
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Karimi, Bayan; Pekola, Jukka P.
Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.124.170601

Published: 01/05/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Karimi, B., & Pekola, J. P. (2020). Quantum Trajectory Analysis of Single Microwave Photon Detection by
Nanocalorimetry. Physical Review Letters, 124(17), Article 170601.
https://doi.org/10.1103/PhysRevLett.124.170601

https://doi.org/10.1103/PhysRevLett.124.170601
https://doi.org/10.1103/PhysRevLett.124.170601


 

Quantum Trajectory Analysis of Single Microwave Photon Detection by Nanocalorimetry

Bayan Karimi 1 and Jukka P. Pekola 1,2

1QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science,
P.O. Box 13500, 00076 Aalto, Finland

2Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

(Received 7 January 2020; accepted 9 April 2020; published 29 April 2020)

We apply quantum trajectory techniques to analyze a realistic setup of a superconducting qubit coupled
to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to
be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the
expected outcomes (“clicks”) of a fluorescence measurement using the resistor as a nanocalorimeter. As the
main practical outcome, we present a model that predicts the time-domain response of a realistic
calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental
thermal fluctuations of the absorber and finite bandwidth of a thermometer.
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Quantum trajectories provide a way to predict the sto-
chastic behavior of an open quantum system experiencing
the subtle influence of the environment via a non-Hermitian
Hamiltonian, and jumps between eigenstates. Initially devel-
oped about 30 years ago as a computational aid [1–4], the
trajectories are nowadays routinely used for interpretation of
experiments even in modern macroscopic quantum systems
[5–11]. For instance, in the currently active field of quantum
thermodynamics, quantum trajectories provide an invaluable
tool to describe the stochastic thermodynamics properties of
open quantum systems [12–17]. In this Letter, we present an
analysis of an archetypical basic setup: a two-level system
(qubit) coupled to a heat bath. In particular, we take a
concrete system of a solid-state superconducting qubit [18]
and resistive environment forming an equilibrium heat bath,
which is readily realizable experimentally [19,20]. We focus
here on the expected outcomes of a fluorescence measure-
ment based on observing emitted and absorbed microwave
photons by a nanocalorimeter that presents a circuit reali-
zation of a photoreceiver discussed in general terms, e.g., in
Ref. [21]. We verify that the common interpretation of the
outcome of a projective measurement (“collapse”) is con-
sistent with the analysis of our system based on quantum
jump trajectories. We present a stochastic simulation of the
output of this detector in the presence of qubit-calorimeter
interaction and coupling of the calorimeter to the phonon
heat bath including thermal noise on the detector. This
analysis illustrates the feasibility of such an experiment
under realistic conditions and its potential to detect not only
the arrival times but also the energies of the quanta in a
continuous measurement in the challenging regime of
microwave photons.
We consider a qubit coupled to a heat bath as schemati-

cally shown in the inset of Fig. 1(a). The stochastic wave
function of this system,
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FIG. 1. Two-level system (qubit) coupled to a heat bath, shown
in the inset. (a) Time evolution of the qubit initially prepared in
the state jψð0Þi when coupled to zero temperature bath. We
assume jhejψð0Þij2 ¼ 0.9. The red dashed line indicates the time
dependence of jhejψðtÞij2 when there is no jump. In general,
jhejψðtÞij2 follows the red dashed line until the stochastic jump
occurs. We also present ρeeðtÞ and J̄eeðtÞ, an estimate of

JeeðtÞ ¼ jhejψðtÞij2, by averaging 100 trajectories. These two
curves are almost identical apart from small fluctuations of the
latter one due to the finite averaging. (b) Same as (a) at finite
temperature βℏωQ ¼ 0.5. J̄eeðtÞ is averaged in this case over 105

realizations, making it practically equal to ρeeðtÞ. Pno-jumpðtÞ
[Eq. (4)] shows double-exponential decay.
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jψðtÞi ¼ aðtÞjgi þ bðtÞjei; ð1Þ

is written in the basis of the ground jgi and excited jei
states. The non-Hermitian Hamiltonian of the system is

H ¼ HS −
iℏ
2
Γ↓jeihej −

iℏ
2
Γ↑jgihgj: ð2Þ

Here HS ¼ − 1
2
ℏωQσz in the fjgi; jeig basis is the bare

Hamiltonian of the qubit with ℏωQ the energy level spacing
of it and σz the z component of the Pauli matrix. Γ↑;↓ are the
excitation and relaxation rates of the qubit, whose precise
forms will be obtained later via the master equation (ME).
When no jump occurs the wave function evolves as
jψ ð0Þðtþ dtÞi ¼ ½1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − dp
p Þ�½1 − ðidt=ℏÞH�jψðtÞi, with

dp ¼ dp↑ þ dp↓, where dp↓ ¼ Γ↓jbðtÞj2dt is the proba-
bility that the jump occurs down to jgi in a short time
interval dt, and correspondingly, dp↑ ¼ Γ↑jaðtÞj2dt is
the probability to jump up to jei [1]. For no-jump
trajectories we thus have _aðtÞ ¼ 1

2
ΔΓaðtÞjbðtÞj2 and _bðtÞ ¼

− 1
2
ΔΓbðtÞjaðtÞj2, where ΔΓ≡ Γ↓ − Γ↑.
Our exemplary protocol drives the two-level system

initially into the superposition jψð0Þi¼að0Þjgiþbð0Þjei
whereafter it is let to evolve freely though coupled to the
bath. Based on the equations above we have

jaðtÞj2 ¼ jað0Þj2e−Γ↑t=Pno-jumpðtÞ;
jbðtÞj2 ¼ jbð0Þj2e−Γ↓t=Pno-jumpðtÞ: ð3Þ

Here Pno-jumpðtÞ ¼ e−
R

t

0
ðΓ↓jbðt0Þj2þΓ↑jaðt0Þj2Þdt0 is the probabil-

ity that no jump occurs until time t:

Pno-jumpðtÞ ¼ jað0Þj2e−Γ↑t þ jbð0Þj2e−Γ↓t: ð4Þ

It satisfies the two conditions Pno-jumpð0Þ ¼ 1 and
Pno−jumpð∞Þ ¼ 0, the latter meaning that jump takes place
eventually, as shown in Fig. 1(b).
In literature on quantum optics, the jumps are typically

given by dissipators related to Lindblad-type master equa-
tions [2,22], without explicit relation to the concrete bath.
On the contrary, here in our system, we can make reference
to the actual setup and obtain the relevant rates Γ↑;↓ given
by the circuit and the well-defined bath that it is coupled to.
In order to find the expression for these transition rates and
the population of the eigenstates in time, we derive the ME
for this system. In the standard weak-coupling theory, the
total Hamiltonian can be written as

Htot ¼ HS þ VðtÞ þHB; ð5Þ

where HB is the Hamiltonian of the bath and VðtÞ is the
coupling energy between the system and the bath.

For the perturbation, we assume that it is produced by a
resistor R (Fig. 2) forming the immediate bath of the qubit,
and we take linear coupling as VðtÞ ¼ AXnðtÞ, where A is
an operator of the system and XnðtÞ is the noise of the
resistor. As in this figure, depending on the configuration
(current or voltage biasing) one can choose either VðtÞ ¼
ΦinðtÞ or VðtÞ ¼ qvnðtÞ, where ΦðqÞ is the phase (charge)
operator and inðtÞ [ðvnðtÞ] denotes the current (voltage)
noise. Without loss of generality we take the first option:
the final results will be identical for the two possible
choices with the proper definition of the quality factor of
the system. We have for the system density matrix ρðtÞ in
the interaction picture,

_ρðtÞ¼−
1

ℏ2

Z
t

−∞
TrBf½½ρðtÞ⊗ρB;VIðt0Þ�;VIðtÞ�gdt0; ð6Þ

where VIðtÞ ¼ eiHSt=ℏVðtÞe−iHSt=ℏ, ρB is the density matrix
of the bath, and TrB denotes trace over it. The diagonal and
off-diagonal elements of the master equation, ρgg and ρge,
respectively, are then given by

_ρggðtÞ¼−ΓΣρggðtÞþΓ↓; _ρgeðtÞ¼−
1

2
ΓΣρgeðtÞ; ð7Þ

with ΓΣ ¼ Γ↓ þ Γ↑. In accordance with this analysis the
rates obey the Fermi golden rule expressions:

Γ↓;↑ ¼ 1

ℏ2
jhgjΦjeij2Sið�ωQÞ: ð8Þ

Here the noise spectral density of current is given by
Sið�ωÞ ¼ 2R−1ℏω=ð1 − e−βℏωÞ at angular frequency ω.
Note that this noise that governs the transition rates is
determined by the temperature T ¼ 1=ðkBβÞ of the
absorber, which may vary in time since we assume that
this absorber is a mesoscopic bath coupled to the real
“superbath” [23] at a constant temperature T0. For a qubit
that can be approximated by an LC resonator, we can
express the phase operator as Φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏZ0=2
p ðâþ â†Þ,

where Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LJ=CJ

p
, with LJ and CJ the (Josephson)

inductance and capacitance of the qubit, and â ¼ jgihej.
We obtain for the transition rates

FIG. 2. A qubit coupled to a heat bath shown as a resistor R.
Depending on the design of the circuit and operating regime, we
consider it as a voltage or current source of thermal noise.
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Γ↓ ¼ 1

Q
ωQ

1 − e−βℏωQ
; Γ↑ ¼ 1

Q
ωQ

eβℏωQ−1
; ð9Þ

where the dependence on the specific setup comes only
via the quality factor Q ¼ Z0=R. The transition rates obey
the detailed balance condition, Γ↑ ¼ e−βℏωQΓ↓. To further
connect the results with a concrete circuit, we note that the
quality factor relates to the standard T1 relaxation time of
the qubit by T1 ¼ Q=ωQ at low temperature [18]. As a
sanity check, we return to the stochastic wave function and
calculate the quantity Jðtþ dtÞ≡ jψðtþ dtÞihψðtþ dtÞj,
the average over many trajectories, which is expected to
mimic the density matrix. For this system,

Jðtþ dtÞ ¼ ð1 − dpÞjψ ð0Þðtþ dtÞihψ ð0Þðtþ dtÞj
þ dp↓jgihgj þ dp↑jeihej:

We then have by a straightforward calculation:

_JggðtÞ¼−ΓΣJggðtÞþΓ↓; _JgeðtÞ¼−
1

2
ΓΣJgeðtÞ: ð10Þ

As expected, Eqs. (7) and (10) are identical by interchang-
ing J for ρ.
Figure 1 summarizes the results presented up to now

with given parameters. In Fig. 1(a), with T ¼ 0, the dashed
red line presents the no-jump evolution of jbðtÞj2 and the
abrupt transitions down indicate the stochastic quantum
jumps to the ground state according to Monte Carlo
simulations. In these simulations the jump probabilities
are determined by dp↓, as described above. The two other
overlapping lines are from averaging jhejψðtÞij2 over 100
trajectories, yielding an estimate of JeeðtÞ, and ρeeðtÞ from
the presented ME. In Fig. 1(b), similar quantities (same
colors) are shown at a finite bath temperature, demonstrat-
ing jumps also to the excited state, yielding a nonvanishing
ρeeðtÞwhen t → ∞. Let us next apply the obtained concrete
framework to the actual calorimetric measurement.
Bath (absorber) as the measuring device (detector).—

The temperature of the absorber T is the quantity that we
monitor (fluorescence measurement). We assume that the
detector is able to tell whether a photon is absorbed or
emitted based on the temperature change due to such an
event. This is possible if the resistor is a finite-size absorber
that is only weakly coupled to an infinite bath. From the
practical measurement point of view we adopt the philoso-
phy that following the “state” of the many-body detector,
the resistor, in our case by measuring its temperature by a
local noninvasive thermometer [24], we do not influence
the stochastic trajectories of the system, as argued in
Ref. [21]. Also, we ignore the fact that the transition rates
are influenced by the variations of the instantaneous T of
the absorber. We focus now on the measurement of the first,
i.e., the “guardian” photon after the two-level system is
prepared in the general superposition of Eq. (1) at t ¼ 0.

The probability that this photon is absorbed by the detector
(“click up”), corresponding to the transition ↓ of the qubit,
is given by

Pclick up ¼
Z

∞

0

Pno-jumpðt0Þ
dp↓ðt0Þ
dt0

dt0 ¼ jhejψð0Þij2: ð11Þ

By the same argument, we would then obtain that the first
photon is emitted by the detector with the probability
Pclick down ¼ jhgjψð0Þij2. We note the following. (i) These
results hold for any temperature of the absorber. (ii) The
arrival time of the guardian photon is stochastic. (iii) It is
natural that only the first photon plays a role here, since the
next one probes the state of the system after the previous
jump and so on.
Energy uncertainty.—The average hEi and the variance

hδE2i ¼ hE2i − hEi2 of the initial state jψð0Þi are

hEi ¼ ℏωQ

2
½1 − 2jhgjψð0Þij2�;

hδE2i ¼ ðℏωQÞ2jhgjψð0Þij2½1 − jhgjψð0Þij2�; ð12Þ

assuming eigenenergies Ee ¼ þℏωQ=2 and Eg¼−ℏωQ=2.
We now compare expressions of Eq. (12) with the meas-
urement outcome. We prepare the system N times to the
state of Eq. (1), and measure the guardian photon each time.
Assigning Ng to be the number of observed click downs
and Ne the number of click ups, we have the expectation
values for large N as follows:

hEi ¼ Ng

N
Eg þ

Ne

N
Ee;

hδE2i ¼ Ng

N
E2
g þ

Ne

N
E2
e −

�
Ng

N
Eg þ

Ne

N
Ee

�
2

: ð13Þ

Based on the previous discussion, Ng=N ¼ Pclick down ¼
jhgjψð0Þij2 and Ne=N ¼ Pclick up ¼ jhejψð0Þij2. Inserting
these results into Eq. (13), we again obtain Eq. (12), but
now the “quantum uncertainty” of the initial state is
transformed into statistical variance in the measurement
results.
Temperature response of the absorber.—Based on our

detecting scheme depicted in the inset of Fig. 3, we can
write the Langevin equation for the temperature of the
absorber for small variations δT ¼ T − T0 as

Cδ _TðtÞ ¼ −GthδTðtÞ þ δ _QðtÞ; ð14Þ

where C and Gth are the heat capacity of the absorber
and the thermal conductance to the superbath, respectively,
and δ _QðtÞ is the instantaneous heat current on the absorber.
The noise of the average heat current in this regime,
δ _QavðtÞ ¼ ð1=ΔtÞ R tþΔt=2

t−Δt=2 dt0δ _Qðt0Þ, over time interval Δt
is obtained as
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hδ _Q2
avðtÞi ¼ S _Qð0Þ=Δt; ð15Þ

where the low frequency spectral density is, according
to the fluctuation dissipation theorem [25,26] S _Qð0Þ¼R
dt0hδ _Qðt0Þδ _Qðt00Þi¼2kBT2

0Gth in equilibrium. Introducing
dimensionless time u ¼ t=τwith τ ¼ C=Gth the thermal time
constant and discretizing it in steps Δu ¼ Δt=τ leads to a
coarse grained version of Eq. (14) as

δTðuþΔuÞ¼ð1−ΔuÞδTðuÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT2

0

C

r
ξðuÞ

ffiffiffiffiffiffiffi
Δu

p
: ð16Þ

Here, we have normalized the noise as δ _QavðuÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ _Q2

avi
q

ξðuÞ, where ξðuÞ has a Gaussian distribution with

unit width PðξÞ ¼ ð1= ffiffiffiffiffiffi
2π

p Þ expð−ξ2=2Þ. The obtained
results are not expected to depend explicitly on the value
of the time step as long as Δt ≪ τ.
Equation (16) forms the basis of Monte Carlo simula-

tions of temperature history of the absorber with ξðuÞ as the
Gaussian distributed stochastic variable. On top of this

evolution we add in Eq. (14) the effect of stochastic energy
absorption events δ _QðtÞ ¼ �ℏωQδðt − tiÞ at the time ti
of each quantum jump causing a sudden temperature
change of the absorber with magnitude ΔT ¼ �ℏωQ=C,
where þ (−) refers to a qubit making a transition to jgi
(jei). For low T only the former transitions occur, as in
Fig. 1(a). For numerical simulations (Fig. 3), we assume a
microwave photon with ℏωQ ¼ kB × 1 K ¼ h × 20 GHz
energy, a constant heat capacity C=kB ¼ 100 of the
absorber, which is consistent with C ¼ γVT0, where
γ ∼ 100 Jm−3K−2 for a typical metal, V ¼ ð0.1 μmÞ3,
T0 ¼ 10 mK, and Δt ¼ 0.01τ. These numbers are based
on assuming a superconducting qubit and a metallic resistor
formed of the Fermi gas of about 108 electrons with fast
internal relaxation and weak coupling to the superbath via
electron-phonon interaction, which are all experimentally
feasible [24,27,29]. We see in Fig. 3 that the signal-to-noise
ratio for observing such a photon is about 10 under these
conditions (top panel), which is consistent with our earlier
estimates [27]. The time trace of the lower panel is a
reference with no photon absorption.
To model the actual temperature probe, we incorporate in

the analysis its finite bandwidth. We do this by para-
metrizing it using a response time τth, such that the
measured temperature θðtÞ follows the actual temperature
TðtÞ calculated above via

_θðtÞ ¼ −τ−1th ½θðtÞ − δTðtÞ�: ð17Þ

Then with the time step Δu we obtain

θðuþ ΔuÞ ¼ θðuÞ − τ

τth
½θðuÞ − δTðuÞ�Δu: ð18Þ

Naturally, for τ=τth ≫ 1, θðuÞ ≃ TðuÞ, i.e., the thermometer
follows the actual temperature, and for τ=τth ≪ 1,
θðuÞ ¼ const, meaning that it does not respond to the
changes of T. Figure 3 shows numerical results of θðtÞ with
a few values of τ=τth. If one were to consider the noise of
the thermometer itself, one could add a Langevin term to
Eq. (17) with proper noise characteristics, but we feel
including this would be beyond the scope of this Letter in
the absence of actual experimental data. Finally, we note
that the results can be generalized to calorimetric fluores-
cence detection acting on an arbitrary quantum system. In
particular, the measurement of single emitted photons as
described in the previous paragraph and in Fig. 3 stays
unaltered. The calorimeter thus presents a continuously
operating detector capable of registering the clicks due to
single photon events, with the additional bonus of being
able to measure (linearly) the energy of the quanta.
In summary, we have presented a model for a calori-

metric fluorescence measurement of an open quantum
system based on the stochastic quantum trajectory theory.
We demonstrate explicitly that quantum thermodynamic
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FIG. 3. Expected response of a calorimeter. Time traces of
absorber temperature based on qubit dynamics shown in
Fig. 1(a). In the simulations we use ℏωQ=kBT0 ¼ 100 and
C=kB ¼ 100. These parameters are for a copper absorber of
ð0.1 μmÞ3 volume and T0 ¼ 0.01 K, which are realistic based on
recent experiments [27,28]. In the top panel, a jump occurs at
t ≈ τ, clearly exceeding the noise level of equilibrium fluctuations
(see text). In the lower panel, no jump occurs in this time interval.
The black solid lines show the exact absorber temperature for one
realization of the experiment, and the red lines are outcomes of a
noiseless measurement with three different response times τth of
the thermometer. Inset: Model of the measurement setup.
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measurements of superconducting circuits are possible
down to single quantum level with a realistic continuously
operating wideband detector at a sufficiently low
temperature.
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