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We present a set of experiments to optimize the performance of a noninvasive thermometer based on
proximity superconductivity. Current through a standard tunnel junction between an aluminum supercon-
ductor and a copper electrode is controlled by the strength of the proximity induced to this normal metal,
which in turn is determined by the position of a direct superconducting contact from the tunnel junction.
Several devices with different distances are tested. We develop a theoretical model based on Usadel equa-
tions and dynamic Coulomb blockade that reproduces the measured results and yields a tool to calibrate
the thermometer and to optimize it further in future experiments. We also propose an analytic formula that
reproduces the experimental data for a wide range of temperatures.

DOI: 10.1103/PhysRevApplied.13.054001

I. INTRODUCTION

Virtually any parameter depending on temperature T,
preferably monotonically, can form a basis for thermom-
etry [1,2]. Yet depending on the application, one needs
to make a choice of system and technique based on sev-
eral criteria, including sensitivity, noise, power dissipation,
physical size, and speed of response. Besides these criteria,
one often needs to consider whether the measured quantity
can be obtained theoretically from a well-known, prefer-
ably simple physical law without fitting parameters: if this
is the case the technique may qualify as “primary ther-
mometry.” However, most of the time, like in the present
work, this is not the case, and we deal with “secondary
thermometry.” Measurement of the local temperature of
nanostructures at very low temperatures (<1 K) has been
recently developed with several techniques [3–10]. Here
we build on a technique based on temperature-dependent
proximity superconductivity yielding sensitive thermome-
try with ultralow dissipation. The technique is particularly
well adaptable to calorimetric detection of tiny heat cur-
rents as well as fast thermometry towards the lowest tem-
peratures in mesoscopic on-chip systems. The main goal
of the present investigation is to optimize the sensitiv-
ity (responsivity) of the sensor and to model its behavior
using a well-established theoretical framework. The main
results of the current work are (i) an order-of-magnitude
increased sensitivity of the device with respect to an earlier
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realization [5] and (ii) a full theoretical account of its
characteristics.

II. DESCRIPTION OF THE THERMOMETER

The thermometer that we study is schematically shown
in the left-hand inset of Fig. 1. The normal lead of a
standard normal-metal–insulator–superconductor (N -I -S)
junction is connected to another superconducting lead via
direct metal-to-metal contact. This lead induces the prox-
imity effect to the N lead and permits a supercurrent
via the tunnel junction. The basic characterization of this
thermometer is presented in Ref. [5].

This thermometer has been recently operated in a setup
that allows one to monitor temperature and its varia-
tions on microsecond time scales [11]. The main panel of
Figs. 1 presents the dc bias voltage V dependent rf trans-
mission S21 at the resonance of the LC circuit loaded by
the thermometer junction in parallel, measured at vari-
ous temperatures. (The rf setup to measure S21 including
the communication between room temperature and mil-
likelvin temperatures via attenuators, circulators, and cold
amplifiers has been described elsewhere [11,12].) In this
case, the superconducting contact is at a distance of L =
450 nm from the tunnel junction. For low conductance
G = dI/dV of the junction, G = γ [S0 − S21(ω0)], mean-
ing that the variations of S21 are proportional to −G. Here
γ is a constant that depends on the parameters of the
lumped LC circuit with ω0/2π its resonance frequency and
S0 is a constant offset that includes the attenuation and
amplification in the lines [5]. In the figure we thus observe
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FIG. 1. Principle and basic characteristics of the thermometer.
Left-hand inset: schematic illustration of the thermometer tunnel
junction. Here N , S, and I stand for normal metal, superconduc-
tor, and insulating barrier, respectively. The main panel shows the
rf transmission S21 of the proximitized junction at various tem-
peratures from approximately 20 mK up to approximately 400
mK, at −140 dBm applied power. This signal is directly related
to the conductance of the junction. Right-hand inset: zero-bias
conductance (−S21) as a function of bath temperature taken from
the data in the main panel.

the temperature-dependent conductance of the thermome-
ter junction. The favorable operation of the thermometer is
at V = 0, where the dependence of S21 on temperature T is
strongest, and the self-heating IV is minimal.

The right-hand inset of Fig. 1 depicts the temperature
dependence of −S21 of this junction measured at V = 0,
using a very small excitation power (−140 dBm) for
the measurement. We see that −S21 presents an almost
linear increase with decreasing temperature well below
300 mK, thus providing a sensitive and noninvasive ther-
mometer. These characteristics are to be compared to the
temperature-dependent dc conductance results that will be
presented below.

In the current work we limit ourselves to determining
the conductance and current voltage characteristics of the
junction in a quasi-dc measurement. The samples are fab-
ricated on a commercially available silicon wafer onto
which a 300-nm layer of silicon oxide has been grown. In
order to have stable tunnel junctions we use a 22-nm sus-
pended germanium hard mask. Moreover all the different
kinds of samples are made on the same chip in one fab-
rication process, meaning that this process for all of the
them is equal and the dominant difference between them is
their geometry. We use electron-beam lithography for writ-
ing the patterns on the chip and three-angle electron-beam
evaporation of the metal films. All samples have 35 nm
copper as normal metal and 20 nm as both superconduct-
ing Al leads. The insulator in the tunnel junction is a thin

layer of aluminum oxide formed by letting pure oxygen
into the chamber on top of one of the aluminum films. The
thermometers are made in a single vacuum cycle allowing
fabrication of clean metallic contacts without additional
cleaning of the samples.

III. EXPERIMENTAL RESULTS AND
OPTIMIZATION OF THE SENSITIVITY

An important figure of merit of a sensor is its respon-
sivity, which for this thermometer reads R = |dS21/dT|.
The apparent noise in a temperature measurement is then
inversely proportional to R as long as noise is not intrinsic
originating from true temperature fluctuations. Intuitively
the responsivity is expected to increase when the prox-
imity is enhanced, by bringing the clean contact closer
to the junction. Therefore we fabricate several proxim-
ity junctions with nominally equal parameters, apart from
the differing distance L. Figure 2 shows scanning elec-
tron microscope (SEM) images of three samples (L = 100
nm, 250 nm, and 350 nm). Along with the three SEM
images, the figure shows in the inset the measured I -V
characteristics of the sample with L = 100 nm at differ-
ent bath temperatures (40–240 mK), which indicates the
nonvanishing current in the small bias range with max-
ima at ±20 μV, due to the induced proximity effect in
the normal-metal island. It is clear that the peak current
Imax decreases due to the decrease of proximity effect with
increasing bath temperature. We measure the conductance
G of the junctions with low-frequency (approximately 10
Hz) lock-in techniques applying typically an excitation
voltage of approximately 1 μV ac. The simplified measure-
ment setup is shown in the inset of Fig. 3(a). The measured
conductance of the proximitized junction as a function of
applied voltage bias under different conditions is shown
in Fig. 3. In Fig. 3(a) this dependence is shown for dif-
ferent distances L = 50–350 nm at 50-nm intervals and
fixed bath temperature T = 40 mK. A few reproducible
features can be observed in the sub-gap regime within V ∼
±50 μV � �0/e, where �0 is the superconducting gap.
The sharpest one of them is our favorable feature at zero-
bias voltage, i.e., “zero bias anomaly” (ZBA). All these
features get suppressed on increasing the distance L. Figure
3(b) demonstrates the main feature, the temperature depen-
dence of conductance for L = 50 nm, i.e., the thermometer
with the strongest ZBA feature. Sensitivity of zero-bias
conductance down to the lowest temperature is obvious.
The overall change of the baseline and its bias dependence
are due to quasiparticle current arising at finite tempera-
tures. Figure 3(c) is a wider view of 3(b) that emphasizes
conductance character due to quasiparticle current at volt-
ages around the superconducting gap, V � ±200 μV. The
standard BCS coherence peaks at eV = ±�0 of a N -I -S
junction are now split due to the existence of the minigap
in the proximitized normal metal.
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FIG. 2. Scanning electron micrographs of three different sam-
ples. The normal metal (brown) is coupled to three superconduct-
ing leads (blue): two (left and right) via tunnel barriers (gray) and
one via a direct contact. The distance L between the right-hand
junction with clean contact varies from 50 to 350 nm in 50-nm
intervals (SEM images of three of them are shown: L = 100 nm,
L = 350 nm, and L = 250 nm from top to bottom). The bottom
panel shows a wider view of one of the three samples; all of them
have the same structure outside the actual thermometer details.
We present in this paper data on transport between the right-hand
and middle contacts. Inset: the I -V characteristics of the sample
with L = 100 nm at different bath temperatures.

IV. THEORETICAL MODEL

In this section we theoretically analyze an overlap
S-N -I -S junction, which is close to the experimental setup

studied above, coupled to an electromagnetic (EM) envi-
ronment.

A. Numerical calculation

Let us first discuss the S-N -I -S junction with the geom-
etry shown in Fig. 4(a) and described in the correspond-
ing caption. All metallic parts are assumed to be in the
dirty limit, in which the elastic mean free path le is
much smaller than the superconducting coherence length
ξ ∼ √

�D/2�0, where D = vFle/3 is the diffusion coef-
ficient with the Fermi velocity vF . In order to describe
such a system we make use of the imaginary time qua-
siclassical Green’s function formalism determined by the
Usadel equation of motion [13–15]. If the total thickness
of the superconductor and the normal metal of the system
depicted in Fig. 4(a) is sufficiently small (dN + dS < ξ)

we can neglect all the derivatives in the y direction and
average the Usadel equation over the width reducing it to
an effectively one-dimensional problem described by the
following ordinary differential equation [14]:

�D
2

d2θn

dx2 = ωn sin[θn(x)] − �(x) cos[θn(x)] . (1)

Here, θn(x) is the proximity angle of the normal metal,
D is the diffusion coefficient of the material, ωn = (2n +
1)πkBT are the fermionic Matsubara frequencies with
temperature T and n = 0, ±1, ±2, . . ., and �(x) is the
superconducting order parameter defined as follows:

�(x) = dS

dN + dS
� (2)

for 0 < x < d1 and = 0 otherwise, where � is the order
parameter of superconductor S1. We note that the normal
metal underneath S1 effectively acts as a superconductor
with the reduced superconducting gap, dS/(dS + dN )�.

(a) (b) (c)

FIG. 3. Bias V dependence of the conductance G = dI/dV of the thermometers under different experimental conditions. (a) −G for
various samples with L = 50–350 nm at temperature T = 40 mK. (b) A similar plot as (a) but just for one thermometer with L = 50
nm at various temperatures from T = 40 up to 400 mK. (c) As in (b) but now for a wider bias range demonstrating the onset of
quasiparticle current at V � ±�0/e = 200 μV besides the zero-bias anomalies. Inset: simplified schematic of the measurement setup
for the conductance G.
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(a) (b)

FIG. 4. (a) Scheme of the overlap S-N -I -S junction where two
superconductors S1 and S2 (blue) are set on top of a semi-infinite
normal metal wire (orange). S1-N is a clean contact of length
d1, while S2-N is a tunnel contact of length d2 and a resistance
RT. Thicknesses of the superconductors and the normal metal are
dS and dN , respectively. (b) Representation of the phenomeno-
logical EM environment of the circuit under study. Here the
Josephson junction of capacitance C and resistance RT is cou-
pled to an infinite RC transmission line (see inset) of impedance
Z(ω) = √

R0/iωC0, where R0 and C0 are the resistance and the
capacitance per unit length of the line.

To obtain a general solution, Eq. (1) has to be supple-
mented by the appropriate boundary conditions at the ends
of the normal metal wire: θn(L1) = 0 and ∂xθn|x=d1+L+d2= 0. The other boundary conditions come from the con-
tinuity of the proximity angle function as well as the
current conservation throughout the system: θn(a − 0) =
θn(a + 0) and ∂xθn|x=a−0 = ∂xθn|x=a+0 for a = 0, d1 [see
Fig. 4(a)] [14,16]. Since N -S2 is a tunnel contact with
low transparency we neglect the proximity effect in this
region. The boundary condition problem described above
can be solved numerically by employing the finite dif-
ference method where Eq. (1) is rewritten as a system
of nonlinear algebraic equations. The normal and the
anomalous Green’s function components in θ represen-
tation read Gωn(x) = cos[θn(x)] and Fωn(x) = sin[θn(x)],
respectively [14].

Based on the solution of Eq. (1) for the overlap junction
depicted in Fig. 4(a) the critical current through the tunnel
N -S2 interface depends on the anomalous component of
the Green’s function and, therefore, is given by [17–19]

Ic = 2πkBT
eRT

∑

ωn>0

FS
ωn

F̄N
ωn

, (3)

where RT is the resistance of the tunnel junction and FS
ωn

=
�(T)/

√
ω2

n + �(T)2 is the anomalous Green’s func-
tion of superconductor S2. The temperature dependence
of the superconducting gap is assumed to be �(T) =
�0 tanh(1.74

√
Tc/T − 1), with Tc as the critical temper-

ature of the superconductor [20]. The proximity angle,
θn(x), depends in general on the x coordinate, which means
one is supposed to average the solution along the N -S2

interface of a finite length d2 obtaining F̄N
ωn

as follows:

F̄N
ωn

= 1
d2

∫ d1+L+d2

d1+L
sin[θn(x)]dx. (4)

Let us now discuss the contribution from the EM envi-
ronment schematically represented by the phenomenolog-
ical circuit depicted in Fig. 4(b) and described in the
corresponding caption. Due to the dynamical Coulomb
blockade the current mediated by the tunneling of a Cooper
pair in an ultrasmall Josephson junction of a capacitance C
is described by the so-called P(E) function [21,22]

Is(V) = πeE2
J

�
[P(2eV) − P(−2eV)] . (5)

Here EJ = �Ic/2e is the Josephson energy of the junction.
The P(E) function is the probability for an electron to emit
a photon to the environment and it is defined as

P(E) = 1
2π�

∫ ∞

−∞
dt exp

[
4J (t) + i

�
Et
]

, (6)

where J (t) = 〈[ϕ(t) − ϕ(0)]ϕ(0)〉 is the equilibrium cor-
relation function of the phase ϕ(t) = (e/�)

∫ t
−∞ V(t′)dt′ of

the voltage across the junction. This function depends on
the total impedance of the system, Zt(ω), as follows:

J (t) = 2
∫ ∞

0

dω

ω

Re[Zt(ω)]
RK

×
{

coth
(

�ω

2kBT

)
[cos(ωt) − 1] − i sin(ωt)

}
. (7)

Here RK = h/e2, the von Klitzing constant, denotes the
resistance quantum. The total impedance of the system
reads

Zt(ω) = 1
iωC + Z−1(ω)

, (8)

where C is the capacitance of the junction and Z(ω) is the
impedance of the EM environment. In our model the EM
environment is assumed to be an infinite RC transmission
line whose impedance is Z(ω) = √

R0/iωC0, where R0 and
C0 are the resistance and the capacitance per unit length of
the line, respectively [see Fig. 4(b)]. Since the impedance
of the RC transmission line depends on the ratio between
R0 and C0, the appropriate dimensionless parameter that
characterizes the line is κ = R0C/C0RK [22,23]. Here we
restrict ourselves to the RC transmission line, which is the
limiting case of a general RCL transmission line when the
inductance per unit length can be neglected [22]. This can
be justified by the fact that the characteristic frequency in
the system, ωC = EC/� ∼ 1012 Hz, is smaller than the ratio
R0/L0 ∼ 1013 Hz with R0 ∼ 10 �/μm. Here L0 ∼ 10−6

H/m is the inductance per unit length of the line.
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B. Analytic formula

In order to derive an analytic formula that describes the
conductance of the thermometer, we derive a simplified
theory that captures the essential physics. We note that
based on Eqs. (5) and (6) the tunneling current is expressed
as

Is(V, T) = πeE2
J (T)

�
× i

π�

∫ ∞

−∞
dte4J (t) sin

(
2eV
�

t
)

. (9)

The first factor is solely determined by the supercurrent at
the tunnel junction and depends only on temperature. The
second, P(E), contribution depends on the bias voltage
leading to the linear conductance in the form

G(T) = ∂Is

∂V

∣∣∣∣
V=0

= πeE2
J (T)

�
× P′(T), (10)

with the temperature-dependent factors EJ (T) and P′(T)

that we will determine now separately.
The supercurrent through the S-I -N junction can be

found using the linear approximation of the Usadel
equation. We assume a quasi-one-dimensional S-N -I -S′
structure and find the solution of the Usadel equation in the
S-N part. The S-N system is coupled to a superconductor
S′ via a tunnel contact of resistance RT and the Josephson
energy yields

EJ (T) = hkBT
2e2RTr

∞∑

n=0

�(T)2
√

Eth
2ωn

[
ω2

n + �(T)2
]

sinh
(√

2ωn
Eth

) , (11)

where e is the elementary charge, and Eth = �D/L2 is the
Thouless energy and L as the length of the N wire. The S-N
interface itself is characterized by a dimensionless param-
eter r 
 1 [16,24] taking into account a finite transparency
of the interface. We use the following boundary conditions:
ξr∂xFωn |x=0 = −�(T)/

√
ω2

n + �(T)2 and ∂xFωn |x=L = 0,
where Fωn is the anomalous Green’s function of the prox-
imitized normal metal [14]. At high temperatures and for
long junctions, where Eth < kBT, one can make use of the
single-frequency approximation keeping only the first term
(n = 0) in the sum of Eq. (11) and arriving at

EJ (T) ≈ hkBT
e2RTr

LT

L
e−L/LT , (12)

where LT = √
�D/2πkBT is the so-called thermal coher-

ence length.
The second ingredient we need is the conductance

due to the EM environment coupled to the junction. We
deal with an infinite RC transmission line of κ � 1 and
assume that at higher temperatures we can approximate

coth(�ω/2kBT) ≈ 2kBT/�ω. The phase-phase correlation
function from Eq. (7) can be evaluated arriving at

J (t) ≈ −
√

κEC

[
4
3

kBT
( |t|

�

)3/2

+ i sgn(t)
( |t|

�

)1/2
]

.

(13)

The factor in the linear conductance then becomes

P′(T) = 2ei
π�2

∫ ∞

−∞
te4J (t)dt. (14)

The latter integral can be approximately evaluated employ-
ing the steepest descent method and we arrive at

P′(T) = e

2
√

2πE2
C

(
1
κ

)1/4 ( EC

kBT

)7/4

×
⎡
⎣1 − 1

2

(
π

8
− 4

3
√

2

√
EC

kBT
κ

)2⎤
⎦

× e−4/3
√

2
√

(EC/kBT)κ . (15)

Note the interesting observation that this expression has
a characteristic temperature scale given by κEC, which is
substantially smaller than the charging energy EC = 2e2/C
as is relevant for the experimental situation we have in
mind. Finally, combining Eqs. (11) or (12) and (15) the
conductance is given by (10).

V. ANALYSIS AND DISCUSSION OF THE DATA

The measured I -V characteristics like the ones shown in
Fig. 2 allow us to extract the temperature and length depen-
dences of different samples as shown in Fig. 5. Figure 5(a)
demonstrates the T dependence for seven different sam-
ples. The main feature of all these datasets is the increase
of Imax towards lower T in accordance with the prediction
of the theory. Yet, one can observe the saturation of Imax at
both high and low T. At high T, this is because of the emer-
gence of a thermal quasiparticle current. More interestingly
the current saturates below approximately 100 mK espe-
cially for samples with short L, a feature to be discussed
below. In Fig. 5(b) we extract Imax for different samples at
base T � 40 mK. In Fig. 5(b) we also include the theoreti-
cally calculated Imax, the maximum of Is, according to the
theory presented in the previous section. Assuming T = 40
mK, the calculation overestimates Imax by factor of about
3 [brown stars in Fig. 5(b)]. This is very natural basis of
overheating of the proximitized normal-metal lead at finite
bias voltage of about Vmax = 20 μV, which is the position
where the current is maximized. Quantitatively, writing
the heat balance equation ImaxVmax = �V(T5 − T5

0), where
� = 2 × 109 W K−5 m−3 is the electron-phonon coupling
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(a) (b)

FIG. 5. Peak current Imax of different measured samples. (a)
Temperature dependence of Imax for junctions with varying L.
(b) Base temperature values of Imax. The pink dots are extracted
from the measurements in (a). Star symbols are from theory: the
brown ones are calculated at T = 40 mK, while the blue ones
are those with actual overheated temperatures as explained in the
text. Dashed line Imax = 7.9 × 103L[nm]−1.25 pA is a fit through
experimental data.

constant of copper, V = 1 × 10−21 m3 is the volume of
the copper island [25,26], and T0 = 40 mK is the bath
(phonon) temperature, allows us to determine the temper-
ature for each thermometer at this bias point. We obtain
T = 125–215 mK for samples with L = 350–50 nm with
50-nm intervals, respectively. Repeating the calculation of
Imax at these temperatures for the corresponding samples,
we obtain a much better agreement with the measured val-
ues of Imax as shown by the blue star symbols in Fig. 5(b).
The message of this result and analysis is that it is very
important to perform a true zero-bias measurement to
avoid overheating. Applying even a very small bias leads
to severe self-heating of the thermometer.

Figure 6 shows a comparison between measured (cir-
cles) and theoretically predicted (solid lines) zero-bias
conductance in the tunnel contact for various lengths of
the junction. We obtain an excellent match at low T.
As mentioned earlier, due to the tunneling of thermal
quasiparticles into N , the thermometer eventually loses its
sensitivity at about 300 mK and the back-bending feature
appears in this crossover temperature range. The measured
zero-bias conductance in this figure shares a similar tem-
perature dependence to that of Imax in Fig. 5. There are
important properties worth discussing in these data. First,
the overall responsivity R of the thermometer improves
on decreasing the length L by one order of magnitude
when L shrinks from 350 to 50 nm. Second, unlike Imax in
Fig. 5, the responsivity is not lost even at base temperature;
instead the dependence remains more or less linear in T. It
is important to mention that the zero-bias conductance is
not obtained for exactly V = 0. It shows the averaged slope
of the I -V curves close to zero-bias voltage (V ≈ 4 μV)
in order to be close to the experimental procedure as G is
measured using the lock-in technique with a finite voltage
amplitude in the microvolt range.

FIG. 6. Comparison between measurement (circles) and
numerical calculations (solid lines) for zero-bias conductance
as a function of temperature. For the theory of junctions with
various normal-metal lengths L, we assume a charging energy
EC = 3.5�0 = 700 μeV, dS/(dN + dS) = 0.36, d2 = 120 nm,
d1 ∈ [46 nm, 63 nm], and RT ∈ [15 k�, 16.1 k�]. The junction
is assumed to be coupled to an infinite RC transmission line
characterized by κ = 0.0115 (see the text for the definition of
κ). The dashed lines correspond to the analytic formula based
on Eqs. (10), (12), and (15) with the following parameters:
κ = 0.007, RT = 15 k�, r = 9.2, EC = 3.5�0 = 700 μeV, d =
0.8ξ = 130 nm.

We can also use the analytic expression (10) to describe
the experiment. For that we take �0 = 200 μeV as the
energy gap of the superconductor at zero temperature,
EC = 3.5�0 = 700 μeV as the charging energy of the
junction, and ξ = √

�D/2�0 = 160 nm as the supercon-
ducting coherence length in the dirty limit. Since the
overlap geometry of the junction in the experiment is
approximated by a one-dimensional wire for the analytic
expression, we introduce an effective length of the junction
d + L, where the offset d is assumed to be of the order of
the overlap regions. The other parameters are κ = 0.007,
r = 9.2, RT = 15 k�, and d = 0.8ξ = 130 nm. For illus-
tration we present the curves calculated from the analytic
formula for two different lengths of the junction, L = 50
nm and L = 100 nm (dashed lines in Fig. 6). The value
r = 9.2 corresponds roughly to an average transparency of
the S-N interface of about 0.1 [16]. We observe that the
experimental data are well described by the analytic result,
except at the lowest temperature and for the shortest wire.

VI. CONCLUSIONS

We find experimentally that the sensitivity of the
S-N -I -S thermometer operated at zero-bias voltage can be
enhanced dramatically by bringing the S contact to the
very proximity of the tunnel junction, this way increasing
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the current through it. Specifically, we demonstrate that
the zero-bias conductance measurement outperforms a
standard I -V measurement by avoiding self-heating at
low temperatures. We develop a theoretical model based
on proximity superconductivity and dynamical Coulomb
blockade, which captures quantitatively the measured data
in their validity range. With this optimization, we increase
the responsivity of this thermometer by about one order
of magnitude compared to the initial realization of the
concept, making it suitable for continuous detection of
microwave quanta in the gigahertz range [11,27,28].
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