natural requirements for measures of (quan-
tum) correlations [21–23], especially entanglement [24,25],
through which it has been argued that QMI is a measure
of total correlations—whether classical or quantum—that a
correlated state of a composite quantum system can have
[26]. QMI has various appealing properties and also admits
diverse operational interpretations, e.g., as the amount of
noise required to completely destroy all correlations [27–29].
Notwithstanding, there also exist observations showing in-
compatibilities between some measures of the total, classical,
and quantum correlations [30–33] as opposed to what had
been largely accepted, which indicate that QMI or other mea-

sures of entanglement and quantumness of correlations may
not be compatible for ordering quantum states based on the
amount of correlations they contain [34]. In a broader context,
it has been known in (quantum) resource theory that some
resources are not totally ordered sets; see, e.g., Refs. [35–39].

In this paper we argue that, while a nonzero QMI signals
existence of correlations, it is not always a reliable and
faithful measure for variations in the total correlations. This
shortcoming has important consequences, e.g., for quantum
thermodynamics. To examine QMI, we use the correlation
matrix as a benchmark. This matrix, defined by the difference
between a given quantum state and the tensor product of its
reductions, naturally contains all correlations-related proper-
ties of a correlated quantum state. This matrix has already
been used to define a “correlation picture” [40] which enables
one to obtain a dynamical equation for open quantum systems
[41,42], and also to study heat transfer between interacting
correlated quantum systems [10]. The behavior of the correla-
tion matrix in terms of system parameters can be considered as
a reasonable reference for measuring total correlations. First
we show that variations in QMI in terms of a local parameter
of the system can behave differently from the variations in
the correlation matrix. In particular, the correlation matrix can
remain constant whereas QMI does not. This difference in
behavior can be attributed to the issue of ordering quantum
states [43,44] with respect to the amount of total correlations.
In addition, this feature implies that QMI may not always be a
good measure to characterize total correlations. We also illus-
trate that an analogous discrepancy can be caused by quantum
dynamics. To quantify this, we consider two coupled systems
and derive exact analytic formulas for the time derivatives of
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QMI and the norm of the correlation matrix. Moreover, we
show that neither of these measures can fully capture heat
exchange between two correlated quantum systems; instead,
the whole correlation matrix is required. In the case of an
uncorrelated thermal initial state for the system and its bath,
we derive a relation between the heat exchange and QMI, from
which we also prove an area law for QMI in systems with
short-range, local interactions.

The structure of the paper is as follows. In Sec. II we recall
some basic definitions. Section III compares QMI and the
norm of the correlation matrix analytically as well as through
two examples. In Sec. IV we relate binding energy to QMI
and the norm of the correlation matrix. Section V concludes
the paper. Four appendices include parts of derivations and
details.

II. BASIC DEFINITIONS

Here we recall the definitions of the basic objects QMI and
correlation matrix.

A. QMI

We first consider a composite bipartite quantum system SB
the state of which is described by the density matrix �SB. QMI
between subsystems S and B is defined as

I = S(�SB‖�S ⊗ �B) = S(�S ⊗ �B) − S(�SB), (1)

where �S = TrB[�SB] and �B = TrS[�SB] are the reduced
density matrices of the subsystems, S(�) = −Tr[� ln �] is
the von Neumann entropy of �, and S(�‖�′) = Tr[� ln �] −
Tr[� ln �′] is the relative entropy of the two states � and �′.

B. Correlation matrix

For a given density matrix �SB, the correlation matrix is
defined as the difference of the total state from its uncorrelated
counterpart �S ⊗ �B [40]:

χ = �SB − �S ⊗ �B. (2)

If we assume a set of orthonormal Hermitian operator bases

for the subsystems, {σi}d2
S−1

i=0 and {η j}d2
B−1

j=0 (where dS and dB

denote the dimensions of the Hilbert spaces of S and B,
respectively), such that Tr[σiσi′ ] = δii′ and Tr[η jη j′] = δ j j′ ,
we obtain [34]

χ =
∑

i j

(〈σi ⊗ η j〉SB − 〈σi〉S〈η j〉B)σi ⊗ η j . (3)

It can seen that the coefficients of the correlation matrix in
the chosen basis are standard covariance or two-point cor-
relation functions. Such functions are well-known measures
of correlations in classical joint probability distributions. All
correlation-related properties of the state �SB are inscribed
in the operator χ . Although for a given state �SB there is a
unique χ , the reverse does not necessarily hold. Since χ is a
matrix, there is no reason a priori why a scalar quantity such
as its 2-norm ‖χ‖2 ≡

√
Tr[χ†χ ] would be able to capture all

the relevant features associated with total correlations in the
system. In fact, we will explicitly demonstrate below that the

scalar measures I and ‖χ‖2 can show mutually incompatible
information about correlations.

III. COMPARINGI AND ‖χ‖2

Here we first compare QMI and the norm of the correla-
tion matrix through two examples, and then provide analytic
formulas for these quantities.

A. Example I: Discrepancy in the behavior between QMI and
the norm of the correlation matrix

Let us consider a system of two interacting subsystems S
and B, where there is a constant correlation matrix χ = (|1〉 ⊗
|0〉〈0| ⊗ 〈1| + |0〉 ⊗ |1〉〈1| ⊗ 〈0|)/10, with {|0〉, |1〉} being
the basis set of a two-dimensional space. We can choose the
individual density matrices as

�S(x) = x|0〉〈0| + (1 − x)|1〉〈1| + (|1〉〈0| + |0〉〈1|)/10,

�B(x) = (1 − x2)|0〉〈0| + x2|1〉〈1| + (|1〉〈0| + |0〉〈1|)/10,

for x ∈ [0.27, 0.9] and they form a proper x-dependent density
matrix for the total system as above by �SB(x) = �S(x) ⊗
�B(x) + χ . With these choices, while χ is constant, QMI is
neither constant nor monotonic in x—as shown in Fig. 1. This
result is due to the fact that, while ‖χ‖2 measures the (scalar)
magnitude of the total correlations in the system that remains
constant here, I is a measure for relative correlations (relative
to some uncorrelated state �S ⊗ �B).

B. Example II: Discrepancy in the time evolution of QMI and
the 2-norm of the correlation matrix

We now show how discrepancies between the scalar cor-
relation measures can emerge due to dynamics of a bipartite
system. We consider a two-qubit system with the total Hamil-
tonian

HSB = HS + HB + Hint, (4)

FIG. 1. QMI and 2-norm of the correlation matrix for an x-
dependent state �SB(x) = �S(x) ⊗ �B(x) + χ given in example I,
where the correlation matrix is parameter independent and �S(x)
and �B(x) are parameter dependent. Although the correlation matrix
remains constant it can be seen that QMI varies with the change of
the parameter and has a minimum at x = 0.64. See the main text for
details. All quantities are dimensionless.
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FIG. 2. Discrepancies in the behavior between QMI I and the
correlation matrix χ in a two-qubit system undergoing unitary evo-
lution in example II. (a) I and ‖χ‖2 vs time t . In the highlighted
regionsI increases whereas ‖χ‖2 decreases. (b, c) Magnified regions
of discrepancies corresponding to the green and yellow regions in (a).
See Appendix A for further details. All quantities are dimensionless.

where the Hamiltonian of the first qubit (S), the Hamiltonian
of the second qubit (B), and their interaction are given by

HS = σ z
S, HB = − 1

2σ z
B, (5)

Hint = 5
2σ x

S ⊗ σ x
B + 1

2σ
y
S ⊗ σ

y
B + 9

2σ z
S ⊗ σ z

B, (6)

with σαs (α ∈ {x, y, z}) are the Pauli matrices and σ± =
(σ x ± iσ y)/2. In Fig. 2 we have plotted I (t ) and ‖χ (t )‖2

for the evolution of a specific initial state �SB(0) (for details
see Appendix A1). It can be observed that in the highlighted
regions QMI displays local maxima, whereas ‖χ‖2 mono-
tonically decreases there. A closer inspection reveals that
the regions of discrepancies are not restricted to the two
highlighted parts; there are more time intervals at which the
signs of dI (t ) and d‖χ (t )‖2 differ, as shown in Appendix A2.

C. Analytic formulas for ∂tI and ∂t‖χ‖2
2

In general, for closed bipartite quantum systems, we can
quantify the difference in time evolution between I and ‖χ‖2

by computing their time derivatives (Appendix B):

∂tI = iTr{[HSB, χ ] ln(�S ⊗ �B) + iχ∂t ln(�S ⊗ �B)}, (7)

∂t‖χ‖2
2 = 2iTr{[HSB, χ ]�S ⊗ �B + iχ∂t (�S ⊗ �B)}. (8)

Although the second term in Eq. (12) is zero, Tr[χ ∂t ln(�S ⊗
�B)] = 0, we keep it for comparison. We can immediately see
that the two rates are proportional only if we can approximate
ln(�S ⊗ �B) by �S ⊗ �B − ISB. This condition holds when
�SB is maximally or highly entangled, in which case ∂tI (t ) ≈
(dSB/2)∂t‖χ (t )‖2

2—Appendix C. In general, however, these
two rates can behave in a completely different manner.

We note that despite the discrepancies demonstrated here,
depending on the context and details of the physical process
in question, one of these measures may prove more relevant.
For example, one can expect that when information or relative
entropy exchange between the subsystems is concerned QMI
should provide more pertinent information, whereas in some
other situations the norm of the correlation matrix may be
more useful. In the following, we demonstrate that in ther-
modynamic processes, in particular when studying energy
exchange between two correlated and interacting subsystems,
the full correlation matrix—neither its norm nor QMI—is
required to capture the complete physical picture.

IV. BINDING ENERGY VS QMI AND THE NORM OF THE
CORRELATION MATRIX

Assume a bipartite quantum system with the total Hamil-
tonian HSB as given in Eq. (4). The binding energy Uχ

associated with the concurrent existence of correlations and
interaction is defined as [10]

Uχ = Tr[�SB HSB] − Tr[�S ⊗ �B HSB] = Tr[χ Hint], (9)

where we have used Tr[χHS] = Tr[χHB] = 0 (for an alter-
native definition of the binding energy see Ref. [45]). The
thermodynamic importance of Uχ is that in a closed bipar-
tite system with a time-independent Hamiltonian the heat
exchange between the subsystems is compensated by the
variations of Uχ as

dQS(t ) + dQB(t ) = −dUχ (t ), (10)

where dQS = Tr[d�S H̃S] with the effective Hamiltonian
H̃S = HS + TrB[�B Hint] and similarly for B.

From Eq. (9) it is evident that the change of Uχ is purely
because of the change of χ . Now we argue that neither of
the quantities I or ‖χ‖2 alone suffices to explain how Uχ

changes—hence they are insufficient to explain how heat is
exchanged between the subsystems. To do this, we derive two
equivalent expressions for dUχ (for details see Appendix D).
The first expression is given by

dUχ (t ) = Tr[χ̂ (t ) Hint]d‖χ (t )‖2 + Tr[dχ̂ (t ) Hint]‖χ (t )‖2,

(11)

where χ̂ (t ) = χ (t )/‖χ (t )‖2 is the normalized correlation ma-
trix. This implies that dUχ cannot be described by d‖χ (t )‖2

alone due to the second term on the right-hand side. For
the second expression, we assume a time-independent ref-
erence (thermal) state �	

S ⊗ �	
B = e−βHS ⊗ e−βHB/Tr[e−βHS ⊗

e−βHB ], with β being the inverse temperature, to obtain

dUχ (t ) = −(1/β ) dI (t ) − (1/β ) dS[�S(t ) ⊗ �B(t )‖�	
S ⊗ �	

B]

− Tr{d[�S(t ) ⊗ �B(t )]Hint}. (12)

This relation also shows that due to the extra terms on the
right-hand side dUχ is not necessarily monotonic in dI .

We can obtain an interesting additional result by assuming
�SB(0) = �	

S ⊗ �	
B (with β being the initial equilibrium in-

verse temperature of the system and the bath) and integrating
Eq. (12), which gives

I (t ) = −β Tr[χ (t ) Hint] − β Tr[�t (�S ⊗ �B)Hint]

− S[�S(t ) ⊗ �B(t )‖�S(0) ⊗ �B(0)], (13)
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FIG. 3. Left: ∂tI and ‖χ‖2 vs t in example II. Right: Comparing the signs of ∂tI and ∂t‖χ‖2. Discrepancy in the signs ∂tI and ∂t‖χ‖2 is
seen at the time intervals where sgn[∂tI (t ) ∂t‖χ (t )‖2] = −1. All quantities are dimensionless.

where �t (�S ⊗ �B) = �S(t ) ⊗ �B(t ) − �S(0) ⊗ �B(0). By
using the positivity of relative entropy [1] (S(�S(t ) ⊗
�B(t )‖�S(0) ⊗ �B(0)) � 0), Tr[AB] � ‖A‖1‖B‖ (with
‖X‖ = sup‖|v〉‖=1 |〈v|X |v〉| and ‖X‖1 = Tr[

√
X †X ]), and

‖�t�SB‖1 � 2, we can get the bound

I (t ) �2β‖Hint‖. (14)

In generic systems where interactions are short range and
local, ‖Hint‖ is proportional to the “area” of subsystem S—the
number of boundary particles of S that interact with B. Our
bound thus implies an “area law” for QMI [46]. Note that
our derivation does not require thermal equilibrium for the
final state or Markovianity for its subsystem dynamics. It only
requires that the initial state of the composite system is an
uncorrelated thermal state of the two systems.

V. SUMMARY AND CONCLUSIONS

We have shown how significant discrepancies can arise
in a bipartite quantum state in the behavior between two
standard measures of total correlations, namely, the quantum
mutual information measure and the norm of the correlation
matrix. In particular, we have demonstrated by an example
that while the correlation matrix is constant and only reduced
density matrices are parameter dependent the quantum mutual
information features variations with the parameter of the
local states. Moreover, we have shown that discrepancies can
emerge also in the case of a bipartite system undergoing
unitary evolution. We have considered the case of two coupled
qubits and argued that while the norm of the correlation matrix

increases (decreases) in time the quantum mutual information
may decrease (increase). This feature implies that if we con-
sider the norm of the correlation matrix as a measure for the
amount of (total) correlations within a composite quantum
state the quantum mutual information may not work well
for ordering quantum states in terms of their correlations.
We have further quantified the differences between the two
quantities by deriving analytic expressions for their time
derivatives for a general case and showing where these may
agree. As an additional result, we have also obtained an upper
bound on quantum mutual information, which leads to an area
law that quantum mutual information scales with the area of
the system. This result holds for generic systems in general
except for assuming an uncorrelated thermal initial state for
the system and its bath.
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APPENDIX A: DETAILS OF EXAMPLE II (SEC. III B)

1. Initial state of the total system

In example II we have assumed the following initial state
for the two-qubit system in the computational basis (|0〉 =
(1 0)T and |1〉 = (0 1)T ):

�SB(0) =

⎛
⎜⎜⎝

0.403 041 −0.181 049 − 0.038 525i 0.012 466 + 0.122 14i −0.044 462 + 0.058 024i
−0.181 049 + 0.038 525i 0.314 013 0.025 204 − 0.101 876i 0.053 753 + 0.030 605i

0.012 466 − 0.122 14i 0.025 204 + 0.101 876i 0.065 777 −0.018 686 + 0.024 092i
−0.044 462 − 0.058 024i 0.053 753 − 0.030 605i −0.018 686 − 0.024 092i 0.217 169

⎞
⎟⎟⎠.

(A1)

2. Time intervals of opposite signs for ∂tI and ∂t‖χ‖2

Time derivatives of I (t ) and ‖χ (t )‖2 are shown in
Fig. 3(a). In Fig. 3(b) we have depicted the sign of
the derivatives and obtained the time intervals within
which sgn(∂tI (t )) �= sgn(∂t‖χ (t )‖2). In the left green

part in Fig. 2(a), the discrepancy interval is when
t ∈ [4.371, 4.432], and in the right yellow part the
discrepancy is seen for t ∈ [7.177, 7.218]. The rest of
the time intervals with discrepancies, given a 4 × 10−5

time step in the numerical simulation, are as follows: t ∈
{[4.000, 4.008] ∪ [4.088, 4.093] ∪ [4.234, 4.238] ∪ [4.371,
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4.432] ∪ [4.682, 4.702] ∪ [4.824, 4.829] ∪ [5.094, 5.097] ∪
[5.256, 5.275] ∪ [5.480, 5.484] ∪ [5.616, 5.628] ∪ [5.727,

5.732] ∪ [6.018, 6.019] ∪ [6.194, 6.198] ∪ [6.315, 6.325] ∪
[6.465, 6.476] ∪ [6.585, 6.587] ∪ [6.885, 6.887] ∪ [6.901,

6.931] ∪ [7.051, 7.056] ∪ [7.177, 7.218] ∪ [7.365, 7.374] ∪
[7.496, 7.497] ∪ [7.636, 7.643] ∪ [7.893, 7.895]}. These
intervals can be seen in Fig. 3(b).

APPENDIX B: DERIVATION OF THE EXPRESSIONS FOR
∂tI AND ∂t‖χ‖2

2 [EQS. (7) AND (8)]

Since entropy is invariant under unitary evolution,
S[�SB(t )] = S[�SB(0)] is time independent. Hence
∂t SSB(t ) = 0. This yields the rate of charge of QMI as

∂tI
(1)= ∂t SS + ∂t SB (B1)

= −Tr[∂t (�S ⊗ �B) ln(�S ⊗ �B)]
(2)= −Tr[∂t (�SB − χ ) ln(�S ⊗ �B)]

= i Tr{[HSB, �SB] ln(�S ⊗ �B)} + Tr[∂tχ ln(�S ⊗ �B)]

= i Tr{[HSB, �S ⊗ �B + χ ] ln(�S ⊗ �b)}
+ Tr[∂tχ ln(�S ⊗ �B)]

= i Tr{[Hint, χ ] ln(�S ⊗ �B)}. (B2)

In the last line we have used Tr[∂tχ ln(�S ⊗ �B)] = 0,
Tr{[HSB, �S ⊗ �B] ln(�S ⊗ �B)} = 0, Tr{[HS, χ ] ln �S} = 0,
and Tr{[Ha, χ ] ln �b} = 0 for a, b ∈ {S, B}.

For ∂t‖χ‖2
2 we note that

∂t‖χ‖2
2 = ∂t Tr[χ2]

= 2 Tr[∂tχ χ ]

= 2 Tr[∂t (�SB − �S ⊗ �B)χ ]

= 2i Tr{[HSB, χ ]�S ⊗ �B} − 2 Tr[∂t (�S ⊗ �B)χ ].
(B3)

APPENDIX C: COMPARING EQS. (7) AND (8)

In Eq. (7) we can replace �S ⊗ �B with dSB �S ⊗ �B,
without any effect on the final result. Similarly, in Eq. (8) we

can replace �S ⊗ �B with �S ⊗ �B − ISB/dSB. Thus

∂tI = i Tr{[HSB, χ ] ln(dSB �S ⊗ �B)

+ iχ ∂t ln(dSB �S ⊗ �B)}, (C1)

(dSB/2)∂t‖χ‖2
2 = i Tr{[HSB, χ ](dSB �S ⊗ �B − ISB)

+ iχ ∂t (dSB �S ⊗ �B − ISB)}. (C2)

These two expressions would be equal if we can approx-
imate ln(dSB �S ⊗ �B) ≈ dSB �S ⊗ �B − ISB. From ln A ≈
A − I, for a positive operator A with ‖A − I‖  1, we can
simplify this condition as∥∥∥∥�S ⊗ �B − IS

dS
⊗ IB

dB

∥∥∥∥  1

dSB
. (C3)

In other words,

�S(t ) ⊗ �B(t ) ≈ IS

dS
⊗ IB

dB
⇒ ∂t I(t ) ≈ dSB

2
∂t‖χ (t )‖2

2.

(C4)
Condition (C3) is satisfied when �SB is a maximally or highly
entangled state [25].

APPENDIX D: DERIVATION OF THE AREA LAW FOR
QMI [EQ. (12)]

The relation between the time derivative of QMI and heat
exchange can be obtained through the following:

dI = dSS + dSB

= −Tr[d�S ln �S] − Tr[d�B ln �B]

= −(Tr[d�S ln �S] − Tr[d�S ln �	
S]) − Tr[d�S ln �	

S]

− (Tr[d�B ln �B] − Tr[d�B ln �	
B]) − Tr[d�B ln �	

B]

= −dS(�S‖�	
S) + βTr[d�SHS] − dS(�B‖�	

B)

+β Tr[d�BHB]

= −dS(�S ⊗ �B‖�	
S ⊗ �	

B) − β Tr[dχHint]

−β Tr[d (�S ⊗ �B)Hint], (D1)

where �	
S = e−βHS/Tr[e−βHS ], �	

B = e−βHS/Tr[e−βHB ], and in
the last line we have used the identity in Eq. (9) and
Tr[d�SHS + d�BHB] = Tr[d (�S ⊗ �B)(HS + HB)].
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