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Nano-size confinement induces many intriguing non-Fourier heat conduction phenomena, such as nonlinear
temperature gradients, temperature jumps near the contacts, and size-dependent thermal conductivity. Over the
past decades, these effects have been studied and interpreted by nonequilibrium molecular dynamics (NEMD)
and phonon Boltzmann transport equation (BTE) simulations separately, but no theory that unifies these two
methods has ever been established. In this work, we unify these methods using a quantitative mode-level
comparison and demonstrate that they are equivalent for various thermostats. We show that different thermostats
result in different non-Fourier thermal transport characteristics due to the different mode-level phonon excitations
inside the thermostats, which explains the different size-dependent thermal conductivities calculated using
different reservoirs, even though they give the same bulk thermal conductivity. Specifically, the Langevin
thermostat behaves like a thermalizing boundary in phonon BTE and provides mode-level thermal-equilibrium
phonon outlets, while the Nose-Hoover chain thermostat and velocity rescaling method behave like biased
reservoirs, which provide a spatially uniform heat generation and mode-level nonequilibrium phonon outlets.
These findings explain why different experimental measurement methods can yield different size-dependent
thermal conductivity. They also indicate that the thermal conductivity of materials can be tuned for various
applications by specifically designing thermostats. The unification of NEMD and phonon BTE will largely
facilitate the study of thermal transport in complex systems in the future by, e.g., replacing computationally
unaffordable first-principles NEMD simulations with computationally less expensive spectral BTE simulations.

DOI: 10.1103/PhysRevB.101.155308

I. INTRODUCTION

Nanoscale heat transport is critical for the thermal man-
agement of electronics and thermoelectric energy harvesting
[1–7]. When system sizes are comparable with or smaller
than the phonon mean free path, phonons can move bal-
listically through the systems and induce many intriguing
non-Fourier heat conduction phenomena such as nonlinear
temperature gradients, temperature jumps near the contacts,
and size-dependent thermal conductivity [8–11]. Therefore,
nanoengineering has been used extensively to tune the ther-
mal conductivity of nanomaterials for various applications
[1,9,12].

Significant advances in understanding nanoscale heat con-
duction phenomena have been made in the past two decades
by using the phonon Boltzmann transport equation (BTE)
theory [9,13–16] and molecular dynamics (MD) simulations
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[14,17–19]. The phonon BTE uses the phonon gas model
and explains the non-Fourier thermal transport by the size
confinement of the ballistic phonons, which have mean free
paths comparable with or longer than the system size. Com-
pared with the gray phonon BTE [16], which often assumes
that all phonons share the same velocity, mean free path,
and specific heat, nonequilibrium MD (NEMD) simulations
are more accurate because they naturally include all the
mode-resolved properties and all the orders of anharmonicity.
However, the use of NEMD simulations has been limited to
the real-space interpretation without physical insights into the
mode-resolved phonon transport for a long time [14,20–31].
Very recently, Zhou et al. [32] and Feng et al. [33] developed
methods to map the real-space atomic vibration in NEMD
to the reciprocal-space phonon properties, e.g., phonon heat
flux and temperature, and give direct physical insights into
the non-Fourier phonon transport. However, whether these
phonon mode-resolved properties, e.g., mean free paths, tem-
perature gradients, and heat fluxes, extracted from NEMD
simulations are equivalent to those obtained from the BTE
simulations remains a question. The equivalence of NEMD
and phonon BTE simulations is of great importance to
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establishing the fundamental theory of phonon transport as
well as the use of one method to replace the other in certain
situations. For example, if equivalence can be proven, one
can run computationally less expensive BTE simulations to
replace the computationally unaffordable NEMD simulations
such as the large-scale or first-principles NEMD simula-
tions. Another unanswered question is whether the reservoir-
dependent thermal conductivity observed in NEMD simula-
tions can be reproduced by phonon BTE theory. This question
is critical to helping experimentalists understand the depen-
dence of measured thermal conductivity on measurement
methods, as well as the tunability of thermal conductivity by
tuning thermal reservoirs.

A quantitative comparison of NEMD and phonon BTE
is performed in this study using silicon as the testing mate-
rial. However, there are several key differences between this
comparison and those that were done previously [19,34–36].
First, the input parameters of phonon BTE (phonon specific
heat, group velocity, and relaxation time) are extracted from
the same interatomic potential as those used in NEMD. Sec-
ond, the same method of thermal excitations (i.e., thermal
reservoirs) in NEMD and phonon BTE is used. Third, nongray
(mode-resolved) phonon BTE is solved with the only assump-
tion being the relaxation time approximation, which should
be valid for silicon. Last, instead of comparing thermal con-
ductivity values, the temperature profiles, heat flux profiles,
and phonon modal temperature of NEMD and BTE were
compared directly.

As will be shown, a quantitative agreement between
NEMD and phonon BTE can be achieved. Such agreement
allows us to unify the phonon interpretation of the non-Fourier
heat conduction effects in the two methods. Moreover, we
clarify why different thermal reservoirs in NEMD simulations
give different results, which has been a subject of debate for a
long time [19,21,37,38].

This manuscript is organized as follows. In Sec. II, NEMD
simulations with sufficiently large thermal reservoirs are de-
scribed, and we revisit the difference among the Langevin
thermostat, the Nose-Hoover chain (NHC) thermostat, and the
velocity rescaling (VR) method. Especially, we study the heat
flux profiles and phonon modal temperature inside sufficiently
large reservoirs, which were not considered in previous work
[21,33,37]. In Sec. III, we provide a quantitative comparison
and a mode-to-mode correspondence between NEMD and the
mode-resolved phonon BTE, from which a unified phonon
interpretation of the non-Fourier heat conduction can be ob-
tained. In Sec. IV, some important issues in the phonon inter-
pretation are further proved by NEMD simulations. In Sec. V,
we discuss the above phenomena according to the unified
phonon interpretation as well as the relationship between the
interpretation and experimental measurement. In Sec. VI, we
give a summary and conclusions.

II. NEMD SIMULATIONS

NEMD simulations are an effective method to study
nanoscale heat conduction [3–6,20,24–27,39]. The implemen-
tation of NEMD simulations is analogous to the experimental
steady-state thermal conductivity measurements in which two
reservoirs (one heat source and one heat sink) are added to the

FIG. 1. Schematic illustration of the simulation cell used in
NEMD simulations. The simulation cell is a piece of atomic struc-
ture. Two thermal reservoirs (one heat source and one heat sink) each
with a length of Lth are established. The region between two thermal
reservoirs is defined as the sample region with a length of L. A few
layers of atoms at the two ends of the transport direction are fixed.
Periodic boundary conditions are set in the directions perpendicular
to the transport direction.

system to generate a one-dimensional (1D) steady-state heat
transfer profile in the sample region. In NEMD simulations,
one can either apply a constant heat flux by the VR method
[40,41] or a temperature difference by some thermostats such
as the Langevin thermostat [42] and the NHC thermostat
[43–45]. By measuring the ratio of the heat flux to the tem-
perature gradient, the thermal conductivity of the sample can
be obtained according to the Fourier law. The NEMD setup
is shown in Fig. 1. The reservoirs and sample lengths are Lth

and L, respectively. To study the device size effects, L = 13
and 56 nm are simulated. To prevent the atoms in the thermal
reservoirs from sublimating, a few layers of atoms at the two
ends are fixed. Periodic boundary conditions are applied in the
lateral directions.

We chose silicon modeled by the Tersoff potential
[46] as the testing material throughout this work. All the
NEMD simulations were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
package [47]. The cross-sectional area is set as 8 × 8 unit
cells, which is large enough to eliminate the finite-size effects
in the lateral directions. The time step is set as 1 fs, which is
short enough to resolve all the phonon frequencies. The whole
system is first relaxed under the NPT (constant mass, pressure,
and temperature) ensemble for 5 ns and then switched to the
NVE (constant mass, volume, and energy) ensemble with the
heat source and heat sink being applied. The simulations are
then run for 20 ns, with the data taken within the last 10 ns
being used to extract the heat transport properties, e.g., the
temperature and heat flux. Although it has recently been
shown that LAMMPS might incorrectly implement the heat flux
formula in some cases [48,49], it is accurate for crystalline sil-
icon [50]. The heat flux values in the sample are also close to
those obtained by energy conservation [30] in our cases. The
phonon modal temperatures are extracted from the NEMD
simulations by using the spectral phonon temperature (SPT)
method developed by Feng et al. [33,51] (see Appendix A for
a brief explanation of the SPT method). Here the temperature
of a phonon mode is defined as a convenient representation
of the carrier energy density, which is equal to the energy
density of a phonon mode at the Boltzmann distribution, as is
commonly done for both experimental and theoretical studies,
as described in the literature [52,53]. For the cases that used
the SPT method, the systems are run for 40 ns under the NVE
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FIG. 2. Temperature and heat flux profiles for silicon with differ-
ent lengths: (a) 13 nm, (b) 56 nm by using the Langevin thermostat
(Langevin), the NHC thermostat, and the VR method. The shaded
regions represent the heat source (red) and heat sink (blue), and the
region in between represents the sample.

ensemble and the data taken within the last 20 ns are used in
the SPT method.

Because thermal transport depends on thermal reservoirs,
in this work, three representative thermal reservoirs, i.e., the
VR method [40,41], the Langevin thermostat [42], and the
NHC thermostat [43,44], are studied. The former fixes heat
fluxes, and the latter two fix temperatures. The length of the
thermal reservoir is first set at a relatively large value of 25 nm,
and the effect of its size will be discussed later. In both the
Langevin and NHC thermostats, the target temperatures of the
heat source and sink are set as 310 and 290 K, respectively,
with a rescaling time constant of 0.1 ps, as recommended by
a previous work [37]. In the VR method, the amount of heat
added for every time step depends on the size of the device:
in this study, 2.50 meV is used for the 13 nm device and
1.66 meV is used for the 56 nm device.

The temperature and heat flux profiles are shown in
Fig. 2. For both lengths, the temperature profiles using the
Langevin thermostat are different from those of the other two
thermostats. The Langevin thermostat maintains a constant
temperature inside the reservoirs (except for a small region
near the sample), while the other two reservoirs do not.

The Langevin thermostat produces temperature jumps at the
contact regions, while the other two reservoirs do not. For all
the cases, nonlinearity exists inside the sample region. The
Langevin thermostat appears to give a smaller slope than the
NHC thermostat and the VR method. These phenomena were
also discovered in previous work [21,37].

The heat fluxes are plotted in the bottom of Figs. 2(a) and
2(b). For the Langevin thermostat, the value of the heat flux
is zero inside the thermal reservoirs except for a small region
near the sample. In contrast, in the NHC and VR reservoirs,
the heat flux increases linearly while approaching the device.
According to energy balance (

∫
Q̇dV = ∫

q · ndA, where Q̇
is the volumetric heat generation rate, q is the heat flux and
n is the surface normal), the heat generation rate inside the
Langevin reservoirs is zero, while that inside the NHC and
VR reservoirs is nearly uniform and nonzero. As such, at
steady state, the Langevin thermostat only deposits heat in a
small region of the reservoir near the sample and maintains a
constant temperature inside the thermal reservoirs.

To further examine the temperatures of different phonon
modes, the SPT method [33,51] is applied to analyze the
simulation data. For simplicity, it is only applied for the case
of L = 13 nm. We calculate the modal temperature for 204
phonon modes and plot the average value for six different
phonon branches in Fig. 3.

Again, we observe distinct behavior for the Langevin
thermostat, while the NHC thermostat and the VR method
behave similarly. For the Langevin thermostat, the modal
temperatures are out of equilibrium in the sample region but
are almost at equilibrium inside the thermal reservoirs except
for a small region near the sample. This phenomenon is also
discovered in previous work by Feng et al. [33]. For the NHC
thermostat and the VR method, the modal temperatures are
strongly out of equilibrium not only in the sample region but
also inside the thermal reservoirs.

From these results, we can distinguish the nanoscale
phonon transport behaviors of different thermal reservoirs.
The Langevin thermostat behaves differently, while the NHC
thermostat and the VR method are similar to each other. As
such, in the subsequent discussions, only the Langevin and
the NHC thermostats are considered. The conclusions of the
NHC thermostat should be applicable to the VR method as
well.

III. PHONON BTE ANALYSIS

Based on the NEMD results from Sec. II, the NEMD simu-
lations exhibit different behaviors with different reservoirs. In
this section, we use the mode-resolved phonon BTE to model
the systems studied in the NEMD simulations. The thermal
excitations need to be the same in phonon BTE and NEMD.
From Fig. 2, we note that for the Langevin thermostat, the
temperature is uniform inside the thermal reservoir, which
is similar to an infinitely large constant temperature thermal
reservoir. Therefore, we consider the thermalizing boundary
condition in the BTE calculations, as shown in Fig. 4(a). For
the NHC thermostat, because the heat generation inside the
thermal reservoir is spatially uniform, we use a uniform heat
generation, as shown in Fig. 4(b). There is no heat flux in
the fixed layers; thus, the fixed layers constitute an adiabatic
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FIG. 3. Averaged temperature profiles for phonon modes in six
different branches from NEMD simulation with (a) the Langevin
thermostat, (b) the NHC thermostat, and (c) the VR method.

boundary. In the framework of phonon BTE, the adiabatic
boundary can be specular or diffuse, or a mixture of both
[54]. Here we briefly consider the specular boundary and will
discuss this effect in detail later.

The thermalizing boundary condition in phonon BTE be-
haves like a black surface with the target temperature in which
we set 310 K for Thot and 290 K for Tcold, to be consistent
with the NEMD simulations. This surface emits outgoing

FIG. 4. The 1D simulation domain of phonon BTE with (a)
thermalizing boundary condition and (b) spatially uniform heat
generation and adiabatic boundary conduction.

phonons with an energy corresponding to equilibrium dis-
tribution at the target temperature into the sample region,
while all incoming phonons into the surface are absorbed.
For spatially uniform heat generation in Fig. 4(b), uniform
thermal energy is added to the heat source and the same
amount is extracted from the heat sink. Our BTE simulation
is mode resolved [55], so we need to determine the amount
of heat added to every phonon mode. Because it is difficult
to obtain the amount of energy added to each phonon mode
in the NEMD simulations, the same added energy is selected
for each phonon mode. The lengths of the thermal reservoirs
and the sample are set to the same as those in the NEMD
simulations. Temperature is defined as the ratio of the total
energy over the total heat capacity, which is consistent with
that in NEMD [33,47,56]. Note that this definition is different
from the lattice temperature in phonon BTE [55].

We adopted the finite volume method [10] to numerically
solve the mode-resolved phonon BTE under the relaxation
time approximation [57]. To solve the mode-resolved phonon
BTE, the group velocity vω,p, the relaxation time τω,p, and the
heat capacity Cω,p for every phonon mode are needed as the
input information. We emphasize that the input information
is extracted from the same system as NEMD: silicon crystal
with Tersoff potential at 300 K. These parameters are obtained
using the standard anharmonic lattice dynamics approach
[58,59] in which the harmonic and anharmonic interatomic
force constants are first extracted by fitting the relation be-
tween atomic forces, F , and the displacements u:

Fα
i = −

∑
j

∑
β

φ
αβ
i j uβ

j − 1

2!

∑
jk

∑
βγ

ψ
αβγ

i jk uβ
j ...,

where (i, α) means the α direction of atom i and φ and ψ are
the harmonic and third-order anharmonic force constants. The
phonon dispersion is obtained by diagonalizing the dynamical
matrix produced by the harmonic force constants. With the
dispersion relation ω(q, s), the group velocity and heat ca-
pacity of the mode (q, s) are simply calculated by v(q, s) =
∂ω(q, s)/∂q and c(q, s) = ∂ h̄ω(q, s)n0(q, s)/∂T with the
phonon population function being n0(q, s). In order to make
a fair comparison of the NEMD and phonon BTE results, the
phonon population function used in this work has the same
form as the standard Bose-Einstein distribution, n0(q, s) =
1/(exp(h̄ω(q, s)/kBT ) − 1), but with a modified Planck’s
constant, which is 1/100 of the original value [34]. This
treatment could reproduce the classical distribution in MD
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FIG. 5. Comparisons of temperature profiles and heat flux pro-
files between the NEMD simulations with the Langevin thermostat
and the BTE calculations with the thermalizing boundary condition
for two different sample lengths of (a) 13.0 nm and (b) 56.0 nm.

simulations. We compute the phonon relaxation time through
the lowest-order perturbation theory, in which three-phonon
processes are regarded as the only source for phonon-phonon
scatterings. Computation of the three-phonon relaxation times
requires the third-order anharmonic force constants, and the
expression can be found in previous publications [60,61].
With these phonon properties, the thermal conductivity of
silicon is calculated based on the single-mode relaxation time
approximation method. We use 10 × 10 × 10 q points to
sample the Brillouin zone. The obtained classical thermal
conductivity is 245 W/mK at 300 K, which is very close to
the previous equilibrium MD result for Tersoff silicon [11]. In
the BTE solver, we cannot consider as many phonon modes
as are in the system due to the huge computational cost, so
we use the information from 600 phonon bands obtained by
averaging over the different modes. The details of averaging
can be found in the previous publications [55,62].

First, we compare NEMD simulations with the Langevin
thermostat and BTE simulations with a thermalizing bound-
ary. We find that the results obtained from these two methods
agree well with each other, as shown in Fig. 5, not only in
the linear region in the sample but also in the nonlinear region
near the reservoir. This agreement is good for various sample

lengths. The heat flux values obtained by NEMD are 19.4 and
15.4 GWm−2 for 13.0 and 56.0 nm, respectively. The corre-
sponding heat flux values by BTE are 19.9 and 16.0 GWm−2.
The differences between the two methods are less than 5%.
The differences in the temperature profiles are less than 0.5 K,
which is the same magnitude as the statistical error in NEMD
simulations. The apparent thermal conductivity is defined as
k = q/(
T/L) [16,33], where q is the heat flux value inside
the sample, 
T is the average temperature difference between
two reservoirs, and L is the sample length. The results are
shown in Table I. Compared with the qualitative agreement
obtained by the gray BTE by Dunn et al. [19], our mode-
resolved BTE gives a quantitative agreement with NEMD
results. Note that the thermal conductivity values in Table
I are different from those obtained by Ref. [19] since we
calculate the size-dependent thermal conductivity in different
ways. In our work, we define the k as an “apparent” thermal
conductivity using the temperature difference between two
contacts. However, in Ref. [19], k is calculated by using
the middle linear temperature region inside the device, and
the obtained k has no clear physical interpretation although
this method is a commonly used in NEMD simulations. As
pointed out by Ref. [33], a plausible physical interpretation of
using the middle linear temperature region as the temperature
gradient to calculate k is that it can predict the bulk thermal
conductivity if the mode-resolved heat flux and temperature
are calculated and the mode-resolved thermal conductivities
are summed up.

Second, we compare NEMD simulations with the NHC
thermostat and BTE simulations. We find that the results are
the same only when the BTE simulations use uniform heat
generation reservoirs. The temperature and heat flux profiles
at different sample lengths are shown in Fig. 6. The apparent
thermal conductivity results also agree well, as shown in
Table I. From the quantitatively good agreement between
the NEMD and BTE results, we can make two important
conclusions.

(1) NEMD simulations can match the mode-resolved
phonon BTE quantitatively with the proper choice of thermal
excitations. The Langevin thermostat is similar to a thermal-
izing boundary condition in BTE. The NHC thermostat with
fixed layers is similar to a uniform heat generation in the
thermal reservoir with adiabatic boundaries.

(2) The non-Fourier behaviors observed in NEMD simula-
tions, including the nonlinear temperature profile, temperature
jumps, and size effect, can be reproduced by the mode-
resolved phonon BTE and pose a clear explanation of phonon
transport.

Although the NEMD and BTE simulations are all con-
ducted by using full phonon spectra, the comparisons dis-
cussed above are still based on an “averaged” temperature and
heat flux. To further confirm our conclusions about the equiv-
alence of NEMD and phonon BTE, we compare their mode-
resolved phonon temperatures. For the case of L = 13 nm,
temperature profiles for the six phonon branches of silicon
are compared in Fig. 7. We find that the branch-resolved tem-
peratures obtained from BTE with the thermalizing boundary
condition agree well with those obtained from NEMD with the
Langevin thermostat throughout the whole system, strongly
supporting our conclusion about their equivalence. Regarding
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TABLE I. The apparent thermal conductivity results.

Apparent thermal conductivity (W/mK)

BTE with NEMD with BTE with NEMD with
Sample length (nm) Thermalizing boundary Langevin reservoir Uniform heat generation NHC reservoir

13.0 12.9 12.6 12.3 12.0
56.0 44.8 43.1 37.8 39.2

the comparison of NEMD with the NHC thermostat and BTE
with spatially uniform heat generation, to reproduce exactly
the mode-resolved temperatures inside the NHC reservoirs
using BTE, careful assignment of the heat generation rate to
each individual phonon mode in BTE is required, which is
difficult. Here, for simplicity, we assign a uniform heat gener-
ation rate to each phonon mode, and we find that the branch-
resolved temperatures obtained from the two methods share
the same characteristics [Fig. 7(b)]. (1) Different branches are
out-of-equilibrium inside the thermostats. (2) The phonons
with shorter mean free path (TO and LO branches) become
more excited in the hot reservoir and cool more in the cold
reservoir, compared with the phonons with longer mean free

FIG. 6. Comparisons of temperature profiles and heat flux pro-
files between NEMD simulations with the NHC thermostat and the
BTE calculations with spatially and modally uniform heat generation
for two different sample lengths of (a) 13 nm and (b) 56 nm.

path (TA and LA branches). These characteristics are different
from the BTE with a thermalizing boundary condition or
NEMD with the Langevin thermostat. By carefully assigning
the heat generation rate to each individual phonon mode in
the BTE reservoirs, we believe the mode-resolved phonon
temperatures can match exactly those obtained from NEMD
with NHC thermostat.

With the agreement between NEMD simulations and
phonon BTE, we can unify the two methods based on one

FIG. 7. (a) Comparison of temperature profiles for six different
phonon branches between the NEMD simulations with the Langevin
thermostat and the BTE calculations with the thermalizing bound-
ary condition. (b) Comparison of temperature profiles for six dif-
ferent phonon branches between the NEMD simulations with the
NHC thermostat and the BTE calculations with the uniform heat
generation.
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FIG. 8. Schematic illustration of the phonon interpretation of the
non-Fourier heat conduction by NEMD simulations with (a) the
Langevin thermostat and (b) the NHC thermostat. (a) The temper-
ature inside thermal reservoirs remains constant (Thot in the heat
source and Tcold in the heat sink). The phonons are only emitted from
the boundary of the reservoir (the small region in the reservoir near
the sample region), and all have an energy density corresponding
to equilibrium distribution at the same temperature. All phonons
entering the boundary are absorbed. (b) Uniform heat generation
occurs in the whole thermal reservoir (Q̇ in the heat source and −Q̇ in
the heat sink). The phonons are emitted into the sample region from
the whole volume and continue moving inside the entire simulation
domain until they scatter with each other or the adiabatic boundary.

unified phonon interpretation of the non-Fourier heat conduc-
tion. As shown in Fig. 8(a), by using the Langevin thermostat,
the thermal reservoir behaves like an infinitely large equi-
librium thermal reservoir, which is similar to a thermalizing
boundary condition in phonon BTE. The phonons are only
emitted from the boundary of the reservoir, a small region
in the reservoir near the sample, with the same temperature.
Here the “phonon temperature” is a representation of the
phonon energy density, with the population following the
Boltzmann distribution [33]. All phonons entering through the
boundary to the reservoirs are absorbed. In contrast, as shown
in Fig. 8(b), the NHC thermostat or VR method in NEMD
simulations excite phonons by generating uniform heat to
all phonon modes throughout the whole reservoirs, which
corresponds to the uniform heat generation in the phonon
BTE. The phonons with shorter mean free path (TO and LO)
have more scattering inside the reservoirs, and therefore, they
are more easily heated in the hot reservoir and cooled in the
cold reservoir, compared with other phonons with smaller
scattering rates (TA and LA). This explains why the TO and
LO show higher temperatures in the hot reservoir and lower
temperatures in the cold reservoir, compared with TA and LA
phonons, using the NHC or VR thermostat. In this case, the

heat-nonconductive phonons (TO and LO) are excited more
than the heat-conductive ones (TA and LA), reducing the
overall thermal conductivity of the sample, compared with
the case in which all phonons are excited equally, as seen
in the Langevin thermostat. This finding explains why the
size-dependent thermal conductivity obtained by the NHC
thermostat is smaller than that by Langevin thermostat ob-
served in the literature [19]. Furthermore, if we construct a
reservoir that can excite the TA and LA phonons more than the
TO and LO phonons, the calculated size-dependent thermal
conductivity can be even higher than that by the Langevin
thermostat. This principle also applies to experimentation:
If the contacts excite more acoustic phonons than optical
phonons, the measured thermal conductivity of the sample can
be larger than its intrinsic value, and vice versa. Therefore, we
can tune the thermal conductivity of nanodevices by tuning
the contacts in practical applications. However, when the
length of the system is long enough, much longer than the
phonon mean free paths, the thermal conductivity calculated
or measured by all the methods reaches the same value since
all the phonons can reach equilibrium inside the sample due to
the diffusive scattering. That is to say, reservoirs do not affect
the measured bulk thermal conductivity value.

IV. THE EFFECTS OF THERMAL RESERVOIR
SIZE AND BOUNDARY

Based on the above findings, several deductions can be
made. The first one is about the length of the thermal reser-
voirs. For the Langevin thermostat, because only the boundary
(the small region in the reservoir near the sample) affects the
thermal transport, the length of the thermal reservoirs should
not influence the results when it exceeds the length of the
small region. For the NHC thermostat, the whole volume
affects the thermal transport, so the length of the thermal
reservoirs should affect the results significantly. To prove this,
the temperature profiles and heat flux values in the sample
region for different lengths of thermal reservoirs using the
Langevin and the NHC thermostats are shown in Fig. 9. From
Fig. 9(a), we see that for the Langevin thermostat, when the
lengths of thermal reservoirs are longer than 0.5 nm, the length
essentially does not influence the temperature profile and heat
flux. Therefore, only the small region near the sample affects
the simulation results. This phenomenon is consistent with the
findings in previous studies in which the length of the thermal
reservoirs did not influence the results when it exceeded a
critical value, which depended on the time parameter of the
thermostat [24,32,37]. In contrast, for the NHC thermostat in
Fig. 9(b), the temperature profile and heat flux value change
with the length of the thermostat. Therefore, the Langevin
thermostat behaves like an infinitely large thermal reservoir
while the NHC thermostat is a finite-length reservoir with
uniform heat generation.

The second deduction that can be made is about bound-
ary scattering. For the infinitely large thermal reservoir, the
phonons that enter are absorbed, and there is no boundary
scattering. For the finite-length reservoir with uniform heat
generation, the phonons can continue moving inside the ther-
mal reservoirs, so the boundary scattering should be important
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FIG. 9. Temperature profiles and heat flux values obtained by
using different lengths for the thermal reservoirs: (a) the Langevin
thermostat, (b) the NHC thermostat.

to the results. Thus, we set three configurations, as shown in
Fig. 10, to test the boundary scattering.

In the first configuration [Fig. 10(a)], we add 2.2-nm crys-
tal silicon between the thermal reservoirs and the fixed layers.

FIG. 10. Three configurations used to test boundary scattering:
(a) 2.2-nm crystalline silicon was added between the thermal reser-
voirs and fixed layers, (b) 2.2-nm amorphous silicon was added
between the thermal reservoirs and fixed layers, (c) the origin con-
figuration used in NEMD simulation.

In the second configuration [Fig. 10(b)], we add 2.2-nm amor-
phous silicon between the thermal reservoirs and the fixed
layers to generate diffuse phonon scattering. Recent wave
packet simulations have clearly shown that a flat crystalline
surface specularly scatters phonons while amorphous silicon
induces strong diffuse scattering [63]. The third configuration
is the same as in the previous cases [Fig. 10(c)]. We set the
length of thermal reservoirs as 8.2 nm and the length of the
sample as 13 nm. The temperature and heat flux profiles are
shown in Fig. 11.

As shown in Fig. 11(a), the temperature profiles of these
three configurations for the Langevin thermostat are very
close to each other. The values of the heat flux in the
sample region are also the same but are not shown here for
simplicity. This result proves that the phonons entering the
thermal reservoirs cannot reach the boundary when we use
the Langevin thermostat. The temperature profiles of the three
configurations in Fig. 11(b) are quite different for the NHC
thermostat. The values of the heat flux in the sample region are
also not the same, as shown in Fig. 11(c). This result proves
that the phonons entering the thermal reservoirs will reach the
boundary and will not be completely absorbed in the thermal
reservoirs when the NHC thermostat is used. It should also
be noted that the temperature drop (or increase) near the two
ends is not a simulation error. The heat flux in these regions
was calculated in Fig. 11(c) and proved to be zero. Because
strong phonon nonequilibrium exists in these regions, the
obtained temperature value is just some modal average. The
drop (or increase) indicates that the modes become more
in equilibrium. It does not mean there is heat flow from
the heat bath to the adiabatic boundary. The origin of this
phenomenon is similar to the nonlinearity of temperature and
will be discussed later.

In another work by Liang et al., the boundary was made
into a “rough” structure to intentionally induce diffusive scat-
tering in NEMD simulations for interface thermal resistance
[38]. They also observed that boundary roughness matters for
the VR method but not for the Langevin thermostat. However,
they believe that the VR method is more realistic, while the
Langevin thermostat generates artifacts. In fact, based on our
understanding, the difference is merely due to the different
natures of the VR method and the Langevin thermostat. As the
VR method involves a volumetric heat generation, phonons
can encounter the boundary. In comparison, the Langevin
thermostat is an equilibrium thermostat in which phonons
are equilibrated in the reservoir before they encounter the
boundary, and thus the boundary atomic arrangement does not
affect the phonon transport.

V. DISCUSSION

Based on the phonon interpretation of non-Fourier heat
conduction described previously, we can unify the under-
standings of the non-Fourier phenomena in two methods.
The nonlinearity of temperature in the sample is a physical
phenomenon that is related to nondiffusive transport and local
nonequilibrium of different phonon modes. In this situation,
the temperature gradient not only relates to the heat flux but
also to the local nonequilibrium of different phonon modes.
This conclusion can be further proved by the fact that in
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FIG. 11. Temperature profiles of (a) Langevin thermostat,
(b) NHC thermostat, and (c) heat flux profiles of NHC thermostat for
different simulation configurations. None, no space between fixed
layers and thermal reservoirs; Crystalline, 2.2-nm crystal silicon is
added between the fixed layers and thermal reservoirs; Amorphous,
2.2-nm amorphous silicon is added between the fixed layers and
thermal reservoirs.

Fig. 11(b) we see a surprising phenomenon in that there is a
temperature gradient near the fixed layers even though the heat
flux is zero. Therefore, in Fig. 3, if the local nonequilibrium
occurs in the sample for all cases, then the nonlinearity exists

for all cases, even though the heat flux is constant. The Fourier
law fails in this situation because it only describes the relation-
ship between the temperature gradient and the heat flux and
ignores the effects of the local nonequilibrium. The abrupt
temperature jump near the thermal reservoirs only appears
when the Langevin thermostat is used. In the BTE framework,
it is a normal phenomenon when a constant temperature
boundary condition is applied and when ballistic transport
appears [9]. Within the thermal reservoir, a fixed temperature
is enforced, while in the sample region close to the thermal
reservoir, the temperature is affected by the emitted phonons
from the other reservoir. Some of these emitted phonons
transport ballistically, and their temperature is close to the
temperature of the other reservoir. This effect disappears in the
diffusive regime because the phonons from the other reservoir
equilibrate with other phonons during the transport process,
also resulting in a continuous and linear temperature profile.
In contrast, when the NHC thermostat or the VR method is
used, the temperature inside the reservoirs is not enforced.
Thus, the abrupt temperature jump is not obvious. The size
effect is a result of ballistic transport, which agrees with our
previous understanding. However, the Langevin thermostat
and the NHC thermostat (or the VR method) correspond
to different configurations of thermal ballistic transport, as
discussed above.

The understandings developed here also help explain the
results extracted from NEMD simulations. In the nondiffusive
transport regime, we recommend using the Langevin thermo-
stat to calculate the thermal conductance (or the apparent ther-
mal conductivity) of the sample. The conductance should be
obtained using C = q/
T , where q is the heat flux value and

T is the temperature difference of the thermal reservoirs.
The conductance obtained using the Langevin thermostat is
similar to when a sample is coupled to two infinite thermal
reservoirs, which has been widely adopted in the BTE [9] or
Landauer framework [64]. By using this method, the results
obtained from NEMD can be comparable with those of other
simulation methods, including BTE, atomistic Green’s func-
tion [65], and homogenous nonequilibrium molecular dynam-
ics [66] (a method similar to equilibrium molecular dynamics)
[37]. The finite-size effect of thermal conductance (or the
apparent thermal conductivity) can be described by the ana-
lytical model derived by BTE [67]. Moreover, recently, Kaiser
et al. developed a model that can obtain the same results as
those of the gray phonon BTE with a thermalizing boundary
condition, based on Fourier’s law [16]. It is interesting to note
that the key results obtained in the present work by using
Langevin thermostat, the temperature profiles shown in Fig. 5,
can be also approximated by following the approach of Kaiser
et al., which uses only the bulk thermal conductivity, specific
heat, and sound velocity (see Appendix B). The accuracy is
not guaranteed though, because their model does not take into
account the mode-resolved phonon properties. Using the NHC
thermostat or the VR method is still reasonable if the sample
size is much larger than the mean free path. Nevertheless,
in the nondiffusive regime, the thermal conductance obtained
using either the temperature difference of the sample bound-
ary or the temperature difference of the thermal reservoir will
be dependent on the size of the reservoirs and the boundary
atom arrangement. Also, because of the nonequilibrium of the
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thermal reservoir, it is difficult to clearly identify the physical
meaning of the obtained results. In addition, regardless of
which thermal reservoir is adopted, taking the “linear region”
to fit thermal conductivity should not be adopted.

Our results can also guide the measurement and control of
thermal transport in real solid-state devices. We have shown
that the nanoscale phonon transport characteristics, including
the temperature profile, heat flux value, and modal temper-
ature, strongly depend on the applied thermal reservoirs in
NEMD simulations. This is also true for real devices. The
Langevin thermostat, an infinitely large equilibrium thermal
reservoir, can be realized when a dielectric film is sandwiched
between two metallic films. Because the electron-phonon
mean free path in the metals is much smaller than the phonon
mean free path in the dielectric film, the two interfaces be-
tween the dielectric film and the metallic film can be assumed
to be equilibrium thermal reservoirs at the fixed temperature
[57]. The abrupt temperature jump exists in the two interfaces.
The apparent thermal conductivity can be defined in the same
way as that for the Langevin thermostat. In contrast, the NHC
thermostat or the VR method, a uniform heat generation in
the finite thermal reservoir, provides large nonequilibrium
outlets. Practical heating techniques, such as optical heating
or electrical heating, can result in these large nonequilibrium
reservoirs, which selectively heat the optical phonon modes
[68,69]. By using these techniques, the length of the thermal
reservoir and the boundary conditions can significantly
influence the relationship between the response and the
perturbation, such as the heat flux and the temperature profile.
Moreover, when comparing the experimental results in
nanoscale, we must consider the correspondence of heating
techniques.

VI. CONCLUSIONS

In this study, we have unified NEMD and mode-resolved
phonon BTE for nanoscale thermal transport simulations us-
ing Tersoff silicon as the prototype material. By comparing
NEMD and phonon BTE, we find that the thermal excitation
method in the reservoirs significantly affects thermal transport
in the nanomaterials. If the same thermal excitation method
is used, a quantitative agreement between phonon BTE and
NEMD can be achieved. Specifically, the Langevin thermostat
in NEMD behaves like an infinitely large equilibrium ther-
mal reservoir, which is similar to the thermalizing boundary
condition in phonon BTE. The NHC thermostat and the
VR method behave like a finite-size nonequilibrium phonon
source/sink with uniform energy deposition/extraction, which
can be realized by uniform generation in phonon BTE. This
results in the difference in size-dependent thermal conductiv-
ity measured using different reservoirs in NEMD simulations.
Because different thermal excitations are also often used in
experiments with different heating techniques, our work can
also explain why different experimental measurement meth-
ods produce different thermal conductivities at nanoscale.
Thus, when comparing any experimental or simulation results
at nanoscale, we must consider the correspondence of thermal
excitations. Interpretations of all the non-Fourier behaviors in
phonon BTE and NEMD are also unified due to the combi-

nation of nondiffusive phonon transport and nonequilibrium
among different phonon modes.

The unification of NEMD and mode-resolved BTE in this
work will facilitate simulations in the future. The compu-
tationally inexpensive phonon BTE can be used to replace
the computationally expensive and unaffordable NEMD sim-
ulations at large scales or by first principles. We expect our
work will provide important guidance on thermal transport
simulations, experimental thermal conductivity measurement,
and practical heat flow manipulation.
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APPENDIX A: SPT METHOD

In MD, the equilibrium phonon population is described by
the Boltzmann distribution:

nλ = kBTλ

h̄ωλ

. (A1)

The total energy of the phonon mode λ at the given
temperature Tλ is the per phonon energy multiplied by its
population:

Eλ = nλh̄ω = kBTλ. (A2)

Here, λ is short for (k, υ ), with k and υ representing
the phonon wave vector and dispersion branch, respectively.
Based on the energy equipartition theorem, the time-averaged
kinetic energy 〈EK,λ〉 and potential energy 〈EV,λ〉 are both half
of the total energy; i.e.,

〈EK,λ〉 = 1
2 kBTλ. (A3)

Based on the lattice dynamics, the kinetic energy of the
mode λ is

EK,λ = 1
2 Q̇∗

λQ̇λ, (A4)

where Q̇λ(t ) is the time derivative of normal mode amplitude,
which is given by the Fourier transform of atomic displace-
ment in real space:

Q̇λ(t ) = 1√
Nc

Nc,n∑
l,b

√
mb exp(−ik · rl,b)e∗

b,λ · u̇l,b;t . (A5)

l and b label the indices of the primitive cells and basis atoms
with the total numbers represented by Nc and n, respectively.
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FIG. 12. Temperature profiles obtained by the NEMD simula-
tions with the Langevin thermostat, mode-resolved BTE, gray BTE,
and the approach of Kaiser et al. [16] for two different sample lengths
of (a) 13.0 nm and (b) 56.0 nm.

m, r, and u̇ are the mass, equilibrium position, and velocity
vector, respectively. e∗

b,λ is the complex conjugate of the
eigenvector component at the basis b for the mode λ. By
comparing Eqs. (A4) and (A3), we can get the temperature
of the phonon mode λ:

Tλ = 〈Q̇∗
λ(t )Q̇λ(t )〉/kB, (A6)

where 〈〉 denotes the time average. To eliminate the fluctuation
in MD, Eq. (A6) needs to be averaged over a sufficiently long
time.

APPENDIX B: APPROACH OF KAISER et al.

Recently, Kaiser et al. examined the use of the unmodified
Fourier’s law at the nanoscale but with temperature jump
boundary conditions at the contacts of reservoirs and the
sample [16]. Their results agree well with the gray phonon
BTE with thermalizing boundary condition. In this section,
we follow this approach to reproduce the temperature profiles
and heat flux profiles in Fig. 5. In the approach of Kaiser et al.,
the temperature profile is expressed as [16]

T (x) = (Thot − 
T )
(

1 − x

L

)
+ (Tcold + 
T )

( x

L

)
, (B1)

where Thot is 310 K and Tcold is 290 K, to be consistent with
the NEMD simulations. L is the length of the sample. 
T is
the temperature jump at the contacts:


T = 1

2

(
Thot − Tcold

1 + 3/(4Knx )

)
, (B2)

where Knx is the Knudsen number defined as Knx = �/L. �

is the mean free path obtained by

kbulk = 1
3vs�Cv. (B3)

The values of the bulk thermal conductivity, kbulk, sound
velocity, vs, and volumetric specific heat, Cv , are all ex-
tracted from the MD simulations with classical Boltzmann
distribution, which are 6000 m/s, 2.0 × 106 J/m3K, and
245 W/mK, respectively. Thus, the mean free path is cal-
culated as 59.2 nm. By using this method, we calculate the
temperature profiles for the two sample lengths of 13.0 and
56.0 nm, which are shown in Fig. 12 compared with NEMD
results, gray BTE results, and our mode-resolved BTE results
in the main text.

Kaiser’s approach is an approximate gray model solution to
the phonon BTE. As shown by Kaiser et al. [16], as well as in
Fig. 12, the solution is consistent with the gray BTE. While
compared to NEMD, Kaiser’s approach or the gray BTE
can overestimate the thermal conductivity especially at the
ballistic limit (not shown in the paper) since they use a single
acoustic velocity value to represent the whole broad acoustic
and optical phonon spectrum. This, again, emphasizes the
significance of mode-resolved BTE.
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