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-is paper proposes an observer-based event-triggered algorithm to solve circle formation control problems for both first- and
second-order multiagent systems, where the communication topology is modeled by a spanning tree-based directed graph with
limited resources. In particular, the observation-based event-triggering mechanism is used to reduce the update frequency of the
controller, and the triggering time depends on the norm of the state function and the trigger threshold of measurement errors.-e
analysis shows that sufficient conditions are established for achieving the desired circle formation, while there exists at least one
agent for which the next interevent interval is strictly positive. Numerical simulations of both first- and second-order multiagent
systems are also given to demonstrate the effectiveness of the proposed control laws.

1. Introduction

In recent years, many research efforts have been devoted to
controlling of multiagent systems (MASs) due to both its
practical potentials in a variety of applications [1–3] and
theoretical challenges of physical constraints [4–6]. As a
significant problem in cooperative control for MASs, for-
mation control, aiming to guide multiple agents to form and
maintain predetermined geometries, has attracted consid-
erable interests for its extensive applications in different
areas [7–10]. -e main focus has been devoted to the design
of a distributed formation control framework, especially
concerning the robustness against both external distur-
bances and internal uncertainties [11, 12], as well as the
increased number of agents. Moreover, for MASs subjected
to aperiodic sampling and communication delays, the
problem of cluster formation control was addressed in [10].
-erefore, most existing results on formation control mainly

rely on the ideal hypothesis [13–15], e.g., each agent is
modeled as having unlimited communication capabilities,
unlimited power, and unlimited processing capabilities,
which allows arbitrary information to exchange pattern.
However, as far as we know, few studies dealt with the
limited capacity of communication and the power con-
straints of agents.

In order to save energy and bandwidth, event-triggered
control methods have been presented in [16–20]. One of the
most distinct characters of event-triggered control is that
control actions only update when specific events occur,
which lead to ease the trade-offs among actuator effort,
communication, and computation. Moreover, according to
the triggeredmethods, event-triggered control can bemainly
divided into state-dependent triggering and time-dependent
triggering. A simple state event-triggered schedule based on
the feedback control was studied in [16]. -e results lead to a
guaranteed performance with a fixed sampling rate
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requirements concerning the optimizing schedules and
sampling rates. In [17], under conditions of decreasing
thresholds of the measurement errors exponentially, a time-
dependent triggered method was designed to guarantee all
agents asymptotic converge to a ball centered at the average
consensus. Different from most of the existing fixed
threshold parameters, the threshold parameter in the im-
proved event-triggered condition is dynamically adjusted by
a dynamic rule in [18]. In [21], by proposing a pull-based
event-triggered control strategy, a circle formation control
problem for first-order MASs with directed topologies was
studied. Further, Wen et al. [22] combined event-triggered
protocols to solve circle formation problems of first-order
MASs. Also, Wen et al. and Xu et al. [23, 24] have inves-
tigated a combination algorithm based on quantized com-
munication technology, where the problem of MASs with a
limitation of communication was addressed. Given the
above reviews, it is noteworthy to mention that most of the
existing results on event-triggered control are to prevent the
case of Zeno behavior [25, 26], so that within a finite time
interval, an infinite number of samplings generate. Typically,
the event trigger interval having a strictly positive lower
bound is a sufficient condition to exclude Zeno behavior
[27].

Different from previous studies, especially [23], which
paid attention to the effect of qualitative communication
for event-triggered control, the main objective of this paper
is to provide an observer-based event-triggered method to
solve circle formation problems for both first- and second-
order MASs through a set of directed graphs. In our studies,
each agent observes the distance from the counterclockwise
direction to its nearest neighbor and the counterpart from
the clockwise direction through communication, which is
similar to Pioneer 3-DX [28]. In comparison to the liter-
ature, we have three main contributions: (i) different from
[22] concerning the first-order model, combining with a
distributed asynchronous event-triggered control algo-
rithm, a more concise form of the event-triggered condi-
tion is designed to solve circle formation problems for both
first- and second-order dynamics MASs; (ii) different from
taking a complex-coordinate system transformation
method in [29], the proposed strategy allows for a re-
duction of the number of control actions without signifi-
cantly degrading performance using the simple-coordinate
system transformation; and (iii) the resulting asynchronous
model achieves the desired equilibrium points asymptot-
ically while at least one agent with a positive next event
interval exists, i.e., no trajectory generates in a finite time
interval.

-e remainder of this paper is organized as follows.
Preliminary definitions and problem formulation are
given in Section 2. In Section 3, a distributed circle for-
mation control law for first-order MASs and the rigorous
analysis of its performance are presented. Section 4 uses
the event-triggered rule to address a distributed circle
formation problem for second-order MASs. Section 5
discusses the simulation results, and Section 6 concludes
the paper.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. Let R and RN×N denote a set of real
numbers and a N × N real matrix, respectively. For a finite
set S, let |S| denote the number of its elements. For a vector
or a matrix A, let ‖A‖, ‖A‖∞, and AT stand for its Euclidean
norm,∞-norm, and transpose, respectively. Let 1N and 0N

be the N dimension column vectors with all entries being 1
and 0, respectively. Let a matrix diag a1, a2, . . . , aN􏼈 􏼉 rep-
resent a diagonal matrix whose diagonal entries are
a1, a2, . . . , aN.

Let G � (V,E,A) be a directed graph, in which V �

1, 2, . . . , N{ } is a set of nodes, E � V × V stands for a set of
edges, and A � [aij] ∈ RN×N denotes a weighted adjacency
matrix. In the directed graph G, (i, i) ∉ E for all i ∈ V, and
for edge (j, i) ∈ E, it starts from node j and ends up with
node i. It is known that agent i can perceive state information
from agent j. -erefore, agent j is called agent i’s in-
neighbor. In addition,Ni � j ∈ V | (j, i) ∈ E􏼈 􏼉 is applied to
describe the in-neighbor set of agent i. Particularly, edge
(i, j) links with the element aij of a weighted adjacency
matrix A, aij > 0 if and only if (i, j) ∈ E; otherwise, aij � 0.
We use di � 􏽐

N
j�1 aij to denote the in-degree of i-th agent

and define L � D − A as Laplacian matrix of G, where
D � diag d1, d2, . . . , dN􏼈 􏼉. Subsequently, we can list the
eigenvalues of L in a descending order as
λN ≥ · · · ≥ λ2 ≥ λ1 � 0, where λN is the spectral radius of L.

We use the two lemmas listed below to facilitate analysis
in this paper.

Lemma 1. For any given x, y ∈ R and a> 0, the following
two properties exist:

xy≤
a

2
x
2

+
1
2a

y
2
;

x
2

+ y
2

􏼐 􏼑≤ (x + y)
2
, if xy≥ 0.

(1)

Lemma 2 (see [30]). Given a directed graph G, which is
composed of a spanning tree, a vector ξ �

[ξ1, ξ2, . . . , ξN]T > 0 satisfies 􏽐
N
i�1 ξi � 1 and ξT

L � 0N,
where ξ denotes the left eigenvector corresponding to zero
eigenvalues of the Laplacian matrixL. Furthermore,LTΘ +

ΘLT is semipositive definite, where Θ � diag ξ1, ξ2,􏼈

. . . , ξN}. After taking square root of each elements of Θ, we
get Υ � diag c1, c2, . . . , cN􏼈 􏼉; consequently, c �

�
ξ

􏽰
, i � 1,

. . . , N.

Lemma 3 (see [29]). �e linear matrix inequalities
Q(x) S(x)

ST(x) R(x)
􏼢 􏼣≥ 0, (2)

are equivalent to either one of the conditions listed as below:

Q(x)> 0, R(x) − S
T
(x)Q

−1
(x)S(x)≥ 0,

R(x)> 0, Q(x) − S(x)R
−1

(x)S
T
(x)≥ 0.

(3)
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2.2. Problem Formulation. Given an MAS consisting of N
(N≥ 2) mobile agents, each agent is initially on a specific
circle, and no pair of agents occupies the same position at the
same time, as shown in Figure 1. For simplicity, we mark the
agents counterclockwise and measure the position of the
agent i, i ∈ 1, 2, . . . , N{ } at an angle of xi(t). To be specific,
the initial positions of all agents are set to satisfy the con-
dition shown as

0≤x1(0)< · · · < xi(0)< xi+1(0)< · · · <xN(0)< 2π. (4)

Here, each agent has only two neighbors, that is, in front
of or behind it. LetNi � i+, i−{ } represent the two neighbors
of the mobile agent i, where

i
+

�
i + 1, when i � 1, 2, . . . , N − 1,

1, when i � N,
􏼨 (5)

i
−

�
i − 1, when i � 2, 3, . . . , N,

N, when i � 1.
􏼨 (6)

-e dynamics of agent i are described as
_xi(t) � ui(t), i ∈ V, (7)

where xi and ui stand for the scalar state and the control
input of agent i, respectively.

Based on counterclockwise at time t, yi(t) ∈ R are
presented as the angular distance from agent i to agent i+.
Along with (5) and (6), it yields to

yi(t) �
xi+ (t) − xi(t) + 2π, when i � N,

xi+ (t) − xi(t), when i � 1, 2, . . . , N − 1,
􏼨

(8)

where y(t) � [y1(t), y2(t), . . . , yN(t)]T ∈ RN, and
􏽐

N
i�1 yi(t) � 2π always holds.
-en, define a vector d � [d1, d2, . . . di . . . , dN]T to

determine a desired circle formation, where di ∈ R stands
for the desired angular distance between agent i and agent i+.
If d satisfies di > 0 and 􏽐

N
i�1 di � 2π, the desired circle for-

mation is achievable for MASs.

3. Circle Formation Control for First-
Order MASs

In this section, we first give the definition of the circle
formation problem for first-order MASs as follows.

Definition 1 (circle formation problem for first-order
MASs). Given an admissible circle formation characterized
by d, a distributed control law ui(t, yi(t)), i � 1, 2, ..., N can
be designed, so that under any initial condition (4), the
solution to system (7) converges to the equilibrium point x∗.
-at is, y∗ � d.

A way-point control protocol based on sampled date was
designed in [8]:

ui(t) �
di−

di + di−
yi(t) −

di

di + di−
yi− (t), t> 0, i ∈V. (9)

It has been proved that the continuous update control
law (9) can move all agents to their equilibrium point x∗ but
can waste communication bandwidth and unnecessary
transmission energy. In order to solve this issue, an ob-
server-based event-triggered circle formation control
method for first-order MASs is proposed. It is noteworthy to
mention that control actions of each agent only update at the
event-triggered sampling instants, where continuous com-
munication between neighboring agents is maintained.
Here, we use an increasing sequence (ti

0, ti
1, . . . , ti

k, . . .) to
represent the event instants of agent i, such that the state of
agent i at the kth event instant is described as yi(ti

k). Note
that each agent has its own event sequence since all agents
are triggered asynchronously.

According to event-triggered strategies, we design the
distributed circle formation control law for agent i as

ui(t) �
di−

di− + di

yi t
i
k􏼐 􏼑 −

di

di− + di

yi− t
i−

k􏼐 􏼑, t ∈ t
i
k, t

i
k+1􏽨 􏼑,

(10)

where ti−

k ≜ argminl∈N,t≥ti−

l
t − ti−

l􏼈 􏼉 represents the last event
instant of agent i− and yi(ti

k) denotes the observer angular
distance.

From (10), agent i’s controller only updates at its own
event sequence (ti

0, ti
1, . . . , ti

k, . . .). For simplicity, let
􏽢yi(t) � yi(ti

k); consequently, the control law (10) can be
represented as

ui(t) �
didi−

di− + di

􏽢δi(t) − 􏽢δi− (t)􏼐 􏼑, t ∈ t
i
k, t

i
k+1􏽨 􏼑, (11)

where 􏽢δi(t) � 􏽢yi(t)/di, 􏽢δi− (t) � 􏽢yi− (t)/di.
Replacing (2) and (5) into (7), the closed-loop form of

agent i is rearranged by using δi as

x2

x1

y1

xN

yN

xi+

yi

yi–

xi–

xi

Figure 1: Agents distributed on a prescribed circle.
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_δi(t) � 􏽘
j∈Ni

dj

di + dj

􏽢δj(t) − 􏽢δi(t)􏼐 􏼑, t≥ 0. (12)

Define ei(t) � 􏽢δi(t) − δi(t); then, a compact form of
system dynamics is

_δ(t) � −L
T
d (δ(t) + e(t)), t ∈ t

i
k, t

i
k+1􏽨 􏼑, (13)

where δ(t) � [δ1(t), δ2(t), . . . , δN(t)] ∈ RN,
e(t) � [e1(t), e2(t), . . . , eN(t)] ∈ RN, and

Ld �

d2

d2 + d1
+

dN

dN + d1
−

d1

d2 + d1
. . . 0 −

d1

dN + d1

−
d2

d2 + d1

d3

d3 + d2
+

d1

d2 + d1
. . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 . . .
dN

dN + dN−1
+

dN−2

dN−1 + dN−2
−

dN−1

dN + dN−1

−
dN

dN + d1
0 . . . −

dN

dN + dN−1

d1

dN + d1
+

dN−1

dN + dN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

According to the control law (5) and MAS (1), the circle
formation control for first-order MASs is solvable by -e-
orem 1.

Theorem 1. For any admissible circle formation charac-
terized by d, considering system (7) and the designed control
law (5) on the digraphG, the circle formation problem can be
solved when the event-triggered condition is designed as

fi(t) � ei(t)
����

���� −
σ ciδi

����
����

ΥLT
d

����
����

, 0< σ < 1, (15)

where δi is the i
th elements of δ � [δ1, δ2, . . . , δN]T ≜LT

dδ, Υ
is the same diagonal matrix as in Lemma 2, and ci is the ith
diagonal element of matrix Υ. Moreover, in system (7), there
exists at least one agent m ∈V that the next interevent in-
terval is strictly positive under the event-triggered condition
(15).

Proof. A Lyapunov function candidate is taken into
consideration

V(t) �
1
4
δT

(t) LdΘ +ΘL
T
d􏼐 􏼑δ(t), (16)

where Θ is the same diagonal matrix as Lemma 2, such that
LdΘ + ΘLT

d is semipositive definite.
Accordingly, _V(t)≤ 0 and _V(t) � 0 if and only if the

circle formation problem can be solved.-e derivative of the
Lyapunov function (16) along trajectories of the system is
derived as

_V(t) � δT
(t)LdΘ −L

T
d (δ(t) + e(t))􏼐 􏼑

� −δT
(t)LdΘL

T
dδ(t) − δT

(t)LdΘL
T
d e(t)

≤ − ΥLT
dδ(t)

����
����
2

+ ΥLT
dδ(t)

����
���� ΥLT

d e(t)
����

����.

(17)

After enforcing the event condition (15), we get
‖ΥLT

d e(t)‖≤ ‖ΥLT
d ‖‖e(t)‖≤ σ‖ΥLT

dδ‖. -us, (17) is rewritten
as

_V(t)≤ ΥLT
dδ(t)

����
����
2
(σ − 1)

≤ ‖Υδ(t)‖
2
(σ − 1).

(18)

Because 0< σ < 1, we can get _V(t)≤ 0 and _V(t) � 0 if and
only if the circle formation problem can be solved.

Next, we explain the achievement of the circle formation
in detail. According to the Lemma 2, we get

􏽘

N

i�1
ξiδi(t + 1) � 􏽘

N

i�1
ξiδi(t) � · · · � 􏽘

N

i�1
ξiδi(0). (19)

Combining (10) and (15), all conditions result in
limt⟶∞δi(t) � limt⟶∞δj(t) � 􏽐

N
i�1 ξiδi(0) � c, where

c ∈ R remains constant. In addition, 􏽐
N
i�1 yi � 2π, ∀t≥ 0

always satisfies and 􏽐
N
i�1 di � 2π. Together with

yi(t) � diδi(t), we obtain c � 1. More exactly,
limt⟶∞y(t) � d, which indicates that the designed circle
formation can be solved in first-order MASs.

For agent i, the period ‖ei(t)‖/ciδi, increasing from 0 to
σ/‖ΥLT

d ‖, is regarded as the event interval between ti
k+1 and

ti
k. Define m � argmaxi∈V‖ciδi‖; therefore, agent m stands
for the maximum norm of ciδi among all the agents, which
implies
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em(t)
����

����

cmδm

����
����
≤

‖e(t)‖

cmδm

����
����
≤

��
N

√
‖e(t)‖

‖Υδ‖
. (20)

From (20), the time ‖em(t)‖/‖cmδm‖ attaining σ/‖ΥLT
d ‖ is

longer than
��
N

√
‖e(t)‖/‖Υδ‖. -at is, τm > τ, where τm

represents positive interval (tm
k+1 − tm

k ) lower bound and τ is
the time e(t)/Υδ increasing from 0 to σ/

��
N

√
‖ΥLT

d ‖. -ereby,
the time derivative of ‖e(t)‖/‖Υδ‖ is

d
dt

‖e(t)‖
‖Υδ‖

�
d
dt

e(t)Te(t)􏼐 􏼑
1/2

δ
TΥΥδ􏼒 􏼓

1/2 �
e(t) _e(t)

‖e(t)‖‖Υδ‖

−
δ

TΥΥ _δ‖e(t)‖

‖Υδ‖3

�
−e(t)Υ− 1Υ δ + LT

d e(t)􏼐 􏼑

‖e(t)‖‖Υδ‖

−
δTΥΥLT

d δ + LT
d e(t)􏼐 􏼑‖e(t)‖

Υδ2
�����

�����‖Υδ‖

≤
Υ− 1

����
���� ‖Υδ‖ + ΥLT

d e(t)
����

����􏼐 􏼑

‖Υδ‖

+
ΥLT

d

����
���� Υ− 1
����

���� ‖Υδ‖ + ΥLT
d e(t)

����
����􏼐 􏼑‖e(t)‖

‖Υδ‖2

≤ ‖Υ‖ 1 +
‖e(t)‖ ΥLT

d

����
����‖Υδ‖

‖Υδ‖
􏼠 􏼡

2

.

(21)

Using β to replace ‖e(t)‖/‖Υδ‖, it yields to
_β≤ ‖Υ− 1‖(1 + ‖ΥLT

d ‖β)2. Here, β≤ α(t, α0), where α(t, α0) is
the solution of _α(t, α0) � ‖Υ− 1‖(1 + ‖ΥLT

d ‖α(t, α0))
2,

α(0, α0) � α0. According to
dα

Υ−1
����

���� 1 + ΥLT
d

����
����α t, α0( 􏼁􏼐 􏼑

2 � dt, (22)

we know that there exists the interval t which satisfies
α(τ, 0) � σ/‖ΥLT

d ‖, such that the event interval between
instants tk and tk+1 is lower bounded. By solving the dif-
ference equation (22), it yields to

τ �
dα(τ, 0)

Υ−1
����

���� 1 + ΥLT
d

����
����α(τ, 0)􏼐 􏼑

�
σ

(1 + σ) ΥLT
d

����
���� Υ− 1
����

����
.

(23)

Calculated from (23), we obtain τ � σ/((
��
N

√
+ σ)

‖ΥLT
d ‖‖Υ− 1‖), where τ is the time ‖e(t)‖/‖Υδ‖ from 0 to

σ/(
��
N

√
‖ΥLT

d ‖), which derives to agent m’ lower bound of
interval between two event instants:

τm �
σ

(
��
N

√
+ σ) ΥLT

d

����
���� Υ− 1
����

����
. (24)

From τm > 0, we conclude that in system (7), there exists
at least one agent m ∈V, the next interevent interval of
which is strictly positive under event-triggered condition
(15). □

4. Circle Formation Control for Second-
Order MASs

Given a second-order MAS with N agents

_vi(t) � ui(t),

_xi(t) � vi(t), i � 1, 2, . . . , N,
􏼨 (25)

where xi ∈ R is the angular state of agent i, vi(t) ∈ R is its
angular velocity state, and ui ∈ R denotes its control input.

Similar to transformation of (8), we obtain

ζ i(t) � vi+(t) − vi(t), i � 1, 2, . . . , N, (26)

where ζ(t) � [ζ1(t), ζ2(t), . . . , ζN(t)] ∈ RN and 􏽐
N
i�1 ζ i � 0

always holds.
-e definition of the circle formation problem for sec-

ond-order MASs is described as follows.

Definition 2 (circle formation problem for second-order
MASs). Considering an admissible circle formation, which is
characterized by d, we can design a distributed control law
ui(t, yi(t), ζ i(t)), i � 1, 2, . . . , N, such that the solution to
system (25) converges to the equilibrium points x∗ under
any initial condition (4). Namely, y∗ � d and ζ � 0N are
satisfied.

Let 􏽢ζ i(t) � ζ i(ti
k) and 􏽢ζ i− � ζ i−(ti−

k, ) stand for the observer
angular velocity distance of agent i and i−, respectively.
From [8], the control law for agent i can be designed as

ui(t) �
di−

di + di−

φ 􏽢yi(t) + 􏽢ζ i(t)􏼐 􏼑

−
di

di + di−

φ 􏽢yi−(t) + 􏽢ζ i−(t)􏼐 􏼑, i � 1, 2, . . . N,

(27)

where 􏽢ζ i(t) � ζ i(ti
k), 􏽢ζ i− � ζ i−(ti−

k, ) and the positive control
gain φ is determined in sequel.

For simplicity, we have

ei,y(t) � 􏽢yi(t) − yi(t),

ei,ζ(t) � 􏽢ζ i(t) − ζ i(t),

t ∈ t
i
k, t

i
k+1􏽨 􏼑.

(28)

Substituting (8), (26), and (27) into (25), the closed-loop
system is written as
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_y(t)

_ζ(t)
⎡⎣ ⎤⎦ �

0 IN

−φLd −φLd

􏼢 􏼣
y(t)

ζ(t)
􏼢 􏼣 +

0 0

−φLd −φLd

􏼢 􏼣
ey(t)

eζ(t)
⎡⎣ ⎤⎦,

(29)

where ey(t) � [e1,y(t), e2,y(t), . . . , eN,y(t)] ∈ RN, eζ(t) �

[e1,ζ(t), e2,ζ(t), . . . , eN,ζ(t)] ∈ RN, and Ld is the same ma-
trix as in (14).

Define D � diag d1, d2, . . . , dN􏼈 􏼉; we then have the co-
ordinate transformation as

δ(t) � D
− 1

y(t),

θ(t) � D
− 1ζ(t),

e1(t) � D
− 1

ey(t),

e2(t) � D
− 1

eζ(t).

(30)

Consequently, system (29) is rearranged as
_δ(t)

_θ(t)

⎡⎣ ⎤⎦ �
0 IN

−φLT
d −φLT

d

􏼢 􏼣
δ(t)

θ(t)
􏼢 􏼣 +

0 0

−φLT
d −φLT

d

􏼢 􏼣
e1(t)

e2(t)
􏼢 􏼣.

(31)

Givingω(t) � [δT(t), θT(t)]T and 􏽢e(t) � [eT
1 (t), eT

2 (t)]T,
system (31) can be rewritten as

_ω(t) �
0 IN

−φLT
d −φLT

d

􏼢 􏼣ω(t) +
0 0

−φLT
d −φLT

d

􏼢 􏼣 􏽢e(t) .

(32)

Before designing any event-triggered conditions, the
Lyapunov function candidate is given as

V(t) �
1
2
ωT

(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d

1
2
] LdΘ + ΘL

T
d􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ω(t), (33)

where r, k1, and ν are positive constants.

Theorem 2. �e Lyapunov function (33) satisfies system (25)
when the condition

r≥
2k21
o]

ξmax, (34)

holds simultaneously, where ξmax is considered as the max-
imum element of vector ξ in Lemma 2 and o denotes a positive
constant.

Proof. When the Lyapunov function equals to zero, the
circle formation problem can be solved. In this case, the
circle formation cannot be achieved. According to (33), it
yields to

2V(t) � rδT
(t)LdΘL

T
dδ(t) + k1δ

T
(t)LdΘθ(t)

+ k1θ
T
(t)ΘL

T
dδ(t) + θT

(t)
1
2
] LdΘ + ΘL

T
d􏼐 􏼑θ(t).

(35)

From δ(t) and Lemma 2, we can observe that the desired
circle formation is achieved by rδT(t)LdΘLT

dδ(t) �

rδ
T
(t)Θδ(t) � r 􏽐

N
i�1 ξi‖δi(t)‖2 � 0, θT(t)1/2](LdΘ + ΘLT

d )

θ(t) � 0 and semipositive definite matrix
1/2](LdΘ + ΘLT

d )].
We define a positive constant o as

o≜ min
LT

d
θ≠0,θ≠0

θT(t) LdΘ + ΘLT
d( 􏼁θ(t)

θT(t)θ(t)
. (36)

Since LdΘ +ΘLT
d can be taken as positive (semipositive)

definite with a single zero eigenvalue, there exists a unitary
matrix P � [p1, p2, . . . , pN] ∈ RN×N such that
LdΘ + ΘLT

d � PSPT, where S denotes diagonal matrix with
diag s1, s2, . . . , sN􏼈 􏼉. In addition, si is the eigenvalue of
LdΘ + ΘLT

d associated with eigenvector pi. Note that as-
suming s1 � 0, the corresponding eigenvector p1 � 1N. By
defining ς � [ς1, ς2, . . . , ςN]≜PTθ(t), we get

o � min
LT

d
θ≠0,θ≠0

θT
(t) LdΘ + ΘL

T
d􏼐 􏼑θ(t)

� min
LT

d
θ≠0,θ≠0

θT
(t)PSP

Tθ(t)

� min
LT

d
θ≠0,θ≠0

ςT
Sς

� min
LT

d
θ≠0,θ≠0

􏽘

N

i�1
siς

2
i ≥ 0.

(37)

From (37), we observe that o � 0 if and only if LT
d Pς≠ 0,

ςTς � 1 and ς2 � · · · � ςN � 0, which indicates that ς1 � 1 or
ς1 � −1. Without loss of generality, ς1 � 1 can be used for
further analysis. In that case, we have LT

d Pς � LT
d [p1, p2,

. . . , pN][1, 0, . . . , 0]T � LT
d p1 � LT

d1N � 0, which violates
the assumptions LT

d Pς≠ 0. -us, o> 0 when the circle for-
mation is not achieved. From o, we conclude that
oθT(t)θ(t) ≤ θT(t)(LdΘ +ΘLT

d )θ(t). -erefore, we have

V(t) ≥
1
2
ωT

(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d

1
2
]o

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ω(t) . (38)

Also, according to Lemma 3, (1/2)ωT(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d (1/2)]o

􏼢 􏼣ω(t) is semipositive definite when

(1/2)]o> 0 and

rLdΘL
T
d − rLdΘL

T
d

1
2
]o􏼒 􏼓

− 1
k1ΘL

T
d

� LdΘL
T
d r − Ld

2k21
o]
Θ2􏼠 􏼡L

T
d ≥ 0.

(39)

From (39), we draw a conclusion that r≥ (2k2
1/o])ξi. -e

Lyapunov function (33) is semipositive definite and if the
circle formation problem is solvable, it equals to 0. -ere-
fore, this candidate Lyapunov function (33) satisfies the
second-order MAS (25). □
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Theorem 3. For any admissible circle formation charac-
terized by d, taking into account system (25) and the designed
control law (27) over the digraph G, the circle formation
problem can be solved when the event-triggered condition is
designed as

fi(t) �
φ ΥLT

d

����
����
2

k1 + ]( 􏼁

2k
e

i
1(t)

����
����
2
+ e

i
2(t)

����
����
2

􏼒 􏼓

− σ φk1 − φkk1( 􏼁 􏽥δi(t)
����

����
2

− σ φ] − k2 − φk]( 􏼁 􏽥θi(t)
����

����
2
,

(40)

where 0< σ < 1, k, k1, k2, and ] stand for positive constants
and 􏽥δi(t) and 􏽥θi(t) are the i-th element of vector 􏽥δ(t) and
􏽥θ(t), respectively.

Let [􏽥δ
T
(t)􏽥θ

T
(t)]T � (I2 ⊗Υ)[δ

T
(t)θT

(t)]T and the
conditions

φk1 − φkk1 > 0,

φ] − k2 − φk]> 0,
(41)

hold simultaneously; there exists at least one agent g ∈N for
which the next interevent interval is strictly positive under
the event-triggered condition (40) in system (25).

Proof. By combining (33) and (36), we have

V(t) �
1
2
ωT

(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d

1
2
] LdΘ + ΘL

T
d􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ω(t)

�
1
2
ωT

(t)
rLdΘLT

d k1LdΘ

k1ΘLT
d ]LdΘ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ω(t).

(42)

□
Taking time derivative of Lyapunov function (33) along

all trajectories of system (29), we get

_V(t) �
1
2
ωT

(t)
rLdΘLT

d k1LdΘ

k1ΘLT
d ]LdΘ

⎡⎢⎢⎣ ⎤⎥⎥⎦ _ω(t)

� ωT
(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d ]LdΘ

⎡⎢⎢⎣ ⎤⎥⎥⎦

×
0 IN

−φLT
d −φLT

d

⎡⎢⎣ ⎤⎥⎦ω(t) +
0 0

−φLT
d −φLT

d

⎡⎢⎣ ⎤⎥⎦ 􏽢e(t)⎛⎝ ⎞⎠

� ωT
(t)

−φk1LdΘLT
d rLdΘLT

d − φk1LdΘLT
d

−φ]LdΘLT
d k1ΘLT

d − φ]LdΘLT
d

⎡⎢⎢⎣ ⎤⎥⎥⎦ω(t)

+ ωT
(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d ]LdΘ

⎡⎢⎢⎣ ⎤⎥⎥⎦
0 0

−φLT
d −φLT

d

⎡⎢⎣ ⎤⎥⎦ 􏽢e(t) .

(43)

-en, (43) can be classified into two parts. -e former
part of (43) is computed by

ωT
(t)

−φk1LdΘLT
d rLdΘLT

d − φk1LdΘLT
d

−φ]LdΘLT
d k1ΘLT

d − φ]LdΘLT
d

⎡⎣ ⎤⎦ω(t)

� −φk1δ
T
(t)LdΘL

T
dδ(t) + k1θ

T
(t)ΘL

T
dθ(t)

− φ]θT
(t)LdΘL

T
dθ(t) + δT

(t) r − φk1 − φ]( 􏼁LdΘL
T
dθ(t).

(44)

By r � φ(k1 − ]) and condition (41) and (44) implies

− φk1δ
T
(t)LdΘL

T
dδ(t) + k1θ

T
(t)ΘL

T
dθ(t)

− φ]θT
(t)LdΘL

T
dθ(t)

+ δT
(t) r − φk1 − φ]( 􏼁LdΘL

T
dθ(t)

≤ − φk1δ
T
(t)LdΘL

T
dδ(t) − φ] − k2( 􏼁θT

(t)ΘLdΘL
T
dθ(t).

(45)

According to Lemma 1, the latter part of (43) is rear-
ranged into

ωT
(t)

rLdΘLT
d k1LdΘ

k1ΘLT
d ]LdΘ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

0 0

−φLT
d −φLT

d

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ 􏽢e(t)

≤φk1 δT
(t)LdΘL

T
d e1(t)

����
���� + φk1 δT

(t)LdΘL
T
d e2(t)

����
����

+ φ] θT
(t)LdΘL

T
d e1(t)

����
���� + φ] θT

(t)LdΘL
T
d e2(t)

����
����

� φk1
􏽥δ

T
(t)ΥLT

d e1(t)
�����

����� + φk1
􏽥δ

T
(t)ΥLT

d e2(t)
�����

�����

+ φ] 􏽥θ
T
(t)ΥLT

d e1(t)
�����

����� + φ] 􏽥θ
T
(t)ΥLT

d e2(t)
�����

�����

≤ kk1φ 􏽥δ(t)
2����
���� + k]φ‖􏽥θ(t)‖

2

+
φ k1 + ]( 􏼁 ΥLT

d

����
����
2

2k
e1(t)

����
����
2

+ e2(t)
����

����
2

􏼒 􏼓.

(46)

Combining (45) and (46), (43) can be written as
_V(t)≤ −φk1 + kk1φ( 􏼁‖􏽥δ(t)‖

2
+(−φ] + k]φ)‖􏽥θ(t)‖

2

+
φ k1 + ]( 􏼁 ΥLT

d

����
����
2

2k
e1(t)

����
����
2

+ e2(t)
����

����
2

􏼒 􏼓.

(47)

In view of the event-triggered function (40) satisfying
fi(t)< 0, we conclude that

φ ΥLT
d

����
����
2

k1 + ]( 􏼁

2k
e1(t)

����
����
2

+ e2(t)
����

����
2 ≤ σ φk1 − φkk1( 􏼁‖􏽥δ(t)‖

2
􏼒 􏼓

+ σ φ] − k2 − φk]( 􏼁‖􏽥θ(t)‖
2
.

(48)
From (48), we summarize that the Lyapunov function

(33) is negative unless the circle formation for the second-
order MAS is achievable. Moreover, we have 􏽥ωt⟶∞(t) � 0,
that is 􏽥δt⟶∞(t) � 0 and 􏽥θt⟶∞(t) � 0. -us, we get

Complexity 7



limt⟶∞δi(t) � limt⟶∞δj(t) � c, limt⟶∞θi(t) � limt⟶∞
θj(t) � l, c, l ∈ R. Note that y(t) � Dδ(t) and ζ(t) � Dθ(t).
-en, 􏽐

N
i�1 yi � 2π, 􏽐

N
i�1 ζ i � 0, ∀t≥ 0 always satisfies and

􏽐
N
i�1 di � 2π. We conclude that c � 1, l � 0. To be more

precise, limt⟶∞y(t) � d, and limt⟶∞ζ(t) � 0.
-e result shows that the circle formation can be

achieved by all mobile agents. Furthermore, we illustrate the
interevent times (ti

k+1 − ti
k) are positive lower bounded.

Using event-triggered condition (40), we obtain that the
interval (ti

k+1 − ti
k) is the time ((φ‖ΥLT

d ‖2(k1 + ]))/
2k)(‖ei

1(t)‖2 + ‖ei
2(t)‖2) that increases from 0 to

−σ(φk1 − φkk1)‖
􏽥δi(t)‖2 − σ(φ] − k2 − φk])‖􏽥θi(t)‖2.

Here, we use τi to represent the interval. -en, τi is
longer or equal to the time ((‖ΥLT

d ‖(k1 + ]))/
2k)φ(‖ei

1(t)‖2 + ‖ei
2(t)‖2) increasing from 0 to

σμmin(‖􏽥δi(t)‖2 + ‖􏽥θi(t)‖2), where μmin � min φk1 − φkk1,􏼈

φ] − k2 − φk]}.
Let 􏽢τi denote the time (‖ei

1(t)‖2 + ‖ei
2(t)‖2)/(‖􏽥δi(t)‖2 +

‖􏽥θi(t)‖2) from 0 to2σkμmin/((k1 + ])φ‖ΥLT
d ‖). From the

analysis, the k + 1-th event of agent i occurs after the time
ti
k + 􏽢τi. Similar to the definition of m, we define g �

argmaxi∈V ‖􏽥δi(t)‖2 + ‖􏽥θi(t)‖2􏽮 􏽯, which follows (‖e
g
1(t)‖2 +

‖e
g
2(t)‖2)/(‖􏽥δg(t)‖2 + ‖􏽥θg(t)‖2) ≤ (N(‖e1(t)‖2 + ‖e2(t)‖2))/

(‖􏽥δ(t)‖2 + ‖􏽥θ(t)‖2) � N‖􏽢e(t)‖2/‖􏽥ω(t)‖2.

Referring to the first-order method, the time derivative
of ‖􏽢e(t)‖/‖􏽥ω(t)‖ is

d‖􏽢e(t)‖

dt‖􏽥ω(t)‖
≤

‖_􏽢e(t)‖

‖􏽥ω(t)‖
+

‖􏽢e(t)‖‖ _􏽥ω(t)‖

‖􏽥ω(t)‖2
, (49)

where ‖ _􏽥ω(t)‖ has

‖ _􏽥ω(t)‖ �
Υ 0

0 Υ
􏼢 􏼣

LT
dθ(t)

−φLT
d LT

d δ(t) + e1(t) − θ(t) − e2(t)( 􏼁
⎡⎣ ⎤⎦

���������

���������

≤
0 1

0 0
􏼢 􏼣􏽥ω(t)

���������

���������
+

0 0

φΥLT
dΥ

− 1 φΥLT
dΥ

− 1􏼢 􏼣 􏽥ω + I2 ⊗ ΥL
T
d􏼐 􏼑􏽢e(t)􏼐 􏼑

���������

���������

≤ 1 +

���

2φ2
􏽱

ΥLT
dΥ

− 1����
����􏼒 􏼓‖􏽥ω(t)‖ +

���

2φ2
􏽱

ΥLT
dΥ

− 1����
����􏼓 ΥLT

d

����
����‖􏽢e(t)‖

≤ 1 +

���

2φ2
􏽱

ΥLT
d

����
����􏼒 􏼓 Υ− 1����

���� ‖􏽥ω(t)‖ + ΥLT
d

����
����‖􏽢e(t)‖􏼐 􏼑,

(50)

and ‖_􏽢e(t)‖ � ‖ _ω(t)‖ is

‖_􏽢e(t)‖ � ‖ _ω(t)‖ �
θ(t)

φLT
d δ(t) + e1(t)( 􏼁 + φLT

d θ(t) + e2(t)( 􏼁
􏼢 􏼣

���������

���������

≤ 1 +

���

2φ2
􏽱

􏼒 􏼓 Υ− 1����
���� ‖􏽥ω(t)‖ + ΥLT

d

����
����‖􏽢e(t)‖􏼐 􏼑.

(51)

Combining (50) and (51), (49) is rearranged into

d‖􏽢e(t)‖

dt‖􏽥ω(t)‖
≤ 1 +

���

2φ2
􏽱

􏼒 􏼓
‖􏽥ω(t)‖ + ΥLT

d

����
����‖e(t)‖

‖Υ‖‖􏽥ω(t)‖

+‖􏽢e(t)‖ 1 +

���

2φ2
􏽱

ΥLT
d

����
����􏼒 􏼓

‖􏽥ω(t)‖ + ΥLT
d

����
����‖􏽢e(t)‖

‖Υ‖‖􏽥ω(t)‖2

≤ Υ− 1����
����(χ +

�
2

√
φ) 1 +

ΥLT
d

����
����‖􏽢e(t)‖

‖􏽥ω(t)‖
􏼠 􏼡

2

,

(52)

where χ � max 1, 1/‖ΥLT
d ‖􏼈 􏼉.

Additionally, define

Ξ � Υ−1����
���� 1 +

���

2φ2
􏽱

􏼒 􏼓,

Φ �
d‖􏽢e(t)‖

dt‖􏽥ω(t)‖
,

(53)

for which, _Φ≤Ξ(1 + ‖ΥLT
d ‖Φ)2. Here, Φ satisfies the bound

Φ≤ϕ(t, ϕ0), where ϕ(t, ϕ0) is the solution of
_ϕ(t, ϕ0) � Ξ(1 + ‖ΥLT

d ‖)2, ϕ(0, ϕ0) � ϕ0. Using 􏽥τg to denote
the time that ϕ(t, ϕ0) grows from 0 to
2σkμmin/((k1 + ])φ‖ΥLT

d ‖), we get dϕ/(1 + ‖ΥLT
d ‖ϕ)2Ξ � dt.

Consequently, 􏽢τg is longer than 􏽥τg that satisfies

ϕ 􏽥τg, 0􏼐 􏼑

1 + ΥLT
d

����
����ϕ 􏽥τg, 0􏼐 􏼑

� 􏽥τgΞ, (54)

where ϕ(􏽥τg, 0) � ((2σkμmin)/(
��
N

√
(k1 + ])))c‖ΥLT

d ‖.
-us, 􏽥τg � (2σkμmin)/(‖Ξ‖‖ΥLT

d ‖(c
��
N

√
(k1 + ]) +

2σkμmin)). From τg > 􏽢τg > 􏽥τg, we conclude that in system
(25), there exists at least one agent g ∈N that the next
interevent interval is strictly positive under event-triggered
condition (40). -e proof is complete. □

5. Simulation Examples

Considering an MAS (7) consisting of six agents, the desired
distances between two adjacent agents are set to
d � [π/8, tπ/2n, q3π/8h,π/2x , 7π/3C, ; π/6]T, and the initial
values of the MAS are randomly generated to satisfy (8). In
each case, we apply the same initial settings, i.e., same an-
gular positions and same admissible circle formations.
Additionally, the unique normalized positive left eigenvector
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of LT
d with respect to eigenvalue 0 is

ξ � [0.0625 0.0.25 0.1875 0.25 0.1667 0.0833]T. In order to
show advantages of the event-triggered control strategy, it is
worth pointing out that the event detection of all those
simulations is implemented in a sampled-data fashion,
which is proved to be effective, and there is at least one
trigger interval with a positive bound. -erefore, the sam-
pling periods h in real-time control is chosen as 0.2 s.

5.1. Simulation of the First-Order MAS. By the permitted
range 0< σ < 1, we set σ � 0.9 to ensure condition (15) holds
in real-time control. Simulation results are shown in Fig-
ures 2 and 3. Figure 2(a) shows the evolution difference
between the event-triggered angular distance and the ex-
pected counterpart, while Figure 2(b) reveals the event se-
quence of each agent. Figure 3 illustrates the fluttering of the
measurement error ‖yi(ti

k) − yi(t)‖.
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Figure 2: Simulation results of circle formation control for first-order MASs. (a) -e evolution of yi(ti
k) − di for i � 1, 2, . . . , N when

h � 0.2 s. (b) -e sequence of event-triggered times for i � 1, 2, . . . , N when h � 0.2 s.
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Figure 3: -e evolution of ‖yi(ti
k) − yi(t)‖ for i � 1, 2, . . . , N when h � 0.2 s.
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Figure 5: Simulation results of the fluttering of the measurement error. (a) -e evolution of ‖yi(ti
k) − yi(t)‖ for i � 1, 2, . . . , N when

h � 0.2 s. (b) -e evolution of ‖ζ i(ti
k) − ζ i(t)‖ for i � 1, 2, . . . , N when h � 0.2 s.
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Figure 4: Simulation results of circle formation for second-order MASs. (a) -e evolution of yi(ti
k) − di for i � 1, 2, . . . , N when h � 0.2 s.

(b) -e sequence of event-triggered times for i � 1, 2, . . . , N when h � 0.2 s.
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We can see from the simulation results that the desired
circle formation can be asymptotically achieved by the
proposed control law (10) in distributed MASs. We also
calculate the average interevent time of all mobile agents
havg � 0.6059 from Figure 2, and the result indicates that our
method can reduce the amount of control update for first-
order MASs.

5.2. Simulation of the Second-Order MAS. We choose co-
efficients σ � 0.9, φ � 1.2, k2 � 0.5, k1 � 2, k � 0.8, o � 2,
and ] � 2 to ensure condition (40) holds in real-time control.
Simulation results are shown in Figures 4 and 5. Figure 4(a)
shows the evolution difference between the event-triggered
angular distance and the expected counterpart, while
Figure 4(b) reveals event sequence of each agent. Figure 5
shows the fluttering of the measurement error
‖yi(ti

k) − yi(t)‖, ‖ζ i(ti
k) − ζ i(t)‖.

We observe from the simulation results that the desired
circle formation can also be asymptotically achieved under
the proposed control law (27). Similarly, we calculate the
average interevent time of all mobile agents havg � 0.3545
from Figure 4. We conclude that our proposed method has
the advantages of reducing the amount of control update for
the second-order MASs.

To sum up, compared with traditional time-planning
controls in the same simulation environment, the event-
triggered control-based formation control strategies pro-
posed in this paper show the effectiveness for both first- and
second-order MASs. For the second-order MAS, the average
interevent time of all mobile agents is less than the first-order
MAS case due to its more complicated modeling. However,
from an application point of view, the proposed control
strategy for second-order MASs is much more accurate than
first-order MASs.

6. Conclusion

-is paper investigated the circle formation control problem
for both first- and second-order MASs under unbalanced
directed networks with limited resource constraints. We first
designed the observer-based event-triggered algorithm to
reduce dependence on resources, in which, when the value of
the event-triggered condition exceeds zero, the agent’s
controller will update its states simultaneously. Moreover, it
is a fundamental and practical aspect to observe neighbor
information on a regular or better basis continuously. -en,
we proved that if there is a spanning tree in the underlying
graph, the MASs can achieve the desired circle formation by
the proposed control laws, and there is at least one agent
whose the next interevent interval is strictly positive. At last,
we gave numerical simulation examples to illustrate that the
proposed event-triggered circle formation control strategies
are effective for both first- and second-order MASs. For
future work, we will extend our research to more practical
operations, e.g., considering the effect of time delays in
communication networks, input saturation constraints, and
weak links.
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