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Abstract

Engineering systems are typically maintained during planned, or unplanned, downtimes in between operation
periods. If the duration of the downtime or the budget of the maintenance is an active constraint, all
desired maintenance actions cannot be conducted. Seeking of the optimal subset of maintenance actions is
referred to as selective maintenance optimization. In this work, we link the statistical analysis of lifetime
data into selective maintenance optimization, focusing on datasets with bathtub-shaped failure rates. We
also propose two improvements to the efficiency of mixed integer non-linear programming (MINLP)-based
selective maintenance optimization. The first is the preclusion of component replacements that, due to the
infant mortality period of the component, reduce the reliability. The second is the convexification of two
MINLP models, involving only replacement, or replacement and repair, actions. The improvements enable
our MINLP-based methods to tackle large-scale selective maintenance optimization problems with up to 700
to 1000 system components.

Keywords: reliability, optimization, selective maintenance, component replacement, component repair,
failure rate

1. Introduction1

Industrial plants should ideally be robust and reliable in continuous operation. Unexpected component2

failures at the plant may cause costly disruptions to the operation. In order to avoid disruptions, the3

operators of the plant schedule major shutdowns, enabling maintenance operations to be conducted for the4

components (e.g., electrical drives, pumps, and fans) of the plant. As these shutdowns are expensive, both in5

terms of direct maintenance costs and lost production time, the maintenance operations that are performed6

during a shutdown should be carefully selected. Such decision-making is challenging because a modern7

industrial plant may consist of hundreds – or even thousands – of individual components with various levels8

of criticality.9

Selective maintenance, first introduced by Rice et al. (1998), aims at finding the optimal subset of10

maintenance actions to be performed for a multicomponent system. In single-objective optimization, the11

objective is to maximize the reliability of the system for the next operation window, subject to maintenance12

duration and/or cost constraints, or vice versa. Alternatively, the reliability maximization and the main-13

tenance duration and/or cost minimization can be considered as a multiobjective optimization problem,14

the solution of which yields a Pareto optimal set of solutions, representing the best trade-offs between the15

objectives. Selective maintenance has been applied to various fields, ranging from aircraft maintenance (in16

between flight operations) to maintenance shutdowns of large industrial plants. The connecting factor in17
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these applications is that the system has predefined operating windows, and maintenance actions can only18

be conducted in between the windows.19

After the pioneering work by Rice et al. (1998), several improvements and extensions have been reported20

in the selective maintenance literature. Cassady et al. (2001a) extended the approach in two ways. First, they21

considered components with time-dependent failure rates by characterizing the component lifetimes using22

the Weibull distribution (Weibull, 1951). Second, they expanded the selection of maintenance actions to 1)23

the minimal repair of a failed component, 2) the replacement of a failed component and 3) the replacement24

of a functioning component1. Cassady et al. (2001b) extended the problem definition to permit systems with25

any component arrangement. Rajagopalan & Cassady (2006) improved the efficiency of the original solution26

strategy by Rice et al. (1998), i.e. a total enumeration strategy, by more than two orders of magnitude by27

four individual improvements (which include, for example, defining upper and lower bounds for the variables28

and the objective function). Khatab et al. (2007) proposed two heuristic search algorithms, which iteratively29

add repair actions for failed components, having the highest improvement in the reliability of the system,30

until the cost or time constraint is saturated. Lust et al. (2009) proposed a heuristic search algorithm that31

is able to assign both minimal repair and replacement actions to the components. The authors report that,32

on a set of six optimization problems, their heuristic search algorithm yields solutions, the reliabilities of33

which are at most 3.71% worse than the optimal reliability. The benefit of heuristic algorithms is that they34

can quickly find a good solution. Lust et al. (2009) also applied the branch-and-bound and tabu search35

(Glover, 1989) methods to the selective maintenance problem.36

Galante & Passannanti (2009) proposed a variation of the algorithm by Kettelle Jr (1962), which is37

capable to identify non-dominated maintenance decision vectors in the space of reliability and maintenance38

cost for serial systems. The variation extends the algorithm to serial-parallel systems. The authors applied39

the modified algorithm to a large-scale preventive maintenance optimization of ship components. Certa et al.40

(2011) extended the method by Galante & Passannanti (2009) to be suitable for multi-objective selective41

maintenance optimization, in which the objectives are to minimize the cost and duration of maintenance42

actions subject to a minimum reliability requirement.43

Recently, further extensions have been proposed in the literature, in order to improve the relevance to44

industrial applications. In reality, possible maintenance actions may not be restricted to minimal repair45

or replacement, but to include also intermediate choices, i.e. imperfect maintenance. Liu & Huang (2010)46

extended the selection of actions in selective maintenance by relating the cost of the maintenance action to47

its quality via the Kijima type II model (Kijima et al., 1988; Kijima, 1989), in which a maintenance action48

reduces the (virtual) age of the component by the factor c from the range [0, 1]. Zhu et al. (2011) included an49

intermediate (imperfect) maintenance action as an addition to minimal repair and replacement by modeling50

both the age reduction factor and the hazard rate increase, the information of which was assumed to51

be known. Pandey et al. (2013a) also proposed an imperfect maintenance model that considers both the52

component age reduction and hazard rate adjustment. The abovementioned selective imperfect maintenance53

models limit the state of the system components to be only binary (i.e., working or failed). Pandey et al.54

(2013b) proposed a multi-state selective imperfect maintenance model, which relaxes this limitation, and55

allows the components to have also intermediate performance levels. Khatab et al. (2018) included the56

assignment of repair personnel to maintenance actions in their selective maintenance optimization model.57

Diallo et al. (2018) extended the problem definition from serial-parallel systems to serial n-out-of-k systems,58

i.e. a stage is functioning if n out of k components are functioning. Diallo et al. (2019) combined the59

selective maintenance optimization of serial n-out-of-k systems and the assignment of repair personnel.60

In the aforementioned studies, the reliability objective, or constraint, corresponds to a single operation61

window. Maillart et al. (2009) used stochastic dynamic programming to solve optimization problems with62

two and infinite operation windows. However, they conclude that the (computationally most expensive)63

model with infinite number of operation windows yields only minimal improvement in the expected number64

of successful missions in comparison to models with a one and two operation windows. Long-term selective65

maintenance optimization has been modeled as a discrete-time Markov chain (Iyoob et al., 2006) and Markov66

1Rice et al. (1998) only considered the second of these maintenance actions.
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decision process (Liu et al., 2020). Ye et al. (2019) proposed an optimization model, based on a continuous-67

time Markov chain, for the design of reliable systems. Schneider & Cassady (2004, 2015) developed selective68

maintenance optimization models for a fleet of systems. The latter study includes a linearization of a69

fleet-level selective maintenance model.70

Real-life optimization problems are often formulated using parameter values that involve uncertainty.71

Recently, studies considering uncertainty have been published in the selective mantenance optimization72

literature. Khatab et al. (2017) were the first to model uncertainty related to the break and mission73

durations are a stochastic optimization problem. Liu et al. (2018) proposed a sequence planning model for74

selective maintenance optimization under ucertainty in the break duration. Khatab & Aghezzaf (2016) and75

Duan et al. (2018) developed models for selective maintenance optimization with imperfect maintenance76

actions under uncertainty in the age reduction factors.77

In the context of chemical plant reliability, Amaran et al. (2015) formulated a mixed-integer linear78

programming (MILP) model for long-term turnaround planning of integrated chemical sites, allowing the79

shutdowns of the sites to occur at different times. Their model is linear because it is defined based on80

the minimum maintenance frequency for each component, instead of the system reliability. Maintenance81

operations have also been included into scheduling models of chemical processes. Biondi et al. (2017) included82

the degradation of plant components into an MILP process scheduling model based on the state-task network83

(Kondili et al., 1993). They model degradation to reduce the maximum capacity of the components, or to84

restrict their operation modes. Vieira et al. (2017) incorporated the planning of maintenance operations85

into a resource-task network (Pantelides, 1994) based scheduling model, tailored for biopharmaceutical86

processes. Wu et al. (2020) integrated maintenance tasks into a scheduling model based on the general87

precedence formulation (Méndez et al., 2001). They model the component degradation to be depend on the88

sequence of multiple-grade batch runs.89

The component lifetimes in the selective maintenance literature are commonly assumed to follow either90

the exponential or Weibull distributions (Cao et al., 2018). In the case of the former, the underlying91

assumption is that the failure rates are constant. Thus, only corrective maintenance actions for failed92

components are sensible; the replacement of a functioning component would have no influence on the system93

reliability. The Weibull distribution, on the other hand, can be used to describe components with increasing,94

constant or decreasing failure rates. However, the distribution is not suitable for modeling non-monotone95

failure rates.96

In reality, many engineering components have a non-monotone bathtub-shaped failure rate, which is a97

combination of decreasing infant mortality rate, a constant random failure rate and an increasing failure98

rate due to degradation. A wide range of parametric distributions has been proposed in the literature to99

model such failure rates. Our aim here is only to provide a brief overview of these distributions. Mudholkar100

& Srivastava (1993) proposed an exponentiated Weibull distribution. Xie et al. (2002) also proposed an101

extension to the Weibull distribution that is flexible to model bathtub-shaped failure rates. El-Gohary102

et al. (2013) proposed a generalized Gompertz distribution (Gompertz, 1825). All the above mentioned103

distributions have three parameters. Sarhan & Apaloo (2013) proposed a four-parameter model that is a104

generalization of both models by Xie et al. (2002) and El-Gohary et al. (2013). Jiang (2013) proposed a105

new three-parameter finite support model, and showed evidence that finite support models yield good fits106

to data with bathtub-shaped failure rates. The model parameters are typically fitted to the data by the107

maximum likelihood method, or by the maximum spacing method (see the paper by Jiang (2013)).108

In a recent review paper, Cao et al. (2018) stress the lack of data-driven approaches in selective main-109

tenance literature. For the operators of the plant, the starting point for selective maintenance is typically110

some, perhaps limited, dataset of component lifetimes. However, in the corresponding literature, the aspect111

of data availability is often omitted, and the starting point is typically defined as a given lifetime distribu-112

tion with arbitrarily chosen parameters. As Cao et al. (2018) point out, the linking of lifetime data with113

corresponding distribution parameters, in the context of selective maintenance, has not been discussed in114

the literature. Therefore, as the first contribution of this paper, we link the statistical analysis of component115

lifetime data to the selective maintenance. More specifically, we study two lifetime datasets with bathtub-116

shaped failure rate distributions (Aarset, 1987; Meeker & Escobar, 1998), and use the failure rate models by117

Sarhan & Apaloo (2013) and Jiang (2013).118
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When considering only a single maintenance break, the selective maintenance decision-making can be119

formulated as a mixed-integer nonlinear programming (MINLP)2. The algebraic term of the reliability of a120

serial-parallel system involves products of decision variables, which typically results in a non-convex MINLP121

problem. Recently, Ye et al. (2018) presented a convexified form of the reliability algebraic term. However,122

instead of selective maintenance, their work considered the reliability design of a new chemical plant. The123

convexified model is guaranteed to find the global optimum with a non-global MINLP solver. The authors124

showed that the solution time of their convexified model, using the non-global solver DICOPT (Viswanathan125

& Grossmann, 1990), was around half of that of the nonconvex model, using the global solver BARON126

(Tawarmalani & Sahinidis, 2005), for an example problem containing 42 binary variables. Further, in order127

to also avoid non-linearity, Diallo et al. (2018) proposed a two-stage approach, in which they first transform128

the problem into multi-dimensional multiple-choice knapsack problem and then solve it using MILP.129

As far as we are able to ascertain, the largest selective maintenance problems reported, and solved130

to optimality, in the literature3 have 200 system components (Galante & Passannanti, 2009), if only one131

maintenance action (e.g. replacement or repair) is considered, and 28 system components (Lust et al.,132

2009) if two (or more) maintenance actions are considered. It is also worth noticing that, regarding the133

latter category, Diallo et al. (2018) studied a problem with slightly fewer system components (23) – but134

report roughly three orders of magnitude smaller computational time than Lust et al. (2009), due to the135

linearization approach mentioned above. Evolutionary algorithms, as well as other heuristic approaches,136

provide an alternative solution method to tackle large-scale selective maintenance problems. However, with137

these approaches, the optimality of the solution cannot be guaranteed.138

In order to improve the efficiency of selective maintenance optimization for industrial-scale problems,139

while still guaranteeing the optimality of the solution, the second contribution of this paper is two concurrently140

applicable improvements to the efficiency of MINLP based optimization. First, our statistical analysis shows141

that the component-specific reliability is reduced if the age of the component and the next planned operation142

window are within certain limits. This reduction is caused by the infant mortality period of new components.143

We preclude component replacements in such cases by variable preassignments, which reduces the size of144

the decision space. Second, we modify the aforementioned convexification of the reliability expression by145

Ye et al. (2018) to be applicable to selective maintenance optimization with replacement action. Further,146

we also derive the corresponding convexification applicable to selective maintenance optimization with both147

replacement and repair actions.148

Nomenclature149

Sets

K Set of stages
Ik All partitions of Jk into three subsets
Jk Set of parallel units in stage k
S A subset of Jk
Sk,m Subset m of Jk
Sk Power set of Jk: Sk = {S|S ⊆ Jk}
Sx
k,i Repair subset of Jk on stage k

Sy
k,i Replacement subset of Jk on stage k

150

Indices

k Stage

151

2The reader may wish to consult papers by Grossmann (2002) and Belotti et al. (2013) for general reviews of MINLP, and
Kronqvist et al. (2019) for a review of solution methods for convex MINLP problems.

3We consider here only studies with a single maintenance break.

4



i A ternary partition of Jk
j Parallel unit
q Budget level
m A subset of Jk

Parameters

α, β, γ, η, λ, kw Failure model parameters (used as variables in failure model fitting)
αj,k,i Ternary parameter indicating to which subset (no action, repair, replacement) unit j at

stage k belongs in partition i
ωj,k,m Binary parameter indicating if unit j at stage k belongs to the mth subset of Sk
a Age of a component
ak,j Age of component j at stage k
di Binary parameter indicating if experiment i ended in failure
Fk,j Binary parameter indicating if component j at stage k is functioning before the main-

tenance shutdown
F (t) Cumulative failure function
h(t) Failure rate
R(t) Reliability function
R0
k,j Reliability of the component j at stage k, if the component is not replaced or repaired

Rx
k,j Reliability of the unit j at stage k, if the component is repaired

Ry
k,j Reliability of the unit j at stage k, if the component is replaced

∆Rx
k,j Improvement in the reliability of the unit j at stage k, if the component is repaired

(∆Rx
k,j = Rx

k,j −R0
k,j)

∆Ry
k,j Improvement in the reliability of the unit j at stage k, if the component is replaced

(∆Ry
k,j = Ry

k,j −R0
k,j)

cyk,j Cost of replacing unit j at stage k

cxk,j Cost of repairing unit j at stage k

cbudget,q Cost upper bound for the maintenance at the budget level q of the ε-constraint method
cperson Cost of hiring a maintenance person
n Number of components in a system
n̂ Number of samples in a dataset
Tbreak The duration of the maintenance break
t Time
ti End time of experiment i (may also be the failure time, see parameter di)
tyk,j Replacement duration of unit j at stage k

txk,j Repair duration of unit j at stage k

tw Next operation window
L Likelihood function

152

Variables

ctot Total cost of the maintenance operations
p Number of maintenance personnel involved in the maintenance operations
R′k Reliability of stage k
Rsys System reliability

R̃sys Logarithm of the system reliability
Tbreak Duration of the maintenance break
Tsum Sum of maintenance action durations
wk,i Binary variable used in the Convex Replacement-Repair (CRR) model
xk,j Binary variable defining whether unit j at stage k is repaired

153
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yk,j Binary variable defining whether unit j at stage k is replaced
zk,m Binary variable used in the Convex Replacement (CR) model

2. Data analysis154

Each component in an engineering system has an underlying failure rate, which is rarely explicitly known.155

However, the operators of the system can obtain implicit observations of the failure rate by collecting the156

lifetime data of the components while operating the system, or by running accelerated lifetime tests on157

individual components. The collected data are then fed to statistical models, in order to estimate the failure158

rate of the component.159

As indicated in the introduction, the scope of this work is on lifetime datasets with bathtub-shaped160

failure rates. We have chosen to use two datasets reported by Aarset (1987) (Table 1) and Meeker &161

Escobar (1998) (Table 2), which we refer to as Datasets 1 and 2, respectively. Dataset 1 has no censored162

data points, whereas Dataset 2 is right-censored at 300 time units, which means that, even if no failure has163

occurred, the experiment is terminated at this point. The reasoning to choose these datasets is that their164

underlying distributions are bathtub-shaped, and they are widely studied in the literature. In addition, they165

represent cases with (Meeker & Escobar, 1998) and without (Aarset, 1987) right-sensored data.166

Table 1: Lifetime dataset 1 (Aarset, 1987), consisting of failure times of 50 components. The dataset is a one-dimensional
array, reported on multiple lines.

0.1 0.2 1 1 1 1 1 2
3 6 7 11 12 18 18 18
18 18 21 32 36 40 45 46
47 50 55 60 63 63 67 67
67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85
86 86

Table 2: Lifetime dataset 2 (Meeker & Escobar, 1998), consisting of failure times of 30 components. Sign ‘+’ indicates that
the data point is right-censored.

2 10 13 23 23 28
30 65 80 88 106 143
147 173 181 212 245 247
261 266 275 293 300+ 300+

300+ 300+ 300+ 300+ 300+ 300+

Despite the scope being at bathtub-shaped failure rates, the failure models and optimization methods167

we discuss herein are also applicable to lifetime datasets with monotonically increasing failure rates4. If168

the failure rate is constant (i.e. the exponential lifetime distribution) or monotonically decreasing, the169

replacement action become irrelevant. The reason is that the replacement of a functioning component is not170

sensible, as, in this case, the actions would not improve the reliability of the component. The reader may171

wish to consult the paper by Aarset (1987), for a statistical method of identifying whether a dataset has a172

bathtub-shaped, or monotonically increasing or decreasing failure rate.173

In the next two subsections, we present the algebraic equations of the failure rate h(t) and cumulative174

failure function F (t) of the aforementioned failure models by Jiang (2013) and Sarhan & Apaloo (2013). We175

4With the caveat that, in this case, the aforementioned decision-space reduction by variable preassignments is no longer
relevant.
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have chosen to use these models because they are reported to yield good fits to datasets having a bathtub-176

shaped failure rate, in comparison to other models reported in the literature5. In addition, they represent177

two different classes of bathtub-shaped failure models; the former represents the class with finite support,178

whereas the latter the class of models with infinite support.179

2.1. Failure rate model by Jiang (2013)180

The failure rate h(t) and cumulative failure function F (t) of the model by Jiang (2013), having three
adjustable model parameters, are defined as

h(t) =
β

t+ η
+

1

γ − t

F (t) = 1− 1− t/γ
(1 + t/η)β

, t < γ,

(1)

(2)

where β, γ, and η are the adjustable model parameters, defined to be positive (β, η, γ > 0). The model is181

defined so that when t → γ the failure rate h(t) approaches infinity, i.e. the finite support. The author182

indicates that the feature enables the model to adapt to failure models with a rapidly increasing failure rate183

during the wear-out phase.184

2.2. Failure rate model by Sarhan & Apaloo (2013)185

Sarhan & Apaloo (2013) define their model, which they refer to as the exponentiated modified Weibull
extension distribution, to be a generalization of three models: the generalized Gompertz distribution (El-
Gohary et al., 2013), the modified Weibull extension distribution (Xie et al., 2002) and the exponentiated
Weibull distribution (Mudholkar & Srivastava, 1993). The model involves four adjustable parameters, and
its failure rate h(t) and cumulative failure function F (t) are

h(t) =
λβγ

(
t
α

)β−1
e(t/α)

β+λα(1−e(t/α)β )

[1− eλα(1−e(t/α)β )]1−γ + eλα(1−e(t/α)β ) − 1

F (t) = [1− eλα(1−e
(t/α)β )]γ , t ≥ 0,

(3)

(4)

where λ, α, β and γ are the adjustable model parameters, also defined to be positive (λ, α, β, γ > 0).186

Fitting a failure model to a dataset means seeking the model parameters that minimize, or maximize,187

a predefined goodness-of-fit measure. In the next section, we collect optimized parameters for both failure188

models on Datasets 1 and 2. We will also visualize Eqs. 1 to 4, using the optimized model parameters, at189

the end of the section (Figs. 1 and 2).190

2.3. Fitting failure models to data191

Sarhan & Apaloo (2013) use the maximum log-likelihood estimate to determine the model parameters,192

and report them for both Datasets 1 and 2. However, when analyzing Dataset 2, they assume that the right-193

censored values are actual failure times. Jiang (2013) reports the optimized model parameters for Dataset194

2, which she determines based on the maximum log-likelihood estimate, but does not analyze Dataset 1.195

Thus, we lack the optimized parameters for the failure model by Jiang (2013) on Dataset 1 and the failure196

model by Sarhan & Apaloo (2013) on Dataset 2.197

The fitting of bathtub-shaped failure models to data is well-established in the literature (see, for example,198

the papers by Xie et al. (2002), Jiang (2013), Sarhan & Apaloo (2013), and El-Gohary et al. (2013)). In199

the following, we briefly describe the log-likelihood function and the optimization approach that we used to200

obtain the missing parameter values.201

5See Table 5 in the paper by Jiang (2013) and Tables 2 and 5 in the paper by Sarhan & Apaloo (2013) for the listing of the
benchmark models.
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The likelihood function of a failure model is defined as

L =

n̂∏
i=1

h(ti)
diR(ti), (5)

where n̂ is the number of points, and parameter di indicates whether component i has failed at time ti.
Further, R(ti) is the reliability of the component, i.e. the probability of the component being functioning
at time t = ti, given that it is new and functioning at time t = 0. The reliability R(t) is the complement
probability of the cumulative failure function F (t):

R(t) = 1− F (t). (6)

The log likelihood of a failure model is then

logL =

n̂∑
i=1

[di log h(ti) + logR(ti)]. (7)

We tune the parameters of the failure model by Jiang (2013) on Dataset 1 by maximizing the extended202

maximum spacing6, and the parameters of the failure model by Sarhan & Apaloo (2013) on Dataset 2 by203

maximizing the log-likelihood (Eq. 7). In order to solve the optimization problems, we use SLSQP (sequential204

least squares programming) (Kraft, 1988) as the optimization method, and initialize the optimization runs205

from 100 randomized starting points. The optimized model parameters and the corresponding log-likelihoods206

for Dataset 1 are listed in Table 3, in which the parameters for the failure model by Jiang (2013) are207

obtained from her paper and for that of Sarhan & Apaloo (2013) by the multi-start SLSQP approach. The208

corresponding values for Dataset 2 are listed in Table 4, in which the parameters for the failure model by209

Sarhan & Apaloo (2013) are obtained from their paper and for that of Jiang (2013) by the multi-start SLSQP210

approach. In both tables, we list, as a reference, the model parameters and log-likelihoods of exponential211

and Weibull distributions, which we also generate by the multi-start SLSQP approach. The adjustable212

parameter of the exponential distribution is λ and those of Weibull distribution are λ and kw.213

Table 3: Optimized model parameters for the studied failure models on Dataset 1 (Aarset, 1987). The methods used for
training are the maximum a log-likelihood estimate (MLE) and extended maximum spacing method (EMSM).

model method trained parameters logL
exponential MLE λ = 45.686 -241.09

Weibull MLE λ = 44.913, kw = 0.94904 -241.00
Jiang (2013) EMSM β = 3.3588e-2, γ = 88.201, η = 0.13517 -217.60

Sarhan & Apaloo (2013) MLE α = 49.05, β = 3.148, γ = 0.145, λ = 7.181e-5 -213.86i

i The values are from the paper by Sarhan & Apaloo (2013).

On Dataset 1, the log likelihood of the trained model by Sarhan & Apaloo (2013) is higher than that214

of the trained model by Jiang (2013), indicating a better fit to the dataset. Similar results are obtained215

on Dataset 2, although the margin is very small. Further statistical assessment of which of these trained216

models has the best fit for the datasets falls outside the scope of this work. Suitable metrics for this are for217

example the Akaike information criterion (AIC) (Akaike, 1974) and the Kolmogorov-Smirnov test (Massey Jr,218

6According to Jiang (2013), the maximum (log-)likelihood estimate may not be suitable for failure models with finite support,
because the parameter defining the upper bound of the support can converge to the largest non-censored datapoint, in the case
of which the log-likelihood approaches infinity (typically, this behavior is not seen if the largest observation is right-censored).
The use of extended maximum spacing as the cost function avoids this problem (see the paper by Jiang (2013) for further
information).
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Table 4: Optimized model parameters for the studied failure models on Dataset 2 (Meeker & Escobar, 1998). See Table 3 for
explanations of the cost functions.

model method trained parameters logL
exponential MLE λ = 241.41 -142.70

Weibull MLE λ = 242.59, kw = 0.92679 -142.62
Jiang (2013) MLE β = 6.6737e-2, γ = 452.35, η = 9.5118 -141.36ii

Sarhan & Apaloo (2013) MLE α = 260.19, β = 4.3280, γ = 0.14848, λ = 9.5159e-5 -141.23

ii The values are from the paper by Jiang (2013).

1951). As we indicated in the introduction, we have chosen the two bathtub-shaped failure models as219

representative models from the literature, and show also the distributions obtained by the exponential and220

Weibull distribution on the same datasets. The latter two are the most commonly used distributions in221

selective maintenance optimization (Cao et al., 2018). In the remainder of this section, we highlight the222

differences in the failure rate h(t) and cumulative failure function F (t) of the trained models.223

Figures 1(a) and 1(b) visualize the failure rate h(t) and cumulative failure function F (t), respectively, of224

the trained models on Datasets 1. Figure 1(b) also shows the empirical failure distribution function. The225

failure rate of the models by Sarhan & Apaloo (2013) and Jiang (2013) have fundamentally the same shape,226

and in both models, the failure rate increases rapidly at around t = 75. However, during the mid-life period227

(t ≈ 10 . . . 65) of the component, the model by Sarhan & Apaloo (2013) predicts a lower failure rate than the228

model by Jiang (2013). When looking at the cumulative failure distribution, the model by Sarhan & Apaloo229

(2013) follows the empirical distribution closer than the model by Jiang (2013). Arguably, this is due to the230

additional flexibility provided by the additional model parameter. The cumulative failure distributions of231

the exponential and Weibull distributions are nearly identical because the trained model parameter kw of232

the Weibull distribution is close to unity.233

Figures 2(a) and 2(b) visualize the corresponding information of the trained models on Dataset 2. In234

this case, all four models predict fairly similar failure behavior before a lifetime of around t = 300 (Figure235

2(b)), at which point the remaining functioning components are right-censored. Beyond t = 300, the trained236

model by Sarhan & Apaloo (2013) is the most pessimistic about the length of the remaining lifetime. This237

can be clearly seen in the rapidly increasing failure rate. The trained model by Jiang (2013) is also more238

pessimistic about the remaining lifetime than the trained exponential and Weibull distributions. The reason239

is that the latter two do not capture the underlying increasing failure rate in the dataset. It is also worth240

noticing that during the mid-life period of the component (t ≈ 25 . . . 175) the trained model by Sarhan &241

Apaloo (2013) predicts a lower failure rate than that by Jiang (2013), which further predicts a lower failure242

rate than the trained exponential and Weibull distributions (Figure 2(a)).243

2.4. Maintenance actions244

In this section, we transform the trained failure models into a format that can be used as an input245

for selective maintenance optimization. The selective maintenance actions we consider in this work are246

1) minimal repair of a failed component, 2) replacement of a failed component and 3) replacement of a247

functioning component.248

Let us now consider a component j located at stage k in a system of components (see Figure 3 as an249

example arrangement). The system is functioning if at least one component j at every stage 1 . . . |K| is250

functioning, where K is the set of stages. Otherwise, the system is failed. We indicate the state of the251

component (k, j) at the start of the maintenance break by the binary parameter Fk,j , such that if Fk,j = 1252

the component is functioning.253

For the sake of simplicity, we assume in this work that all components of the system have an identical254

failure behavior. Nevertheless, the approaches we propose in this work do not rely on this assumption. We255

make this assumption in order to enable easy generation and reporting of results on large-scale problems256
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(c) Improvement in reliability based on the failure model
by Jiang (2013).
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(d) Improvement in reliability based on the failure model
by Sarhan & Apaloo (2013).

Figure 1: Fitting of failure models to Dataset 1 (Aarset, 1987). Subfigures (c) and (d) are contour plots of the reliability
improvement if a functioning component (k, j) is replaced, ∆Ry

k,j (Eq. 13). In the white regions of the plot, the improvement

is negative, which means that the replacement is not sensible.
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(b) Cumulative failure function F (t)
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(c) Improvement in reliability: model by (Jiang, 2013)
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(d) Improvement in reliability: model by (Sarhan &
Apaloo, 2013)

Figure 2: Fitting of failure models to Dataset 2 (Meeker & Escobar, 1998). Subfigures (c) and (d) are contour plots of the
reliability improvement if a functioning component (k, j) is replaced, ∆Ry

k,j (Eq. 13). In the white regions of the plot, the

improvement is negative, which means that the replacement is not sensible.
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Figure 3: An example arrangement of plant stages k. Here, stages k = {1, 2, 3} only have a single component (no redundancy),
and stages k = {4, 5, 6} and k = {7, 8, 9} have two and three parallel components, respectively.

with varying number of components. Subject to the availability of relevant failure data, systems with non-257

identical failure behavior can be modeled by conducting the data analysis individually for each component.258

The three above described maintenance actions were first considered by Cassady et al. (2001a), who259

modeled the component reliabilities using the Weibull distribution. The authors correctly state that, in an260

ideal case where the time (and cost) constraints are not active,261

• a failed component should be replaced, if its shape parameter kw > 1,262

• a failed component should be minimally repaired, if its shape parameter kw ≤ 1,263

• a functioning component should be replaced, if its shape parameter kw > 1, and264

• no maintenance action should be assigned to a functioning component, if its shape parameter kw ≤ 1.265

In the previous section, we saw that, for both Datasets 1 and 2, the trained shape parameter of the266

Weibull distribution kw < 1. This means that the failure rate is predicted to be decreasing, and thus,267

ideally, all failed components should be minimally repaired and no maintenance action should be assigned to268

functioning components. The failure model would never recommend replacing a component, as it does not269

identify the wear-out periods in the datasets. The same always applies the exponential distribution, which270

by definition has a constant failure rate. This highlights the importance of identifying the type of failure271

behavior in datasets, and accordingly using a relevant failure model.272

The choice of maintenance action affects the reliability of the component during the next operation
window. We define these reliabilities using the conditional reliability

R(a+ tw | a) =
R(a+ tw)

R(a)
, (8)

where tw is the length of the next operation window and a is the age of the component at the start of273

the maintenance break. The conditional reliability R(a + tw | a) is the probability of a component being274

functioning at age a+ tw, taken that it was functioning at age a.275

Thus, the resulting reliabilities of the component (k, j) are
R0
k,j = R(ak,j + tw | ak,j)Fk,j

Rx
k,j = R(ak,j + tw | ak,j)

Ry
k,j = R(tw | 0)

(9)

(10)

(11)

where R0
k,j , R

x
k,j , and Ry

k,j correspond to situations where no maintenance action is assigned to the com-
ponent, the component is repaired or the component is replaced, respectively. Throughout the equations
of this work, we denote repair and replacement actions by letters ‘x’ and ‘y’, respectively. For the sake of
easier notation later in this work, we define two new parameters{

∆Rx
k,j = Rx

k,j −R0
k,j = R(ak,j + tw | ak,j)

∆Ry
k,j = Ry

k,j −R
0
k,j = R(tw | 0)−R(ak,j + tw | ak,j)Fk,j ,

(12)

(13)

12



the former of which defines the change in the reliability if the component is repaired and the latter of which276

the corresponding change if the component is replaced. In the former equation, the term R0
k,j = 0, as only277

a failed component can be repaired (Fk,j = 0).278

As reliability is always nonnegative, ∆Rx
k,j ≥ 0 and ∆Ry

k,j ≥ 0 for all failed components. Interestingly,279

when the failure rate of a functioning component (k, j) is bathtub-shaped, its ∆Ry
k,j may be either positive280

or negative. Figures 1(c) and 1(d) depict the contour plots of ∆Ry
k,j in a space of the component age a281

and the length of next operation window tw using the trained failure models by Jiang (2013) and Sarhan282

& Apaloo (2013), respectively, on the Dataset 1. Figures 1(c) and 1(d) depict the corresponding plots283

on Dataset 2. On both datasets, general appearances of the plots are similar, despite being generated by284

different failure models. The clearest visible difference is the different shape of the top left corner of the285

isocurves. The corner is sharp when using the failure model by Jiang (2013) and smooth when using that286

by Sarhan & Apaloo (2013). The reason is that the former model has finite and the latter infinite support.287

Finally, we wish to highlight the region of negative ∆Ry
k,j in the bottom left corner of the plots on288

both datasets (indicated by the white color). Replacing a (functioning) component lying in this region is289

not sensible because the action would reduce its reliability. This behavior is caused by the infant mortality290

period of the component having a bathtub-shaped failure rate. In section 5.1, we will exploit this observation291

by preassigning binary variables corresponding to such components to zero, in order to reduce the decision292

space of the optimization problem.293

3. Mathematical models294

In this section, we define two mathematical models for selective maintenance optimization. In the first295

(Section 3.1), the maintenance actions are restricted to replacement only, whereas the second (Section 3.2)296

includes both replacement and minimal repair. Replacement and repair actions on the component j at297

the stage k are modeled as binary variables yk,j and xk,j , respectively. An action (replacement or repair)298

is conducted, if the corresponding binary variable equals one. We here define the two models separately299

because, later in Section 5, we will convexify both of them, and examine their applicability to large-scale300

problems.301

3.1. Non-convex replacement model302

Let us start with the replacement model, and consider a stage k in the system of |K| parallel stages.
The stage k is functioning if at least one of its |Jk| components is functioning. Therefore, its reliability is

R′k = 1−
∏
j∈Jk

(1−R0
k,j(1− yk,j)−R

y
k,jyk,j), k ∈ K, (14)

where Ry
k,j and R0

k,j are the alternative reliabilities of the component (k, j) during the next operation
window if the component is or is not replaced, respectively. These parameters were defined in Eqs. 11 and
9, respectively. Using Eq. 13, Equation 14 simplifies into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j), k ∈ K. (15)

As the system consists of |K| stages in series, its reliability is

Rsys =
∏
k∈K

R′k. (16)

By definition, selective maintenance optimization features constraints that limit the number of mainte-
nance actions that can be performed. In the literature, the two most commonly considered constraints are
time and cost budgets. We define our model here by considering a situation where the replacement of a
component (k, j) incurs the cost cyk,j and requires a working time tyk,j by a maintenance person. The number

13



of personnel assigned to the maintenance break is an integer variable 7 p. We model the total duration
required to perform the maintenance actions as the variable Tsum, defined as

Tsum =
∑
k∈K

∑
j∈Jk

tyk,jyk,j . (17)

The total duration of the maintenance break is constrained to Tbreak. Thus, in order to finish all maintenance
actions in time, the number of maintenance personnel p needs to satisfy constraint

Tsum ≤ Tbreakp. (18)

The total cost then defined as
ctot =

∑
k∈K

∑
j∈Jk

cyk,jyk,j + cpersonp, (19)

where cperson is the cost of involving one maintenance person in the maintenance break.303

For the operators planning the maintenance actions for the system, it is beneficial to know the trade-off
between the conflicting maximum systems reliability Rsys and the minimum total cost ctot. This trade-off
can be determined by solving the bi-objective MINLP optimization problem, defined as

max
y,p

Rsys,−ctot
subject to Eqs. 15 - 19.

(20)

We solve this optimization problem by the ε-constraint method (Haimes et al., 1971), by transforming the
minimization of the total cost into the following iteratively-relaxed constraint

ctot ≤ cbudget,q, (21)

where cbudget,q is the cost upper bound of the budget level q. At each budget level q, we then solve the
MINLP optimization problem

max
y,p

Rsys,q

subject to Eqs. 15 - 19, 21,
(NCR)

which we refer to, later in this work, as the Non-Convex Replacement (NCR) model.304

3.2. Non-convex replacement-repair model305

In this section, we define the second model, involving both replacement and minimal repair actions.
Using the two actions, the reliability of stage k is defined as

R′k = 1−
∏
j∈Jk

(1−R0
k,j(1− yk,j − xk,j)−R

y
k,jyk,j −R

x
k,jxk,j), k ∈ K, (22)

where R0
k,j , R

x
k,j and Ry

k,j are the alternative reliabilities of the component (k, j), depending on the assigned
maintenance action. These reliabilities were defined in Eqs. 9, 10 and 11, respectively. Again, using the
changes in the reliabilities (in this case, Eqs. 12 and 13), the equation simplifies into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j −∆Rx
k,jxk,j), k ∈ K. (23)

During one maintenance break, the component (k, j) can only be either replaced or repaired, and repaired
only if it is failed at the start of the maintenance break. Accordingly, we here use the following constraints,
defined by Cassady et al. (2001a): {

yk,j + xk,j ≤ 1, k ∈ K, j ∈ Jk
Fk,j + xk,j ≤ 1, k ∈ K, j ∈ Jk.

(24)

(25)

7This variable can also be used to represent the number of maintenance teams, or any other unit of workforce.
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In order to define the corresponding cost model, we define two new parameters cxk,j and txk,j , which are
the cost and duration of repairing the component (k, j), respectively. The total duration of performing all
maintenance actions is then

Tsum =
∑
k∈K

∑
j∈Jk

tyk,jyk,j +
∑
k∈K

∑
j∈Jk

txk,jxk,j , (26)

and the total cost
ctot =

∑
k∈K

∑
j∈Jk

cyk,jyk,j +
∑
k∈K

∑
j∈Jk

cxk,jxk,j + cpersonp. (27)

As a summary, at every budget level q of the ε-constraint method, we solve the following MINLP optimization
problem:

max
x,y,p

Rsys,q

subject to Eqs. 16, 18, 21, 23 - 27,
(NCRR)

which we refer to as the Non-Convex Replacement-Repair (NCRR) model.306

4. Illustrative examples307

Before considering any large-scale problems, let us here define and examine an illustrative small-scale308

example problem. We solve the problem in Section 4.1 using the non-convex replacement and replacement-309

repair models, defined in Sections 3.1 and 3.2, respectively, and highlight the differences in between the310

obtained results (Section 4.2). Finally, in Section 4.3, we demonstrate, using the latter model, the differences311

in the final Pareto optimal solutions when the reliability parameters are based on the same failure data but312

determined using the two different bathtub-shaped failure models.313

4.1. Optimization problem314

We define our example system to comprise five different types of components, the cost and replace-315

ment/repair durations of which are presented in Table 5. Component types I and II represent those that316

are relatively cheap to replace/repair but are located in inconvenient locations, i.e. accessing them requires317

unbuilding other components of the system. Component types III to V represent those that are the opposite.318

Table 5: Component catalog (items I - V).

Component type I II III IV V
cost of replacement cy [kEUR] 1 3 5 7 8
cost of repair cx [kEUR] 0.5 0.3 1.4 1 2
duration of replacement ty [h] 30 10 5 7 8
duration of repair tx [h] 20 5 2 5 3

The example system has the component arrangement shown in Figure 3 consisting of three single, three319

double and three triple stages of components in series, i.e. |J1| . . . |J3| = 1, |J4| . . . |J6| = 2, |J7| . . . |J9| = 3.320

Table 6 lists the component types lying at each location in the arrangement, which we generated by drawing321

them randomly from the component catalog (Table 5).322

Table 6: Component types of the system.

stage k
component type 1 2 3 4 5 6 7 8 9
unit j 1 I IV IV V IV II I I I

2 I III V III I IV
3 I V II
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We assume that all components have a failure behavior equivalent to that yielding the Dataset 1, and323

use the trained model by Sarhan & Apaloo (2013) to predict the reliability parameters R0
k,j , R

x
k,j and Ry

k,j .324

Dataset 1 does not have units in its original reference (Aarset, 1987). In order to place our illustrative325

example into a reasonable time-scale, we assume that the lifetimes of Dataset 1 are months. Further, we326

define the length of the next operation window to be tw = 10 months, the length of the maintenance break to327

be Tbreak = 50 h, and the cost of hiring a maintenance person to be cperson = 4 kEUR. The age distribution328

of the components is drawn randomly from the range of {10, 20, . . . , 70} months. In addition, four out329

of 18 components in the system are failed at the start of the maintenance break. Table 7 shows the age330

distribution, as well as the failed components, in the system.331

Table 7: Ages of the components at the start of the maintenance break. Failed components (Fk,j = 0) are indicated by crosses.

stage k
age ak,j [month] 1 2 3 4 5 6 7 8 9
unit j 1 20 50 70 70 10 10 70 60 20

2 70 30 40 40 40 10
3 40 70 40

4.2. Results from the replacement and replacement-repair models332

We generate the Pareto front of solutions to the illustrative example by starting from the total budget333

cbudget,1 = 0 kEUR, and iteratively increasing it by 0.5 kEUR until cbudget,110 = 54.5 kEUR. At each334

budget level, we solve Models NCR and NCRR by the global MINLP solver BARON 18.5.8 (Tawarmalani &335

Sahinidis, 2005), using the relative optimality criterion of 10−6. Table 8 summarizes the size of the MINLP336

optimization problem when solving it by the two models.337

Table 8: The number of variables and constraints in Models NCR and NCRR for the optimization problem defined in Section
4.1, and the average CPU time when solving the models by BARON.

model variables constraints average CPU time [s]
binary integer scalar

NCR 18 1 12 14 0.01
NCRR 36 1 12 50 0.01

Figure 4 presents the solutions obtained by iteratively solving Models NCR and NCRR, as well as illus-338

trations of representative solutions (duplicate and dominated solutions are filtered). Both sets of solutions339

are Pareto optimal to their own optimization problems. However, if we examine them all as solutions to340

Model NCRR, only two solutions obtained by solving Model NCR are Pareto optimal (representative solu-341

tions (1) and (5)). The gap between the two frontiers demonstrates the general improvement in the solutions342

when including the repair action in the model. In the literature, Liu & Huang (2010) obtained a similar343

result when comparing models with and without imperfect maintenance actions.344

Representative solution (1) is the trivial solution where no maintenance actions are performed. Represen-345

tative solutions (2) and (4) are those with the lowest total cost ctot while still yielding a functioning system346

(Rsys > 0) after the maintenance break, obtained by Models NCRR and NCR, respectively. The obvious347

difference is that in the former the failed component (3, 1) repaired, whereas in the latter it is replaced.348

On the other hand, representative solutions (6) and (7) are those with the highest system reliability Rsys.349

It is worth noticing that in these solutions none of the functioning components younger than 50 months is350

replaced. The reason for this is that, for all of these components, the parameter ∆Ry
k,j < 0 (see Figure 1).351

As a reference, we also generate results by a slightly modified version of the heuristic search algorithm352

by Lust et al. (2009), which we have implemented in Python. In this case, all solutions the algorithm yields353

for Models NCR and NCRR are Pareto optimal. However, because of its additive way of constructing the354

solutions, the algorithm cannot find all solutions lying at the Pareto fronts.355
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Figure 4: Pareto fronts obtained from the non-convex replacement (NCR) and replacement-repair (NCRR) models. The plot
visualizes also representative solutions (1)-(7) from the Pareto front, showing their the maintenance actions, the resulting
component age distribution (after the maintenance operations) and the number of maintenance personnel involved, p.

4.3. Decision-making based on different failure models356

In the previous section, we used reliability parameters predicted by the trained failure model by Sarhan &357

Apaloo (2013). The purpose of this section is to examine how different the decision-making of maintenance358

actions is if the reliability parameters are instead predicted by the other bathtub-shaped failure model, i.e.359

the one by Jiang (2013).360

Figure 5(a) shows the comparison of results obtained by solving the illustrative example, defined in361

Section 4.1, by Model NCRR using the reliability parameter predictions from the two different failure362

models (i.e., those by Sarhan & Apaloo (2013) and Jiang (2013)). Starting from the bottom left corner363

of both Pareto fronts, the first 12 solutions are the same, regardless of the different reliability parameter364

predictions used as inputs. Representative solution (2) shows the maintenance actions and the resulting365

component age distribution of the 12th solution. Pairwise, the solutions have the same total cost ctot (and366

are therefore vertically aligned), but different system reliability Rsys. Representative solution (2) has the367

system reliability of Rsys = 0.5134, if determined by the reliability parameters from the failure model by368

Sarhan & Apaloo (2013), and Rsys = 0.3617, in the case of those from the failure model by Jiang (2013).369

The reason for the difference is that the trained model by Jiang (2013) predicts a higher failure rate during370

the mid-life period (t ≈ 10 . . . 65) of the components than the model by Sarhan & Apaloo (2013), see Figure371

1(a). Representative solutions (3) and (4) are different (see the actions assigned for components (7,1) (8,1)).372

The solutions at the top right end of the Pareto fronts (representative solutions (5) and (6)) maximize373

the system reliability Rsys for the next operation window. The solutions are otherwise the same, but in (5)374

the component (2,1) is not replaced, whereas in (6) it is replaced. The reason for this difference is that the375

parameter ∆Ry
2,1 is negative when determined by the failure model by Sarhan & Apaloo (2013), and positive376

when determined by that by Jiang (2013) (see the point (a = 50, tw = 10) in Figures 1(c) and 1(d)).377

In order to further examine the differences in the decision-making, we defined another illustrative example378

problem, which is the same as the one in Section 4.1, but with the following changes. First, the components379
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are assumed to have a failure behavior equivalent to that yielding the Dataset 2. Second, we create a new380

randomized instance of the component type arrangement (Table 9). Third, the length of the next operation381

window is changed to tw = 60 months, and we draw the component ages (randomly) from the range of [60,382

120, . . . , 300] months. Table 10 shows the randomized age distribution and failed components.383

Table 9: Component arrangement of the system (the second instance).

stage
component type 1 2 3 4 5 6 7 8 9
unit 1 III II V I I I I IV II

2 III I V IV I IV
3 II V IV

Table 10: Ages of the components at the start of the maintenance break (the second instance). Failed components (Fk,j = 0)
are indicated by crosses.

stage
age a [month] 1 2 3 4 5 6 7 8 9
unit 1 120 300 60 180 240 240 120 60 300

2 60 240 240 60 240 60
3 240 240 240

Figure 5(b) shows the obtained Pareto fronts with the two different failure models. Unlike the previously384

studied system instance, this instance is functioning at the start of the maintenance break. If no maintenance385

is performed during the break (representative solution (1)), the system has predicted reliabilities of Rsys =386

0.1682 (Jiang, 2013) and Rsys = 0.0370 (Sarhan & Apaloo, 2013). The reason for the difference is that387

the system has many relatively old components, for which the failure model by Sarhan & Apaloo (2013)388

predicts significantly higher failure rates than the model by Jiang (2013), see Figure 2(a). On the other389

hand, for the representative solution (3), laying at the other extremes of the Pareto fronts, the predicted390

system reliabilities are in the opposite order: Rsys = 0.4567 (Sarhan & Apaloo, 2013) and Rsys = 0.4058391

(Jiang, 2013). In this case, the system has relatively young components, which then mostly operate in their392

mid-life period (t ≈ 25 . . . 175) during the next operation window. In Section 2.3, we pointed out that the393

failure model by Sarhan & Apaloo (2013) predicts a lower failure rate than the model by Jiang (2013) for394

components in their mid-life period, which explains the difference in the system reliabilities. Solutions on395

the Pareto fronts between representative solutions (2) and (3) are pairwise the same.396

As a summary, we here made a comparison between the two representative bathtub-shaped failure models,397

which both compare well against other models in the literature. We observe that, if these models are used398

to predict reliability parameters based on the same lifetime dataset, significantly different system reliability399

predictions are obtained, and the decisions of the maintenance actions are also partially different. This400

highlights the importance of carefully choosing a relevant failure model, and tuning its model parameters,401

for a given lifetime dataset.402

5. Large-scale selective maintenance optimization403

As already mentioned in the introduction, the number of individual replaceable/repairable components in404

a real industrial system (e.g. a chemical production plant, power plant or ship) is in the order of hundreds,405

or even thousands – far beyond the size of the illustrative example. Earlier, in Section 1, we listed the406

largest selective maintenance optimization problems reported, and optimally solved, in the literature. In407

this section, we investigate two improvements to the MINLP model formulations, in order to reduce the408

computational cost of such large-scale problems while still guaranteeing the global optimality.409
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(a) Dataset 1

(b) Dataset 2

Figure 5: Comparison of the obtained results in the illustrative example when using the reliability parameters from the failure
models by Jiang (2013) and Sarhan & Apaloo (2013). The results are generated by solving the non-convex replacement-repair
(NCRR) model. As the failure models yield different reliability parameters the results are Pareto fronts of different optimization
problems.

19



5.1. Variable preassignment410

In Section 2.4, we derived parameters ∆Ry
k,j and ∆Rx

k,j , indicating the changes in the reliability of the411

component (k, j) if being replaced or repaired, respectively. We observed that, if the failure model has412

a bathtub-shaped failure rate, the parameter ∆Ry
k,j (Eq. 13) is negative in a certain region in the space413

of component age a and next operation window tw, see Figures 1(c), 1(d), 2(c) and 2(d). This means414

that replacing such (functioning) component is not sensible because it would undesirably reduce the system415

reliability. Such actions, although being possible, were correctly not included in any of the Pareto optimal416

solutions of the illustrative example (Section 4.1).417

Thus, as the first improvement, we define preassignments that preclude replacements, a priori known to
reduce the system reliability, from the decision space:

yk,j = 0, ∀k, j ∈ {(k, j)|∆Ry
k,j ≤ 0}. (28)

In general, reducing the size of the decision space is likely to reduce the computational effort of solving the418

optimization problem.419

5.2. Convexification of the replacement model420

Solving Models NCR and NCRR with optimality guarantees requires a global optimization method8,421

because of the non-convex algebraic equations (Eqs. 15 and 23) defining the system reliability. Convexifi-422

cation of these equations would enable the models to be solved with a non-global MINLP method, such as423

the Generalized Benders Decomposition (Geoffrion, 1972), the Outer-approximation (Duran & Grossmann,424

1986), or the Extended Cutting Plane (Westerlund & Pettersson, 1995) method. These methods are, in gen-425

eral, computationally less intensive than global optimization methods (Kronqvist et al., 2019). Therefore,426

we convexify, in this section and Section 5.4, both Models NCR and NCRR, respectively. This is the latter427

of our two investigated improvements.428

Let us start with the non-convex replacement (NCR) model. The objective function Rsys, defined in429

Eq. 16, is the product of the stage reliabilities R′k, k ∈ K. As each of these reliabilities include multi-linear430

terms (Eq. 15), the objective function is nonlinear and non-convex. Ye et al. (2018) proposed a linearization431

of a constraint nearly equal to Eq. 15, which enables the convexification of the objective function. They432

conduct the linearization by first expanding the products of linear terms in Eq. 15 into summations of multi-433

linear terms, and then linearizing the resulting multi-linear terms. However, in their model, the constraint434

equivalent to Eq. 15 does not include term −R0
k,j . In the following, we describe the convexification proposed435

by Ye et al. (2018) and highlight the difference caused by the additional term.436

Let us first expand the product of linear terms in Eq. 15 into the summation of multi-linear terms. In
order to enable the expansion, we denote the power set of Jk by Sk = {S|S ⊆ Jk}. As an example, if stage
k = 1 consists of three parallel units, the power set S1 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
Further, we denote the mth set of Sk (i.e. the mth subset of Jk) by Sk,m. Using the newly defined sets, Eq.
15 can be expanded into

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j)

= 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

(−∆Ry
k,jyk,j)

∏
j∈Jk\Sk,m

(1−R0
k,j)
)
, k ∈ K.

(29)

In the model by Ye et al. (2018), the term −R0
k,j is absent, and therefore the last product becomes unity,437

which simplifies the equation. As the additional term is present in our case, this simplification cannot be438

performed.439

The above mentioned power set Sk of Jk can be systematically generated for any finite number of parallel
units by the equation

ωj,k,m =

⌊
mod(m− 1, 2j)

2j−1

⌋
, k ∈ K, (30)

8In the illustrative example, we used the global MINLP solver BARON.
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where the binary parameter ωj,k,m defines whether unit j at stage k belongs to the mth set of Sk.440

Next, we describe the linearization of Eq. 29. First, we introduce a new binary variable zk,m, defined as

zk,m =
∏

j∈Sk,m

yk,j , k ∈ K,Sk,m ∈ Sk. (31)

The following logic propositions hold for zk,m (Glover & Woolsey, 1974)

zk,m ⇔ (
∧

j∈Sk,m

yk,j), k ∈ K,Sk,m ∈ Sk, Sk,m 6= ∅

zk,m = 1, k ∈ K,Sk,m = ∅.
(32)

Raman & Grossmann (1991) reformulated these conditions into the following two linear inequalities

zk,m ≤ yk,j , k ∈ K, j ∈ Sk,m, Sk,m ∈ Sk, Sk,m 6= ∅ (33)

zk,m ≥
∑

j∈Sk,m

yk,j − |Sk,m|+ 1, k ∈ K,Sk,m ∈ Sk. (34)

Using Eq. 31, the linearized form of Eq. 29 becomes

R′k = 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

(−∆Ry
k,jyk,j)

∏
j∈Jk\Sk,m

(1−R0
k,j)
)

= 1−
∑

Sk,m∈Sk

( ∏
j∈Sk,m

yk,j
∏

j∈Sk,m

−∆Ry
k,j

∏
j∈Jk\Sk,m

(1−R0
k,j)
)

= 1−
∑

Sk,m∈Sk

(
zk,m

∏
j∈Sk,m

−∆Ry
k,j

∏
j∈Jk\Sk,m

(1−R0
k,j)
)
, k ∈ K.

(35)

Finally, the original objective function (Eq. 16) can be replaced by its logarithm:

R̃sys = lnRsys = ln

( ∏
k∈K

R′k

)
=
∑
k∈K

lnR′k. (36)

As logarithmic functions are always monotonic, maximizing R̃sys is equivalent to maximizing Rsys. Each441

term in the above summation (Eq. 35) is concave, and thus the new objective function is also concave.442

Maximizing a concave function is equivalent to minimizing a convex function.443

The nonlinear equality constraint in Eq. 36 still has a non-convex feasible region. Nevertheless, as the
left hand side of the constraint, R̃sys, is our objective function (of the maximization type), we can relax the
constraint to be an inequality constraint (less than or equal to)

R̃sys ≤
∑
k∈K

lnR′k. (37)

As each term lnR′k, k ∈ K is concave, the inequality constraint has a convex feasible region. Thus, the
Convex Replacement (CR) model, which is a convex MINLP, is

max
y,p

R̃sys,q

subject to Eqs. 17 - 19, 21, 33 - 35, 37.
(CR)

In Eq. 37, terms lnR′k, k ∈ K approach infinity when R′k → 0. In order to avoid numerical problems,444

we define a lower bound of 10−8 for variables R′k, k ∈ K when implementing Model CR (this also applies445

later to models CRR and CRR2).446
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5.3. Results: replacement models447

Let us now investigate the efficiency, as well as the goodness of the obtained solutions, when solving448

Models NCR and CR by global and non-global solvers on large-scale problems. Moreover, we study whether449

the inclusion of the preassignment (Eq. 28) improves the efficiency.450

We study ten large-scale selective maintenance optimization problems, having n = {100, 200, . . . , 1000}451

components. In order to facilitate an easy generation of similar problems with a varying number of compo-452

nents, we define a basic arrangement of 100 components (Figure 6), in which |J1|, |J2| = 1, |J3| . . . |J8| = 2,453

|J9| . . . |J18| = 3, and |J19| . . . |J32| = 4. This is the arrangement of the optimization problem with 100454

components. We generate the component arrangements of the problems with n ≥ 200 by aligning multiple455

basic arrangements in series. As an example, the optimization problem with 300 components consists of456

three of these basic arrangements and has, therefore, six stages with a single component, 18 stages with two457

parallel components, and so on.458

Figure 6: A basic arrangement of 100 components, used to define large-scale selective maintenance optimization problems.
The arrangements consisting of 200 to 1000 components are generated by aligning two to ten, respectively, of these basic
arrangements in series.

We again draw component types to the arrangements randomly from a component catalog, which we459

have here extended to consist of ten types (those listed in both Tables 6 and 11). We assume that the460

components have a failure behavior equivalent to that of Dataset 2, and use the failure model by Sarhan461

& Apaloo (2013) to generate the reliability parameters. Here, the cost of involving a maintenance person462

cperson = 4 kEUR, the duration of the maintenance break Tbreak = 100 h, and the planned next operation463

window tw = 30 months. We draw component ages randomly from the range of {30, 60, . . . , 330} months,464

and choose randomly 20% of the components to be failed prior to the maintenance break.465

Table 11: Component catalog (items VI - X).

Component type VI VII VIII IX X
cost of replacement cy [kEUR] 2 5.5 7.5 10 12
cost of replacement cx [kEUR] 1.5 2 1 6 4
duration of replacement ty [h] 5 7 11 8 12
duration of repair tx [h] 9 2 5 15 6

When using the MINLP models, we approximate the Pareto front by solving optimization problems466

corresponding to 100 budget levels of the ε-constraint methods, such that cbudget,100 is 2% more than that467

of the solution where all sensible replacements (for which ∆Ry
k,j > 0) are conducted.468

We solve Model NCR using both the global solver BARON 18.5.8 (with the relative optimality criterion469

of 10−6) and the non-global solver DICOPT 29 (Bernal et al., 2019). It is to be noticed that the latter470

may not yield the global optimum for Model NCR. We solve Model CR using DICOPT 2. For brevity, we471

refer to DICOPT 2 simply as DICOPT in the remainder of this paper. As the model is convex, also the472

non-global solver is guaranteed to find the global optimum. The MINLP models are implemented in GAMS473

25.1.3 software (GAMS Development Corporation, 2018). For each budget level of the ε-constraint method,474

9In this work, unless otherwise stated, we use DICOPT 2 with solver parameters: stop 1, infeasder 1.
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we define an upper computational time limit of 3600 seconds. Moreover, we generate reference results by475

the slightly modified version of the heuristic search algorithm by Lust et al. (2009). All results are generated476

on Intel(R) Core(TM) i5-7300U processor.477

When using DICOPT, we use CONOPT 3.17I (Drud, 1994) as the nonlinear programming solver. As478

the corresponding mixed integer programming (MIP) solver, we tested both CPLEX 12.8.0.0 (IBM, 2018)479

and GUROBI 8.1.0 (Gurobi Optimization, LLC, 2019). Without the preassignment, CPLEX was more480

efficient than GUROBI on all ten optimization problem instances, and, with preassignment, on seven out481

of ten optimization problem instances. A detailed comparison of the computational times is presented in482

Appendix A. The differences in the optimized system reliability Rsys (when using the different MIP solvers)483

were insignificant, within 0.0134%. Therefore, we here report the results generated with CPLEX as the MIP484

solver, and use the same MIP solver later in Section 5.5.485

Regarding the results, we monitor the relative differences in the optimized system reliability Rsys and486

the required computational time. These results are listed in Tables 12 and 13, respectively. Further,487

Figure 7 shows a graphical representation of the computational times. Experiments with each component488

arrangement size involve solving optimization problems with a number of budget levels, i.e. 100 when solving489

Model NCR or CR by DICOPT or BARON and a problem-specific number when using the heuristic search490

by Lust et al. (2009). Therefore, in order to enable a fair comparison, we report the average values of the491

relative differences in the optimized system reliability and computational times across the budget levels.492

Table 12: The average relative difference (%) in the optimized system reliability Rsys. The reference results are those obtained
by solving Model CR with DICOPT with the preassignment.

NCR / NCR / CR / CR / NCR / NCR / heuristic search
n BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / (Lust et al., 2009)

preassign. preassign. preassign.
100 0.0000 0.0000 0.0000 0.0000 -13.9622 -13.8441 -0.5772
200 -0.0000 -0.0006 0.0000 0.0000 -18.5247 -0.4511 -0.6166
300 0.0504 0.0505 0.0000 0.0000 -47.7391 -1.0091 -1.0515
400 0.0038 0.0034 0.0000 0.0000 -90.5637 -1.5098 -0.9297
500 0.0230 0.0262 0.0134 0.0000 -97.6209 -1.7325 -1.3383
600 0.0156 0.0123 -0.0071 0.0000 -97.7227 -10.2231 -1.3073
700 -0.0204 0.0082 -0.0000 0.0000 -99.9996 -67.7729 -1.4197
800 -0.1512 0.0003 -0.0010 0.0000 -99.9861 -9.9585 -1.3513
900 - - 0.0001 0.0000 -100.0000 -100.0000 -1.1251
1000 - - 0.0000 0.0000 -100.0000 -98.8919 -1.1022

Table 13: The average computational times (s) to generate one of the solutions approximating the Pareto front. The results
are listed for optimization problems with varying number of components, n.

NCR / NCR / CR / CR / NCR / NCR / heuristic search
n BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / (Lust et al., 2009)

preassign. preassign. preassign.
100 0.35 0.27 0.27 0.08 0.02 0.02 0.01
200 0.80 0.65 1.35 0.29 0.03 0.03 0.05
300 1.49 1.03 1.30 0.30 0.04 0.04 0.09
400 40.46 3.94 3.42 0.26 0.03 0.04 0.16
500 20.13 6.21 6.02 0.62 0.02 0.06 0.27
600 121.16 92.54 9.29 0.65 0.02 0.06 0.41
700 360.53 60.68 11.99 0.97 0.02 0.06 0.52
800 1081.33 709.32 17.05 1.57 0.01 0.07 0.71
900 - - 24.61 1.43 0.02 0.03 0.88
1000 - - 122.11 2.73 0.08 0.02 1.09
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Figure 7: Average computational times to generate one solution lying at the (approximated) Pareto front. NCR and CR
are abbreviations of the Non-Convex and Convex Replacement models. The dashed lines are added to the plot for better
visualization. They do not represent values in between the points.

The relative differences in the system reliability are reported with respect to those obtained by solving493

Model CR by DICOPT with preassignment. When the system reliability Rsys is close to zero, even a494

very small absolute difference in the obtained results would cause a major relative difference, misleading495

the interpretation of the results. Therefore, we have filtered the lower end of the Pareto fronts where the496

reference system reliability Rsys < 0.001. Consequently, results of at most 10 out of 100 budget levels were497

filtered, which occurred on the system arrangement of n = 1000 components.498

The system reliabilities obtained by solving Model NCR by BARON and Model CR by DICOPT, with499

or without preassignment, were on average within 0.1512% from each other (Table 12). This value occurs500

when comparing the results of solving Model NCR by BARON without the preassignment and the reference501

method on the problem involving 800 components (the worse results are obtained by the former approach).502

On this problem instance, the former approach is terminated prematurely on 17 out of 100 optimization503

runs, due to the computational timeout of 3600 s, which explains the sub-optimality of the results. The504

remaining results are on average within 0.0504% from each other.505

The system reliabilities obtained by the heuristic search were, on average, 1.08% lower than the reference506

results. When solving NCR by DICOPT with or without preassignment, the algorithm has a tendency to507

converge to solutions where no replacements are conducted, which results in significantly lower system508

reliabilities. Consequently, the obtained reliabilities are, on average, 0.4511 to 100% lower that the reference509

results.510

Both when solving Model NCR by BARON or Model CR by DICOPT, the inclusion of the preassignment,511

in general, reduces the required computational time. The reduction is more significant in the case of the512

latter, for which the difference is an order of magnitude, or more, for problems with ≥ 400 components.513

With preassignment, solving Model CR by DICOPT requires on average less computational time than514

solving Model NCR by BARON in all of the 10 studied component arrangements. On problems with ≥ 400515

components, the difference is an order of magnitude or more, whereas, on smaller problems, it is around a516

factor of two. Without preassignment, solving Model CR by DICOPT requires on average less computational517

time than solving Model NCR by BARON for problems involving ≥ 400 components. For problems with518

less than 400 components, the computational times are similar.519

At 800 components, the average computational time of solving a single budget level of Model NCR by520

BARON with or without preassignment is around 1000 s, which means that approximating the Pareto front521
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by 100 budget levels requires around 27.8 h. Therefore, as the computational time presumably increases522

further, we have not solved Model NCR by BARON for problems involving more than 800 components.523

The heuristic search algorithm by Lust et al. (2009) and solving Model NCR by DICOPT require less524

computational time than the above discussed approaches. However, these approaches do not necessarily525

yield the global optimum (Table 12). Moreover, solving Model NCR by DICOPT fails to find a solution526

other than the trivial solution (involving no maintenance actions) on many problem instances.527

5.4. Convexification of the replacement-repair model528

In Section 5.2, we convexified Model NCR by reformulating the multi-linear terms in Eq. 15. In
this section, we reformulate Model NCRR by following the same principle. First, we revisit the original
formulation of Eq. 23, defined as

R′k = 1−
∏
j∈Jk

(1−R0
k,j −∆Ry

k,jyk,j −∆Rx
k,jxk,j), ∀k ∈ K

In order to get rid of the multilinearity from the production, we define Ik as the index set of all possible
partitions of Jk into the three subsets of repair (Sx

k,i), replacement (Sy
k,i), and no action (Jk \ (Sx

k,i ∪S
y
k,i)):

Ik = {i|Sxk,i ⊆ Jk, S
y
k,i ⊆ Jk, S

x
k,i ∩ S

y
k,i = ∅}, ∀k ∈ K (38)

Resembling the linearizing efforts for the replacement-only case, the partitions can be ordered with respect
to ternary numbers. Table 14 shows the labeling for a stage with two units, where the indicator αj,k,i in
row j and column i being equal to 0 means that unit j belongs to the no-action subset in partition i, while
1 means repair, and 2 means replacement. For example, the two values in column i = 6 are 1 and 2, which
put together to form 12, the ternary form of 5=6-1. The general formula for αj,k,i is

αj,k,i =

⌊
mod (i− 1, 3|Jk|−j+1)

3|Jk|−j

⌋
∀j ∈ Jk, k ∈ K, i ∈ Ik. (39)

Table 14: An enumeration of set partitions.

i ∈ Ik
αj,k,i 1 2 3 4 5 6 7 8 9

j ∈ Jk 1 0 0 0 1 1 1 2 2 2
2 0 1 2 0 1 2 0 1 2

Based on Eq. 38, the original formulation (Eq. 23) can be unfolded as

R′k = 1−
∑
i∈Ik

∏
j∈Jk\(Sx

k,i∪S
y
k,i)

(1−R0
k,j)

∏
j∈Sy

k,i

(−∆Ry
k,jyk,j)

∏
j∈Sx

k,i

(−∆Rx
k,jxk,j), ∀k ∈ K. (40)

Now, we introduce new binary variables wk,i and let

wk,i =
∏
j∈Sx

k,i

xk,j
∏
j∈Sy

k,i

yk,j , ∀i ∈ Ik, k ∈ K, (41)

with which the formulation in Eq. 40 can be written as

R′k = 1−
∑
i∈Ik

wk,i[
∏

j∈Jk\(Sx
k,i∪S

y
k,i)

(1−R0
k,j)

∏
j∈Sy

k,i

(−∆Ry
k,j)

∏
j∈Sx

k,i

(−∆Rx
k,j)], ∀k ∈ K. (42)

The multilinear term in Eq. 41 can be transformed into the following linear inequalities:

wk,i ≤ xk,j , ∀i ∈ Ik, j ∈ Sx
k,i, k ∈ K (43)
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wk,i ≤ yk,j , ∀i ∈ Ik, j ∈ Sy
k,i, k ∈ K (44)

wk,i ≥
∑
j∈Sx

k,i

xk,j +
∑
j∈Sy

k,i

yk,j − |Sx
k,i| − |S

y
k,i|+ 1, ∀i ∈ Ik, k ∈ K. (45)

Note that if Sx
k,i and/or Sy

k,i are empty sets, Eqs. 43 and/or 44 are redundant. For example, for i ∈ Ik such529

that Sx
k,i = ∅ and Sy

k,i = ∅, wk,i ≡ 1 .530

With that, we present the Convex Replacement-Repair model (CRR) as follows:

max
x,y,p

R̃sys,q

subject to Eqs. 18, 21, 24 - 27, 37, 42 - 45.
(CRR)

Another way to express Eq. 41 as linear inequalities involving the new binary variables wk,i and the531

original ones xk,j and yk,j is shown in Appendix B. We refer to this model as the alternative Convex532

Replacement-Repair model (CRR2). The alternative model involves more binary variables, but has fewer533

inequalities for the cases where |Jk| ≥ 3, and is tighter than the model presented in this section. However,534

based on our results, which we will presented in the next section, the average computational times of the535

two models seem similar. Due to this reason, and for the sake of readability, we have moved the description536

of the alternative model to the supplementary material.537

5.5. Results: replacement-repair models538

In this section, we return to the selective maintenance optimization problems, presented in Section 5.3,539

and solve them using replacement-repair models. We use both the non-convex Model NCRR and convexified540

Models CRR and CRR2, and, as a reference, the heuristic search by Lust et al. (2009). Again, we solve541

the non-convex model by both BARON and DICOPT, and convex models by DICOPT. All results are542

generated with and without the preassignment (Eq. 28). In Section 5.3, we studied ten optimization543

problem instances. As the computational cost of replacement-repair models is, in general, higher than that544

of replacement models, we report results only for the first seven optimization problem instances, involving545

100 to 700 components.546

Table 15 lists the average relative differences in the optimized system reliability Rsys in the obtained547

results, in which the reference results are those obtained by solving Model CRR by DICOPT with preassign-548

ment. The average relative differences obtained by solving Model NCRR by BARON with the preassignment549

and Models CRR and CRR2 by DICOPT with the preassignment are within 0.0413%. Solving Models CRR550

and CRR2 by DICOPT without preassignment is computationally expensive, and we were therefore only551

able to generate results for problem instances involving up to 400 components. However, for this problem552

size, the results were already on average 32.32 and 28.28%, respectively, worse than the reference results,553

due to multiple premature terminations caused by reaching the computational time limit.554

The results obtained by solving Model NCRR by BARON without the preassignment were, on average,555

up to 0.6225% worse than the reference results. This occurred on the problem instance involving 700556

components. In this case, eight out of 100 optimization runs were terminated due to the computational557

time limit of 3600 s, which seems to be the main reason causing sub-optimality in the results. Regarding558

the non-global optimization methods, the heuristic search and solving Model NCRR by DICOPT with the559

preassignment yield results that are on average 2.21 and 2.28%, respectively, worse than the corresponding560

reference results. Solving the non-convex Model NCRR by DICOPT with the preassignment yields more561

robust results than solving non-convex Model NCR with the same approach (Section 5.3). However, without562

the preassigment, the optimization runs again often converge to the trivial solution, involving no maintenance563

actions.564

Table 16 shows the average computational times of tested approaches on the seven optimization problem565

instances. Figure 8 shows a graphical representation of the same results. As we already indicated in Section566

5.4, the computational times of solving CRR and CRR2 by DICOPT with or without the preassignment567
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Table 15: The average relative difference (%) in the optimized system reliability Rsys. The reference results are those obtained
by solving Model CRR with DICOPT with the preassignment.

NCRR / NCRR / CRR / CRR / CRR2 / CRR2 / NCRR / NCRR / heuristic search
number of BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / DICOPT / DICOPT / (Lust et al., 2009)

components n preassign. preassign. preassign. preassign.
100 -0.0103 0.0000 0.0000 0.0000 0.0000 0.0000 -5.1079 -3.1708 -1.3722
200 -0.0344 -0.0001 0.0000 0.0000 0.0000 0.0000 -24.4838 -0.0601 -0.5163
300 -0.1343 0.0413 -0.0000 0.0000 -0.0000 0.0000 -70.1091 -0.0467 -1.2762
400 -0.1201 0.0051 -32.3218 0.0000 -28.2843 0.0000 -73.6336 -0.0193 -1.2242
500 -0.1314 0.0003 - 0.0000 - -0.0035 -96.7744 -2.2350 -7.1207
600 -0.1471 0.0323 - 0.0000 - 0.0000 -97.5206 -3.1210 -2.4324
700 -0.6225 -0.0104 - 0.0000 - 0.0000 -99.8366 -7.2751 -1.5015

are similar. In both cases, the inclusion of the preassignment reduces the average computational time by568

around an order of magnitude. When solving Model NCRR by BARON, the inclusion of the preassignment,569

in general, slightly enhances the efficiency; however, the opposite result is obtained on problem instances570

having 300 and 700 components.571

Table 16: The average computational times (s) to generate one of the solutions (approximating) the Pareto front.
NCRR / NCRR / CRR1 / CRR1 / CRR2 / CRR2 / NCRR / NCRR / heuristic search

number of BARON BARON / DICOPT DICOPT / DICOPT / DICOPT / DICOPT / DICOPT / (Lust et al., 2009)
components n preassign. preassign. preassign. preassign.

100 0.49 0.48 4.34 0.36 3.47 0.43 0.04 0.03 0.04
200 1.24 1.09 172.23 11.48 80.05 9.64 0.06 0.06 0.14
300 3.06 2.48 79.06 3.97 43.30 4.72 0.09 0.08 0.30
400 23.06 50.15 1027.87 6.46 1101.91 7.73 0.08 0.09 0.52
500 32.70 13.25 - 134.72 - 117.44 0.06 0.12 0.86
600 259.19 120.63 - 22.56 - 25.66 0.07 0.14 1.44
700 651.98 711.82 - 67.68 - 71.85 0.08 0.15 1.72

Opposite to the replacement models (Section 5.5), here the convexification does not improve the efficiency572

in the studied problem size range. With the preassignment, the solution times of solving the convex Models573

CRR and CRR2 by DICOPT are similar to solving the non-convex Model NCRR by BARON. Without574

the preassignment, the former approaches have worse efficiency than the latter. Regarding the non-global575

approaches, solving Model NCRR by DICOPT with the preassignment10 requires less computational time576

than the heuristic search.577

Finally, let us examine the results of a representative problem instance, containing 300 components.578

Figure 9 visualizes the obtained discretized Pareto fronts using both Models CR and CRR, as well as579

representative solutions on the Pareto fronts. Despite the larger scale, similar features are also visible here580

as earlier in the results of the illustrative example (Figure 4). First, as Model CRR includes both the581

replacement and repair actions, its Pareto optimal solutions dominate those of Model CR, where only the582

replacement action is included. Second, in representative solution (5), all failed components and functioning583

components, for which ∆Ry > 0, are replaced. Third, representative solution (4) is otherwise the same as584

representative solution (5), but all failed components, for which ∆Ry < 0, are repaired, instead of being585

replaced.586

5.6. Additional remarks587

Warm start. When generating the Pareto front using the ε-constraint method, the final solution of588

budget level q is a feasible and presumably good initial solution for the optimization run at budget level589

q + 1. Let us refer to this initialization strategy as the warm start. In integer programming, a good initial590

solution has the potential to improve the solution efficiency, as regions with less fit objective function values591

can be eliminated from the search space early in the process. We tested the warm start with some solution592

approaches, but it provided only minor or no improvement to the solution efficiency.593

10Comparing the same approach without the preassignment is irrelevant because the approach is not robust (see Table 15).
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Figure 8: Average computational times to generate one solution lying at the (approximated) Pareto front. NCRR is abbreviation
of the Non-Convex Replacement-Repair models, and CRR and CRR2 for the first and second Convex Replacement models.

Figure 9: The discretized Pareto fronts of the problem with 300 components, using both Models CR (replacement) and CRR
(replacement-repair). Representative solutions are plotted along with the number of maintenance personnel p.

The augmented penalty in DICOPT. The system reliabilities obtained solving the non-convex594

Models NCR and NCRR by BARON are, on average, at most 0.0505 and 0.0413%, respectively, higher than595

solving the corresponding convex Models CR and CRR by DICOPT (all with the preassignment). Both596
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occurred with the problem instance of 300 components (see Tables 13 and 16). As DICOPT is expected to597

solve convex non-linear optimization problems to the optimality (within the machine precision), we further598

investigated the reason for sub-optimal results on these two problems instances.599

DICOPT is a combination of the Outer-approximation method, equality relaxation and augmented600

penalty (Viswanathan & Grossmann, 1990). Two reasons lead to DICOPT yielding suboptimal results on601

some problem instances: the slack variables that the augmented penalty introduces to the optimization602

problem and the ‘no-good’ cuts introduced at each iteration to remove previously found solutions. In the603

augmented penalty approach, the linear outer-approximations of the nonlinear constraints are relaxed by604

adding a positive slack to each new inequality. These slacks are minimized together with the original605

objective function by penalizing its weighted sum, using as a coefficient 1000 (controlled by the solver606

parameter weight) times the marginal of the original nonlinear constraint. In the case that the original607

constraint is not active, then its corresponding slack variable is not included in the objective, and in the608

limit where the inequality is defining the subproblem solution, the penalization in the objective tends to609

transform the relaxed cut into a hard constraint. This heuristic has been useful for obtaining feasible610

solutions to non-convex MINLP problems but may lead to convergence to suboptimal solutions for convex611

MINLP problems if the optimal solution of the objective function plus the penalized objective is not the612

same as the one of the original objective function. The ‘no-good’ cuts or integer cuts introduce an extra613

inequality in terms of the integer variables and their values in previous iterations such that any solution614

yielding the same values for the integer variables is infeasible. If the integer variables in the problem are615

exclusively binary, the ‘no-good’ cut is a single inequality, while with general integer variables like the ones616

involved in these problem it is required to add up to two extra variables per ‘no-good’ cut, per integer617

variable (see Appendix 1 of Ref. Bernal et al. (2019)). This ‘no-good’ cuts are not required for convex618

MINLP problems, but are used as a heuristic for non-convex MINLP problems.619

When we solved the two problem instances with 300 components by DICOPT with the augmented620

penalty suppressed11 the average relative differences were only -0.0003 and 0.00005%, respectively, which621

supports our hypothesis. Finding these issues led to the introduction of new solver options for DICOPT12
622

and the improvement of the solver, where the suboptimality issue was resolved. The improvements on623

DICOPT are available in GAMS since version 29.1.624

6. Discussion625

In this work, we convexified both the replacement and replacement-repair models NCR and NCRR,626

respectively. In the former, the solution efficiency improved, whereas, in the latter, it became worse without627

the preassignment and was similar with the preassignment. Presumably, the main reason for this is that628

the number of new binary variables, introduced by the convexification, increases at different rates in these629

models with respect to the number of components in the system. The number of new binary variables is630 ∑
k∈K 2|Jk| in Model CR,

∑
k∈K 3|Jk| in Model CRR, and

∑
k∈K 3|Jk|+2

∑
k∈K 2|Jk| in Model CRR2, where631

|Jk| is the number of parallel components at stage k of the system.632

Except for the preassigment, the approaches we present in this work are also applicable to systems633

where the components have an increasing failure rate. The preassignment is not applicable because for634

such components the improvement in reliability if replaced, ∆Ry, is always positive. The results where the635

preassigment is not used provide a rough indication of the efficiency of the approaches on such systems. It is636

also worth noticing that, when the failure rates are bathtub-shaped, the length of the next operation window637

tw and the age distribution of the components are likely to have an effect on how much the preassigment638

improves the efficiency. Presumably, the more components lie in the non-sensible region (Figs. 1(c), 1(d),639

2(c) and 2(d)), the more the preassigment enhances the efficiency.640

11Using solver parameters: stop 1, infeasder 1, feaspump 1, fp cutoffdecr 1e-6, fp iterlimit 100, fp stalllimit 100, fp integercuts
0, fp softcuts 0.

12If the solver parameter weight is set above 1E20, the augmented penalty approach is not used and no slack variables are
introduced.
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In comparison to the literature (see Section 1), we have expanded the largest problems reported, and641

solved to the optimality, from 200 to 1000 components in the case of one maintenance action and from 28642

to 700 in the case of two maintenance actions. In our experiments, the average computational time per a643

solution in the former is 122.11 s (Model CR solved by DICOPT) and in the latter 652.0 s (Model NCRR644

solved by BARON). Here, we have listed the average computational times without preassignment because it645

would not be applicable to the optimization problems in the reference studies (these studies do not consider646

bathtub-shaped failure rates).647

From the industrial perspective, our approaches facilitate the optimal decision-making of maintenance648

actions on engineering systems with more repairable or replaceable components than the earlier reported649

approaches. Alternatively, the extended number of components can be used to increase the detail of the650

maintenance actions. For example, instead of modeling the maintenance of an electrical motor as a whole,651

its individual repairable and/or replaceable subcomponents (e.g. the fan, insulation, and bearings) can652

be modeled individually. Based on the results, our recommendation for selective maintenance problems,653

involving only one maintenance action, is to use the convex Model CR, or its variation, and solve it by654

DICOPT. For problems involving two maintenance actions, our recommendation is to use the non-convex655

Model NCRR and solve it by BARON. If global optimality is not required, the heuristic search algorithm by656

Lust et al. (2009) is a robust choice, which in our experiments yielded for the replacement and replacement-657

repair models, on average, 1.08 and 2.21% sub-optimal results, respectively, with shorter computational time658

than global optimization approaches.659

In the literature, the level of detail in selective maintenance optimization models has been expanded via660

features, such as imperfect maintenance (Liu & Huang, 2010), repair personnel assignment (Khatab et al.,661

2018), and serial n-out-of-k systems (Diallo et al., 2018) (see the introduction for more details). Models662

with more than two maintenance actions (i.e., including at least one imperfect maintenance action) could663

also be convexified using similar approaches to those we presented in this work. However, this would further664

increase the number of additional binary variables. Considering the solution strategies we have studied665

in this work, presumably, a better strategy for such models is to solve the original non-convex model by666

BARON. This prediction is based on an assumption that the trend in the relative performance between667

solving a non-convex model by BARON and a corresponding convex model by DICOPT remains the same668

when the number of maintenance action types is more than two.669

Regarding the repair personnel assignment, we have included the total number of maintenance personnel670

as a binary variable p in our models (see Eqs. 18 and 19/27). However, for the sake of simplicity, our671

models do not explicitly assign individual maintenance persons to maintenance tasks. Nevertheless, such672

assignment (see the paper by Khatab et al. (2018)) could also be included in the convexified models via673

the inclusion of a new index r in variables yk,j and xk,j , assigning the maintenance person r to the task674

(k, j), and the modification of Eq. 31 or 41 to have summations over the index r. Future work should675

investigate whether models describing serial n-out-of-k systems can be convexified in a similar way as those676

in this work describing serial-parallel systems. The preassignment of insensible component replacements is677

also applicable to models with of these features, as long as the components have a bathtub-shaped failure678

rate.679

Finally, in this work, we have assumed that the failure data of components are available. Moreover, we680

assumed that the components of the system have identical failure behavior. In reality, system components,681

especially those located at different system stages, are likely to have different failure behavior. Collecting682

the failure data of all different component types in the system is a challenging and time-consuming task,683

especially if accelerated lifetime tests are not applicable. For example, the lifetime of pumps or drives,684

used in a chemical production plant, may be more than ten years. Therefore, collecting a dataset extensive685

enough, in terms of both the number of data points and the right-censoring time, for selective maintenance686

optimization may take many years. In some cases, the information of the failure rate may be obtained687

from the component supplier. However, this information might be based on an experiment conducted in a688

different operating environment or limited to only the warranty period of the component.689

In Section 4.3, we demonstrated how optimal maintenance actions differ already if the failure rates690

are determined from the same dataset using different bathtub-shaped failure models. Future work should691

investigate what is the sensitivity of maintenance decisions to the number of data points in the dataset,692
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and how long the components in the dataset should be operated (i.e. at what age a data point may be693

right-censored).694

7. Conclusions695

In this paper, we first linked bathtub-shaped failure rate models to selective maintenance optimization.696

Our sensitivity study shows that even if we start from the same failure data, but use different bathtub-shaped697

failure rate models (Jiang, 2013; Sarhan & Apaloo, 2013) (which, in the literature, are both considered to be698

suitable for the failure datasets studied in this work), the objective function space changes such that clearly699

different selective maintenance decisions become optimal. This highlights the importance of carefully fitting700

a suitable failure model to the failure data.701

Second, in order to enhance the solution efficiency, we convexified selective maintenance optimization702

models, including 1) only replacement or 2) both replacement and repair actions. Moreover, we derived a703

preassignment of variables corresponding to components, the replacement of which would undesirably reduce704

the component-specific reliability (the reduction is caused by the infant mortality period of the bathtub-705

shaped failure rate). Such components can be identified prior to the optimization procedure using our data706

analysis method. In our experiments, the inclusion of the preassignment in the convexified models CR, CRR707

and CRR2 reduced the solution time by roughly an order of magnitude when using the non-global solver708

DICOPT. When solving non-convex Models NCR and NCRR by the global solver BARON, we observed, in709

general, similar behavior but with smaller reduction in the computational times. With the preassignment,710

solving the convexified replacement Model CR by DICOPT requires significantly less computational time711

than solving the equivalent non-convex Model NCR by BARON – the difference being an order of magnitude712

or more for problems involving ≥ 400 components. In the corresponding comparison of the models including713

also the repair action, the convexification did not reduce the computational time but the times were similar.714

We demonstrated the approaches presented in this paper on selective maintenance optimization problems715

consisting of up to 1000 system components, when only the replacement action is included, and up to 700716

system components, when both replacement and repair actions are included.717
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Appendix A. Comparison of the solution times with CPLEX and GUROBI724

Table A.17 lists the numerical results when solving the Model CR by DICOPT with CPLEX 12.8.0.0725

or GUROBI 8.1.0 as the MIP solver. The lower solution times with and without the preassignment are726

highlighted by the bold font.727

Appendix B. Alternative convexification of the non-convex replacement-repair model (NCRR)728

Let us start by defining Mk as the index set of the subsets of Jk:

Mk = {m|Sk,m ⊆ Jk}, ∀k ∈ K

We introduce new binary variables uk,m and vk,m, such that

uk,m =
∏

j∈Sk,m

xk,j , ∀m ∈Mk, k ∈ K (B.1)

31



Table A.17: Comparison of average solution times, in seconds, of Model CR using DICOPT with CPLEX or GUROBI as the
MIP solver.

without preassignment with preassignment
n CPLEX GUROBI CPLEX GUROBI

100 0.27 0.40 0.08 0.07
200 1.35 2.24 0.29 0.48
300 1.30 2.53 0.30 0.35
400 3.42 5.60 0.26 0.20
500 6.02 10.32 0.62 0.76
600 9.29 27.93 0.65 0.65
700 11.99 47.64 0.97 1.63
800 17.05 60.16 1.57 2.83
900 24.61 89.83 1.43 2.29
1000 122.11 141.03 2.73 3.91

vk,m =
∏

j∈Sk,m

yk,j , ∀m ∈Mk, k ∈ K. (B.2)

Based on the definition of wk,i in Eq. 41, we have

wk,i = uk,mvk,m′ , ∀i ∈ Ik, Sk,m = Sxk,i, Sk,m′ = Syk,i, k ∈ K (B.3)

Therefore, alternatively, we can use of the relationships described in Eqs. B.1, B.2 and B.3 and transform
them into the following linear inequalities:

uk,m ≤ xk,j , ∀m ∈Mk, j ∈ Sk,m, k ∈ K (B.4)

uk,m ≥
∑

j∈Sk,m

xk,j − |Sk,m|+ 1, ∀m ∈Mk, k ∈ K (B.5)

vk,m ≤ yk,j , ∀m ∈Mk, j ∈ Sk,m, k ∈ K (B.6)

vk,m ≥
∑

j∈Sk,m

yk,j − |Sk,m|+ 1, ∀m ∈Mk, k ∈ K (B.7)

wi ≤ uk,m, ∀i ∈ Ik, Sk,m = Sxk,i, k ∈ K (B.8)

wi ≤ vk,m, ∀i ∈ Ik, Sk,m = Syk,i, k ∈ K (B.9)

wi ≥ uk,m + vk,m′ − 1, ∀i ∈ Ik, Sk,m = Sxk,i, Sk,m′ = Syk,i, k ∈ K (B.10)

Similar to the formulation in Section 5.4, constraints over empty sets do not apply. For example, for729

m ∈Mk such that Sk,m = ∅, we have both uk,m ≡ 1 and vk,m ≡ 1 .730

The alternative Convex Replacement-Repair model (CRR2) is defined as

max
x,y,p

R̃sys,q

subject to Eqs. 18, 21, 24 - 27, 37, 42, B.4 - B.10.
(CRR2)

The corresponding summation of (B.4) and (B.8) implies (43). The corresponding summation of (B.6)731

and (B.9) implies (44). The corresponding summation of (B.5), (B.7), and (B.10) implies (45). Therefore,732

the linear relaxation of (B.4) - (B.10) is at least as tight as that of (43) - (45). In other words, any point733

(integral or fractional) that satisfies (B.4) - (B.10) will satisfy (43) - (45).734

32



References735

Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36 , 106–108. doi:https:736

//doi.org/10.1109/TR.1987.5222310.737

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control , 19 , 716–723.738

doi:https://doi.org/10.1109/TAC.1974.1100705.739

Amaran, S., Sahinidis, N. V., Sharda, B., Morrison, M., Bury, S. J., Miller, S., & Wassick, J. M. (2015). Long-term turnaround740

planning for integrated chemical sites. Computers & Chemical Engineering, 72 , 145–158. doi:https://doi.org/10.1016/j.741

compchemeng.2014.08.003.742

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization.743

Acta Numerica, 22 , 1–131. doi:https://doi.org/10.1017/S0962492913000032.744

Bernal, D. E., Vigerske, S., Trespalacios, F., & Grossmann, I. E. (2019). Improving the performance of DICOPT in convex745

MINLP problems using a feasibility pump. Optimization Methods and Software, (pp. 1–20). doi:https://doi.org/10.1080/746

10556788.2019.1641498.747

Biondi, M., Sand, G., & Harjunkoski, I. (2017). Optimization of multipurpose process plant operations: A multi-time-scale748

maintenance and production scheduling approach. Computers & Chemical Engineering, 99 , 325–339. doi:https://doi.org/749

10.1016/j.compchemeng.2017.01.007.750

Cao, W., Jia, X., Hu, Q., Zhao, J., & Wu, Y. (2018). A literature review on selective maintenance for multi-unit systems.751

Quality and Reliability Engineering International , 34 , 824–845. doi:https://doi.org/10.1002/qre.2293.752

Cassady, C. R., Murdock Jr, W. P., & Pohl, E. A. (2001a). Selective maintenance for support equipment involving multiple main-753

tenance actions. European Journal of Operational Research, 129 , 252–258. doi:https://doi.org/10.1016/S0377-2217(00)754

00222-8.755

Cassady, C. R., Pohl, E. A., & Murdock Jr, W. P. (2001b). Selective maintenance modeling for industrial systems. Journal of756

Quality in Maintenance Engineering, 7 , 104–117. doi:https://doi.org/10.1108/13552510110397412.757

Certa, A., Galante, G., Lupo, T., & Passannanti, G. (2011). Determination of pareto frontier in multi-objective maintenance758

optimization. Reliability Engineering & System Safety, 96 , 861–867. doi:https://doi.org/10.1016/j.ress.2010.12.019.759

Diallo, C., Venkatadri, U., Khatab, A., & Liu, Z. (2018). Optimal selective maintenance decisions for large serial k-out-of-n:760

G systems under imperfect maintenance. Reliability Engineering & System Safety, 175 , 234–245. doi:https://doi.org/10.761

1016/j.ress.2018.03.023.762

Diallo, C., Venkatadri, U., Khatab, A., Liu, Z., & Aghezzaf, E.-H. (2019). Optimal joint selective imperfect maintenance763

and multiple repairpersons assignment strategy for complex multicomponent systems. International Journal of Production764

Research, 57 , 4098–4117. doi:https://doi.org/10.1080/00207543.2018.1505060.765

Drud, A. S. (1994). CONOPT – a large-scale GRG code. ORSA Journal on computing, 6 , 207–216. doi:http://doi.org/10.766

1287/ijoc.6.2.207.767

Duan, C., Deng, C., Gharaei, A., Wu, J., & Wang, B. (2018). Selective maintenance scheduling under stochastic maintenance768

quality with multiple maintenance actions. International Journal of Production Research, 56 , 7160–7178. doi:https://doi.769

org/10.1080/00207543.2018.1436789.770

Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs.771

Mathematical programming, 36 , 307–339. doi:https://doi.org/10.1007/BF02592064.772

El-Gohary, A., Alshamrani, A., & Al-Otaibi, A. N. (2013). The generalized gompertz distribution. Applied Mathematical773

Modelling, 37 , 13–24. doi:https://doi.org/10.1016/j.apm.2011.05.017.774

Galante, G., & Passannanti, G. (2009). An exact algorithm for preventive maintenance planning of series–parallel systems.775

Reliability Engineering & System Safety, 94 , 1517–1525. doi:https://doi.org/10.1016/j.ress.2009.02.009.776

GAMS Development Corporation (2018). General Algebraic Modeling System (GAMS) Release 25.1.3. Fairfax, VA, USA.777

URL: http://www.gams.com/.778

Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of optimization theory and applications, 10 , 237–260.779

doi:https://doi.org/10.1007/BF00934810.780

Glover, F. (1989). Tabu search–part I. ORSA Journal on computing, 1 , 190–206. doi:https://doi.org/10.1287/ijoc.1.3.190.781

Glover, F., & Woolsey, E. (1974). Converting the 0-1 polynomial programming problem to a 0-1 linear program. Operations782

research, 22 , 180–182. doi:https://doi.org/10.1287/opre.22.1.180.783

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of784

determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115 , 513–583.785

doi:https://doi.org/10.1098/rstl.1825.0026.786

Grossmann, I. E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and787

engineering, 3 , 227–252. doi:https://doi.org/10.1023/A:1021039126272.788

Gurobi Optimization, LLC (2019). Gurobi optimizer reference manual, version 8.1.789

Haimes, Y. V., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formation of the problems of integrated system790

identification and system optimization. IEEE Transactions on Systems, Man and Cybernetics, (pp. 296–297). doi:10.1109/791

TSMC.1971.4308298.792

IBM (2018). IBM ILOG CPLEX optimization studio, version 12.8.793

Iyoob, I. M., Cassady, C. R., & Pohl, E. A. (2006). Establishing maintenance resource levels using selective maintenance. The794

Engineering Economist , 51 , 99–114. doi:https://doi.org/10.1080/00137910600695627.795

Jiang, R. (2013). A new bathtub curve model with a finite support. Reliability Engineering & System Safety, 119 , 44–51.796

doi:https://doi.org/10.1016/j.ress.2013.05.019.797

33



Kettelle Jr, J. D. (1962). Least-cost allocations of reliability investment. Operations Research, 10 , 249–265. doi:https:798

//doi.org/10.1287/opre.10.2.249.799

Khatab, A., & Aghezzaf, E.-H. (2016). Selective maintenance optimization when quality of imperfect maintenance actions are800

stochastic. Reliability engineering & system safety, 150 , 182–189. doi:https://doi.org/10.1016/j.ress.2016.01.026.801

Khatab, A., Aghezzaf, E.-H., Djelloul, I., & Sari, Z. (2017). Selective maintenance optimization for systems operating missions802

and scheduled breaks with stochastic durations. Journal of Manufacturing Systems, 43 , 168–177. doi:https://doi.org/10.803

1016/j.jmsy.2017.03.005.804

Khatab, A., Ait-Kadi, D., & Nourelfath, M. (2007). Heuristic-based methods for solving the selective maintenance problem in805

series-parallel systems. In International Conference on Industrial Engineering and Systems Management, Beijing, China.806

URL: https://www.airitilibrary.com/Publication/alDetailedMesh?docid=WFHYXW318730.807

Khatab, A., Diallo, C., Venkatadri, U., Liu, Z., & Aghezzaf, E.-H. (2018). Optimization of the joint selective maintenance808

and repairperson assignment problem under imperfect maintenance. Computers & Industrial Engineering, 125 , 413–422.809

doi:https://doi.org/10.1016/j.cie.2018.09.012.810

Kijima, M. (1989). Some results for repairable systems with general repair. Journal of Applied probability, 26 , 89–102.811

doi:https://doi.org/10.2307/3214319.812

Kijima, M., Morimura, H., & Suzuki, Y. (1988). Periodical replacement problem without assuming minimal repair. European813

Journal of Operational Research, 37 , 194–203. doi:https://doi.org/10.1016/0377-2217(88)90329-3.814

Kondili, E., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for short-term scheduling of batch operations-815

–I. MILP formulation. Computers & Chemical Engineering, 17 , 211–227. doi:https://doi.org/10.1016/0098-1354(93)816

80015-f.817

Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und818

Versuchsanstalt fur Luft- und Raumfahrt , .819

Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review and comparison of solvers for convex MINLP.820

Optimization and Engineering, 20 , 397–455. doi:https://doi.org/10.1007/s11081-018-9411-8.821

Liu, Y., Chen, Y., & Jiang, T. (2018). On sequence planning for selective maintenance of multi-state systems under stochastic822

maintenance durations. European Journal of Operational Research, 268 , 113–127. doi:https://doi.org/10.1016/j.ejor.823

2017.12.036.824

Liu, Y., Chen, Y., & Jiang, T. (2020). Dynamic selective maintenance optimization for multi-state systems over a finite825

horizon: A deep reinforcement learning approach. European Journal of Operational Research, 283 , 166–181. doi:https:826

//doi.org/10.1016/j.ejor.2019.10.049.827

Liu, Y., & Huang, H.-Z. (2010). Optimal selective maintenance strategy for multi-state systems under imperfect maintenance.828

IEEE Transactions on Reliability, 59 , 356–367. doi:https://doi.org/10.1109/TR.2010.2046798.829

Lust, T., Roux, O., & Riane, F. (2009). Exact and heuristic methods for the selective maintenance problem. European Journal830

of Operational Research, 197 , 1166–1177. doi:https://doi.org/10.1016/j.ejor.2008.03.047.831

Maillart, L. M., Cassady, C. R., Rainwater, C., & Schneider, K. (2009). Selective maintenance decision-making over extended832

planning horizons. IEEE Transactions on Reliability, 58 , 462–469. doi:https://doi.org/10.1109/TR.2009.2026689.833

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical Association, 46 ,834

68–78. doi:https://doi.org/10.1080/01621459.1951.10500769.835

Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons.836
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