
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Heljakka, Ari; Solin, Arno; Kannala, Juho
Recursive Chaining of Reversible Image-to-Image Translators for Face Aging

Published in:
Advanced Concepts for Intelligent Vision Systems - 19th International Conference, ACIVS 2018, Proceedings

DOI:
10.1007/978-3-030-01449-0_26

Published: 01/01/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Heljakka, A., Solin, A., & Kannala, J. (2018). Recursive Chaining of Reversible Image-to-Image Translators for
Face Aging. In Advanced Concepts for Intelligent Vision Systems - 19th International Conference, ACIVS 2018,
Proceedings (pp. 309-320). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Vol. 11182 LNCS). Springer. https://doi.org/10.1007/978-3-
030-01449-0_26

https://doi.org/10.1007/978-3-030-01449-0_26
https://doi.org/10.1007/978-3-030-01449-0_26
https://doi.org/10.1007/978-3-030-01449-0_26


Recursive Chaining of Reversible Image-to-Image
Translators for Face Aging

Ari Heljakka1,2, Arno Solin2, and Juho Kannala2

1 GenMind Ltd, Finland
2 Department of Computer Science, Aalto University, Espoo, Finland

{ari.heljakka,arno.solin,juho.kannala}aalto.fi

Abstract. This paper addresses the modeling and simulation of pro-
gressive changes over time, such as human face aging. By treating the
age phases as a sequence of image domains, we construct a chain of trans-
formers that map images from one age domain to the next. Leveraging
recent adversarial image translation methods, our approach requires no
training samples of the same individual at different ages. Here, the model
must be flexible enough to translate a child face to a young adult, and all
the way through the adulthood to old age. We find that some transform-
ers in the chain can be recursively applied on their own output to cover
multiple phases, compressing the chain. The structure of the chain also
unearths information about the underlying physical process. We demon-
strate the performance of our method with precise and intuitive metrics,
and visually match with the face aging state-of-the-art.

Keywords: Deep Learning · Transfer Learning · GAN · Face Synthesis ·
Face Aging

1 Introduction

Generative Adversarial Network (GAN) [8] variants have been successful for var-
ious image generation and transformation tasks. For image-to-image translation
(such as mapping sketches to photographs), they have achieved state-of-the-art
results, with paired training data [9] and without it [13,28,27,17].

This paper generalizes image-to-image mapping to a sequential setting. Pre-
vious works have not focused on recursive application of the models on their own
outputs, and there have been no extensions to apply the method for a sequence of
domains, even though, e.g., [5] allow applying several different kinds of domain
transformations to the same image. We propose a recursive adversarial domain
adaptation approach that is capable of producing step-wise transformations for
human aging, as visualized in the examples in Fig. 1. We use the reversible image
translation approach of [13,28,27].

Previously, Antipov et al. [3] applied a conditional GAN to simulating hu-
man face aging with good initial results. Their model distinguishes itself by
explicitly enforcing the preservation of identity in face transformations. How-
ever, in reversible transformers such as ours, the preservation of identity requires
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Fig. 1: Examples of face aging transformations. Row 1: Non-recursive transforma-
tion from 15-year-old original to 65-year-old synthetic. Row 2: Partially recursive
transformation by re-using the transformer of 25→35 for also 35→45. Row 3:
Non-recursive transform of an approximately 55-year-old original to older (65-
year-old) and younger (towards 15-year-old). Row 4: Partially recursive trans-
formation by re-using the transformer of 35→25 for also 45→35.

no explicit measures. By learning a reversible mapping between two faces, the
transformer is inclined to preserve the identity information. Face aging has been
tackled before in approaches such as [25,12,7,16]. One can also find adjustable
parameters to modulate the prevalence of general attributes in an image [15].
While learning adjustable knobs allows for fine-grained control, our approach is
suitable for robust learning of pronounced sequential changes.

The rationale of this paper follows from modeling progressive changes. Con-
sider the development of an entity that can be approximated as a closed system
(e.g., an aging human face, a deteriorating surface, a growing tree, or a changing
city outline). Visual representation of such development can be approximated as
a succession of snapshots taken over time, so that one snapshot is translated to
the next one, then to the next one, etc. Such a translation requires Markovian
development, so that each image carries sufficient information to enable trans-
lating it to the next stage. This allows for e.g. face aging, but not for modeling
the day–night cycle.

Utilizing unpaired image-to-image translation methods, we can learn these
translation steps. Suppose we have training samples from an entity class P such



that we can at least roughly assign each one to a bin Pi that corresponds to
its developmental phase i. Knowing the ordering of the phases, the model can
learn to transform an image from stage Pi to stage Pi+1. The proposed method
can simulate one such possible line of development, with the hope that the real
underlying process has sufficient regularity to it. In this paper, the application
of interest is human face aging, which is both a challenging modeling problem
and the results are easy to validate by human readers (as humans are highly
specialized in face perception).

The contributions of this paper are as follows.

– We show how a chain framework of unsupervised reversible GAN transform-
ers can be constructed to convert a human face into a desired age, along
with the necessary image pre-processing steps.

– We show that using an auxiliary scoring method (e.g. a face age estimator)
to rank the transformers between training stages, we can leverage transfer
learning with a simple meta-training scheme that re-uses the best transform-
ers and compresses the chain with no performance cost. The auxiliary score
provides no learning gradient for an individual transformer. However, we
show that the score does consistently reflect the training progress.

– Consequently, our ability to compress the transformer chain can be used
to separate the high-level linear (e.g. increasing formation of wrinkles) and
nonlinear stages of development, producing a compact human-interpretable
development descriptor.

2 Proposed Method

2.1 Sequential transformations

In reversible GAN transformers, such as [28], there are two generator networks
and two discriminator networks. One generator transforms images from domain
A to domain B and the other from B to A. One discriminator separates between
whether an image originates from the training set of B or from the first generator.
The other discriminator does the same for A and the second generator. The
resulting generators will have learnt to map image features between the domains.

We can treat this kind of a network as a single building block of a chain
of domain transformers. For paired domains such as summer–winter or horses–
zebras, the notion of such chaining does not apply. However, it does apply for
classes of closed systems that evolve over time along a path of certain regularity.
If we can disentangle the relevant patterns of development, a transition between
two stages may occur by repeated or one-time application of those patterns.

A sequential transformation can be described as a composition of operators,
with fundamental relations such as reflexivity and transitivity. Given a mapping
F from domain A to domain B, what is the intended meaning of F (F (a)),
a ∈ A? In the context of regular non-sequential transformations such as [28], a
reasonable option would be to require either reflexivity as F (F (a)) ∈ A or anti-
reflexivity as F (F (a)) /∈ A or F (F (a)) ∈ B. These constraints could be added
to existing image-to-image translators.



The more relevant case here is transitivity. For domains At, t = {1, 2, 3}, and
ai ∈ Ai, we would like to have F (a1) ∈ A2, and also F (F (a1)) ∈ A3. This al-
lows us to enforce the transformer’s ability to perform multiple transformations,
turning it into an extra loss term. One may also vary the ‘domain thickness’
with respect to F , i.e. the measure of how many times F should be applied in
order to move from domain i to domain i+1 (e.g. 2, 1, 1/2, etc.). With enough
domains, thickness of 1 suffices.

2.2 Meta-training of transformer models

We train a chain of transformers to cover each developmental stage, as given in
Alg. 1. The algorithm requires a way to measure model performance at meta-
level, i.e. between the actual training runs. For GANs, traditional likelihood
measures are problematic [24,26] and in some cases inversely correlated with
image quality [6]. GANs are often prone to collapse into a specific mode of
the distribution, missing much of the diversity of the training data. Trainable
auxiliary evaluators like [6,18] do help, but for many application domains, we
already have automated deterministic scoring tools for images. For human face
aging, such auxiliary evaluators exist. We chose [2].

The algorithm starts by training a separate transformer network Φ1 between
the first two consequtive datasets, e.g. 15 and 25-year-old face images, for N
steps (N determined empirically). Transformers trained in this way are called
baseline. We use CycleGAN [28], but the algorithm is applicable for any image-
to-image transformer.

Then, we train another model Φ2 in the exact same way for the next stage
pair, e.g. mapping from 25 to 35-year-olds. But now, we also re-train a copy
of the model Φ1 recycled from the previous stage with additional N/2 steps on
its earlier data and N/2 on the next stage data. For example, Φ1, originally
trained for 15→25 conversion, is now re-trained also on 25→35 data. In order to
benchmark Φ1 and Φ2, we measure the perceived age of the faces in the images
they produce, with the estimator [2]. The transformations should age by 10
years, so we can score each transformer simply by the error in the mean age of
its output distribution, normalized by its standard deviation (alg. lines 8–9).

If the re-trained transformer is not significantly worse on this new trans-
formation than the baseline transformer, we discard the baseline transformer
and replace it with the re-trained transformer. Otherwise we discard the re-
trained one. The remaining transformer will then be tried out on the next stage,
and continuing until the end of the transformer chain. By virtue of reversible
transformers, we could also run the same algorithm backwards, finding the best
models that make an old face young again (rows 2 and 4 in Fig. 1).

The auxiliary scoring method is only used for a binary choice between two
competing transformers during stage transitions. The score, therefore, provides
no gradient for the training. Furthermore, our scoring model has been trained
on an altogether different dataset and model architecture. Retrospectively, we
calculate what the scores would have been during training (Fig. 2b).



Alg. 1 Greedy forward-mode recursive transformer chain with two-step
backward-compatibility. In the experiments, we used µtarget

i = [15, 25, . . . , 65],
ND = 6, S = 600,000, ε = 0.1.

1: Require: Number of stages ND, data sets Di and target mean age µtarget
i with

i ∈ [1, ND], trainable models Φj : R256×256 → R256×256 with j ∈ [1, ND−1], number
of steps S, auxiliary age estimator Γ : R256×256 → R

2: Initialize: a← 1 . Denote the index of the Φ model we try to re-use
3: Φ1 ← train(Φ1, [(D1, D2)], S)
4: for i = 2, . . . , (ND − 1) do
5: Φi ← train(Φi, [(Di, Di+1)], S)
6: Φ′a ← copy(Φa)
7: Φ′a ← train(Φ′a, [(Di−1, Di), (Di, Di+1)], S)
8: E′ ←

∣∣Ed∼Di [‖Γ (Φ
′
a(d))− µtarget

i+1 ‖1]
/
σ(Γ (Φ′a(d)))

∣∣
9: E ←

∣∣Ed∼Di [‖Γ (Φi(d))− µtarget
i+1 ‖1]

/
σ(Γ (Φi(d)))

∣∣
10: if |E − E′| < ε then . Recycled model wins
11: release(Φi)
12: release(Φa)
13: Φa ← Φi ← Φ′a . Upgrade Φa and try re-using again
14: else
15: release(Φ′a)
16: a← i . Next, try re-using the most recent base model

The algorithm uses a simple greedy search. By enforcing backward compati-
bility only to the previous transformation stage, we will only prevent forgetting
in short sequences. For the six domains, we found the incurring performance
penalty to be minor (Fig. 2b). To scale up, we could simply cap the maximum
number of re-uses of a model or the allowed error from forgetting, or add equal
parts of even earlier domains to the training set of the re-used model.

3 Experiments

3.1 Dataset and auxiliary age estimator

For training, we use the Cross-Age Celebrity Dataset (CACD, [4]), with a large
number of age-annotated images. Our chosen auxiliary age estimator [2], pre-
trained on the IMDB-Wiki dataset [21], was used as-is (the estimator has not
seen any of our training data). We found it necessary to improve the CACD
data in two ways. First, we used the off-the-shelf face alignment utility of [22]
to crop and align the faces based on landmarks. Second, despite the existing
age annotations of CACD, they are not accurate enough for age-estimation [1].
We ran the auxiliary age estimator on the data and found major discrepancy
between the annotations and the results of the estimator. We also confirmed
visually that the estimator was closer to the ground truth. Using the estimator
as ground-truth, we re-annotated the whole CACD data accordingly. Our model,
however, has access neither to the age information nor the estimator. It only



knows that the pictures come from different domains, at 10-year accuracy. For
validation, we use a small subset of the IMDB-Wiki dataset.

We divided the data into slots 2–18, 19–29, 30–39, 40–49, 50–59, and 60–78
(six domains, with five direct transformation paths). This enables direct compar-
ison with [3]. We removed enough samples so that the mean age in the sets is 10
years apart—15, 25, 35, 45, 55, and 65, respectively. Since the numbers of sam-
ples may differ between domains, we measure training progress by the number
of steps, not epochs, so as to maintain commensurability between stages.

3.2 Architecture and training

The architecture of each transformer module follows [28] (which re-uses struc-
tures from [10] and [9]), with two generators and two discriminators per module.
The generators utilize convolution layers for encoding, 9 ResNet blocks for trans-
formation, and deconvolution layers for decoding (original source code adopted
from [19]). Our image preprocessing reduces the real face resolution to 132×132,
which is then upscaled to 256×256 for computational efficiency using off-the-shelf
Mitchell–Netravali filter [20]. The full chain is composed of five independently
trained successive modules, so that one module feeds its output to the next. The
results of each transformation stage can be evaluated independently, and exter-
nal input can be fed in at any stage of the chain. For recursion, one can co-train
with 3 stages (e.g.15→25 and 25→35), or apply the model twice (15→35).

We trained with ADAM ([14], learning rate 0.0002, β1 = 0.5, β2 = 0.999)
with a batch size one. As in [28,23], we update the discriminators using a buffer
of 50 recently generated images rather than only the most recently produced
ones. The training time on an NVIDIA P100 workstation was 540 h (300 h for
the baseline, 60 h for each re-training session).

3.3 Human face age progression

Our solution is based on a pipeline of successive transformations. In order to
train a single transformation, say 25→35, we train a single transformer network.
By the reversible architecture, we simultaneously train the network to carry out
the full inverse transformation, 35→25.

We trained and evaluated each transformer network according to Alg. 1. For
human face aging, our hypothesis was that the network trained for transforming
faces from 15→25 would not generalize to the other stages, whereas the network
that transforms from 25→35 would generalize to multiple later stages as well. We
confirm this both during training-time (Fig. 2a) and validation (Fig. 2b). The
algorithm drops the baseline transformer 35→45 off the chain (ε > 0.35 would
drop the next one, too). From this result, we can read off the development de-
scriptor of the form F (age = 65) = F55→65(F45→55(F

2
25→35(F15→25(age = 15)))).

We expected that if we can re-use some transformers, this provides us with high-
level information about the underflying development pattern. While our result
alone only gives tentative support to this idea, we expect this approach to be
also applicable with more fine-grained precision.
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Fig. 2: (a) Performance of modules as a function of training steps (with stage-
specific transformation target), greedily selecting the best-performing models for
re-use. The error bars indicate the standard deviation of the ages of generated
test samples. Some of the variance is by design, as we intentionally challenge the
model with a wide range of ages for robustness and generalization in training
data (for clarity of visualization, the ground truth variance not shown). (b) Re-
sulting age after transformation in validation set, as a function of the input age.
During training, the model learned that 25→35 transformer can be recycled
for 35→45 to transform better than the freshly trained 35→45 transformer.
The 35→45 transformer was thus discarded (see Alg. 1). 15→25 and 45→55
transformers succeeded on their baseline but were not re-usable.



3.4 Comparison

In Fig. 1, we show sample transformation paths, with a 15-year-old successively
transformed to 65, and a 55-year-old transformed back to 15 and forward to 65.
The results are visually at least at the level of [3]. Additional results are shown
in Figures 3 and 4.

As most methods are concerned with singular transformations, our most
relevant points of comparison are [3] and [15]. However, both show results where
several successive stages of development show effectively no changes at all, and no
age measurements. Our results show greater variation between each stage, with
not too many artifacts even at relatively low resolution. The improvements are
presumably due to both the differences between reversible GANs and conditional
GANs, and to the use of the transformer chain. The chain, of course, comes with
additional computational cost.

In average, our compressed chain produced the target age in the validation
set with an error less than 4.5% (maximum of 3.2 years) and standard deviations
between 2.4–5.6 in different age groups. The performance drop from the baseline
due to compression was negligible. [3] reports an estimation accuracy 17% lower
for synthetic images than natural ones. This may reflect the improvements in
visual accuracy and variation in our model.

4 Discussion and Conclusion

In this paper, we showed that a transformer chain composed of reversible GAN
image transformer modules can learn a complex multi-stage face transformation
task. The domain-agnostic base algorithm is expected to generalize to other kinds
of temporal progression problems. Notably, we found that a single transformer
can carry out the face transformations 25→35 and 35→45 (and, with minor loss
of accuracy, also 45→55). One might suspect this to be because not many visible
changes happen during this time. However, the auxiliary age estimator can still
discern the ages 25, 35, and 45 easily. As the estimator and transformer chains
are independent, this indicates the presence of real changes that the networks
capture in a systematic way, even when they are hard for humans to discern.

On some problem domains, the full chain may be relatively long and slow
to train. Also, there is currently little control over the transformation paths,
and the chain may not yield a range of varied outcomes in contexts where the
developmental paths could diverge in different directions. Recent methods for
improving the resolution of GAN-generated images [11] could be combined with
our method. Follow-up work should evaluate the extent to which the layers of
separate transformer modules can be shared, so as to reduce the total training
time. More comprehensive evaluation of the models in both directions would
likely find more compact chains. In semi-supervised setting, using a small number
of paired examples would likely improve our results.

The code for replicating the results is available online: https://github.com/
AaltoVision/img-transformer-chain.

https://github.com/AaltoVision/img-transformer-chain
https://github.com/AaltoVision/img-transformer-chain
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Fig. 3: Examples of transforming an approximately 15-year-old to 65-year-old.
For each identity, row 1 shows the non-recursive transformation (applying the
baseline transformer on each stage). Row 2 shows the partially-recursive trans-
formation, with the double-trained 25→35 transformer applied also to 35→45
(the best chain, according to Alg. 1). Row 3 shows the transformation with the
most recursive steps, with the triple-trained 25→35 transformer applied also to
both 35→45 and 45→55 (the most compact chain, picked manually).
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Fig. 4: Examples of transforming an approximately 55-year-old to older (65-
year-old) and younger (towards 15-year-old). For each identity, row 1 shows
the non-recursive transformation (applying the baseline transformer on each
stage). Row 2 shows the partially-recursive transformation, with the double-
trained 35→25 transformer applied also to 45→35 (the best chain, according to
Alg. 1). Row 3 shows the transformation with the most recursive steps, with the
triple-trained 35→25 transformer applied also to both 45→35 and 55→45 (the
most compact chain, picked manually).
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