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Time-varying quasi-closed-phase analysis for
accurate formant tracking in speech signals

Dhananjaya Gowda (Member, IEEE), Sudarsana Reddy Kadiri∗ (Member, IEEE), Brad Story, and
Paavo Alku (Fellow, IEEE)

Abstract— In this paper, we propose a new method for the
accurate estimation and tracking of formants in speech signals
using time-varying quasi-closed-phase (TVQCP) analysis. Con-
ventional formant tracking methods typically adopt a two-stage
estimate-and-track strategy wherein an initial set of formant
candidates are estimated using short-time analysis (e.g., 10–50
ms), followed by a tracking stage based on dynamic programming
or a linear state-space model. One of the main disadvantages of
these approaches is that the tracking stage, however good it may
be, cannot improve upon the formant estimation accuracy of
the first stage. The proposed TVQCP method provides a single-
stage formant tracking that combines the estimation and tracking
stages into one. TVQCP analysis combines three approaches to
improve formant estimation and tracking: (1) it uses temporally
weighted quasi-closed-phase analysis to derive closed-phase es-
timates of the vocal tract with reduced interference from the
excitation source, (2) it increases the residual sparsity by using
the L1 optimization and (3) it uses time-varying linear prediction
analysis over long time windows (e.g., 100–200 ms) to impose
a continuity constraint on the vocal tract model and hence on
the formant trajectories. Formant tracking experiments with a
wide variety of synthetic and natural speech signals show that
the proposed TVQCP method performs better than conventional
and popular formant tracking tools, such as Wavesurfer and
Praat (based on dynamic programming), the KARMA algorithm
(based on Kalman filtering), and DeepFormants (based on deep
neural networks trained in a supervised manner).

Index Terms— Time-varying linear prediction, weighted linear
prediction, quasi-closed-phase analysis, formant tracking.

I. INTRODUCTION

Vocal tract resonances (VTRs), commonly referred to as
formant frequencies, are speech parameters that are of fun-
damental importance in all areas of speech science and tech-
nology. The estimation and tracking of VTRs from speech
signals is a challenging problem that has many applications
in various areas: in acoustic and phonetic analysis [1], [2], in
voice morphing [3], in speech recognition [4], [5], in speech
and singing voice synthesis [6], [7], in voice activity detection
[8], and in designing hearing aids [9], [10]. Many algorithms
of varying complexity have been proposed in the literature
for tracking formants in speech signals [11]–[15]. A dynamic
programming (DP)–based tracking algorithm with a heuristic
cost function on the initial formant candidates estimated using
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conventional linear prediction (LP) analysis was used in [11],
[12]. This two-stage approach has a detection stage, where an
initial estimate of the VTRs is obtained, followed by a tracking
stage. An integrated approach towards tracking was adopted in
[13]–[15] using state-space methods such as Kalman filtering
(KF) and the factorial hidden Markov model (FHMM). In both
approaches, analysis of the signal for the accurate estimation
(or modeling) of the vocal tract system is an important
and necessary computational block. However, it should be
mentioned here that there are a few exceptions, such as
[15], which uses a non-negative matrix factorization (NMF)–
based source-filter modeling of speech signals. Recently, deep
learning–based techniques [16]–[18] have also been studied as
alternatives to conventional statistical signal processing–based
formant estimation and tracking methods. These methods,
however, are based on supervised machine learning, which
calls for having annotated speech corpora with which to obtain
the ground truth formant frequencies for system training.

LP analysis is one of the most widely used methods for
estimating VTRs from speech signals [19]–[21]. To improve
the accuracy of LP, several variants of this all-pole spectral
modeling method have been proposed [22]. Among the dif-
ferent modifications, autocorrelation and covariance analyses
are the most popular LP methods in formant estimation and
tracking [11], [12]. Covariance analysis is known to give more
accurate formant estimates than autocorrelation analysis, but
the stability of the resulting all-pole filter is not guaranteed in
covariance analysis [21], [23]. Even though the filter instability
must be avoided in applications where the signal needs to
be reconstructed (such as speech synthesis and coding), the
instability in itself is not a serious problem in formant tracking.
Compared to covariance analysis, closed-phase analysis is
known to provide even more accurate VTR estimates by
avoiding the open-phase regions of the glottal cycle, which are
influenced by the coupling of the vocal tract with the trachea
[24], [25]. Closed-phase analysis, however, works better for
utterances such as those of low-pitched male voices, which
have more samples in the closed phase of the glottal cycle
compared to high-pitched female and child voices that might
have just a few closed-phase samples per glottal cycle.

As a remedy for the lack of data samples in formant
estimation, a selective prediction of speech samples can be
conducted in spectral modeling. A sample-selective prediction
is used in weighted linear prediction (WLP) methods by
giving different temporal weighting to the prediction error
at each discrete time instant [26]–[33]. One such method,
called sample selective linear prediction (SSLP) analysis, was
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proposed in [26] for better modeling of the vocal tract area
function. In SSLP, a hard rejecting weighting function is used
to eliminate outlier samples in sample selection. A more
generalized WLP algorithm was developed in [27] with a
continuous weighting function for the prediction residual. In
[28], an iterative LP algorithm, robust linear prediction was
proposed by utilizing the non-Gaussian nature of the excitation
signal to derive a temporal weighting function based on the
magnitude of the residual samples.

To improve the robustness of linear predictive spectrum
estimation, a simple non-iterative WLP method was studied in
[29] based on the short-time energy (STE) weighting function.
The STE weighting function is a temporal energy function that
is computed, for example, in 1–2 ms frames of the speech
signal waveform. The STE weighting function emphasizes
the importance of the high-energy regions within a glottal
cycle in computing the autocorrelation (or covariance) matrix.
Therefore, this WLP method is similar to closed-phase LP
analysis because the high-energy sections of voiced speech
emphasized by the STE weighting correspond roughly to
glottal closed-phase regions. Since the publication of WLP
in [29], several variants of this all-pole modeling method
have been developed and used, for example, in the robust
feature extraction of speech [29], [31] and in glottal inverse
filtering (GIF) [33], [34]. Some of these more recent WLP
algorithms have also addressed the stability of the all-pole
filter [30], [32]. In [32], a new weighting function, called
the attenuated main excitation (AME) window, was studied
to improve the accuracy of formant estimation, especially
for high-pitched voices. The AME function is designed to
attenuate the effect of prominent speech samples in the vicinity
of the glottal closure instants (GCIs) on the autocorrelation
function. This is justified because these high-energy speech
samples are greatly contributed to by the glottal source, which
results in distortion of the formant estimates by the biasing
effect of the glottal source. As a sequel to using AME as a
temporal weighting function in WLP, the quasi-closed-phase
(QCP) analysis of speech signals was proposed in [33] for
the estimation of glottal flow with GIF. QCP analysis uses
a more generalized version of the AME weighting function,
for example, with slanted edges instead of vertical ones. In
addition, the weighting function of QCP analysis puts more
emphasis on the closed-phase regions compared to the open-
phase regions that are prone to subglottal coupling. However,
the previous experiments with QCP analysis in [33] focused
solely on GIF analysis of the voice source, without any
evaluation of the QCP algorithm’s performance in formant
detection and estimation.

The spectral modeling of speech is conducted using con-
ventional LP in short-time segments (5–50 ms) by assuming
speech to be a quasi-stationary process [21]. This traditional
short-time analysis models the real, continuously varying
human vocal tract system in a piecewise manner. In addition,
the conventional methods based on short-time LP analysis
typically use a two-stage detect-and-track approach in tracking
formants [11], [12]. It should be noted that even those formant
tracking methods that directly track formants from the cepstral
coefficients use this piecewise approximation of the vocal tract

system [13], [14]. In order to take into account the inherent
slowness of the real human vocal tract (i.e., the system being
inertial), time-varying linear prediction (TVLP) provides an
attractive method that models the vocal tract over longer time-
spans by defining the model parameters as a function of time
by using selected, low-order basis functions [35]–[37].

The solution to conventional LP involves minimizing the L2

norm of the prediction error signal, the residual, with an inher-
ent assumption that the excitation source signal is a Gaussian
process [22], [38]. Based on the theory of compressed sensing,
sparsity constraints can be used to utilize the super Gaussian
nature of the excitation signal [39], [40]. This is achieved by
approximating a non-convex L0 norm optimization problem
by using a more tractable convex L1 norm optimization [39].
In addition, it was shown in [40] that an iterative reweighted
minimization of the norm can achieve increased sparsity of
the error signal, which yields a solution closer to L0 norm
optimization.

In this article, we propose a new time-varying quasi-closed-
phase (TVQCP) linear prediction analysis of speech for accu-
rate modeling and tracking of VTRs. The proposed method
aims to improve the estimation and tracking of formants
by combining three different ideas: QCP analysis, increased
sparsity of the error signal and time-varying filtering. To the
best of our knowledge, this combination has not been studied
before in formant estimation and tracking and is justified as
follows. First, in order to reduce the effect of the glottal source
in formant estimation, it is justified to take advantage of QCP
analysis to temporally weight the prediction error, which has
been shown to improve the estimation of the vocal tract in
voice source analysis [33], [34]. Second, filter optimization
in previous QCP studies has been conducted using the L2

norm which is known to result in less sparse residuals.
Therefore, in order to further enhance the performance of
temporal weighting, it is justified to increase the sparsity of
the residual in QCP analysis by using the L1 norm. Third, in
order to take into account the fact that the natural human vocal
tract is a slowly varying physiological system, we argue that
formant tracking can be further improved by implementing the
proposed L1 norm -based QCP analysis using time-varying
filtering. A preliminary investigation of TVQCP for formant
tracking was published in a conference paper in [41]. In the
current study, our preliminary experiments reported in [41]
are expanded in many ways by, for example, including a larger
number of evaluation datasets and a larger number of reference
methods. In summary, the contributions of the current study
are as follows.

• Combining the ideas of QCP analysis, L1 norm opti-
mization and TVLP analysis to create a new formant
estimation and tracking method, TVQCP.

• Studying the advantages of sparsity by comparing the L1

and L2 norm optimization in TVQCP.
• Analysing the effects of the different parameters in

TVQCP.
• Studying the formant tracking performance of TVQCP

using synthetic vowels of varying fundamental frequency
values and phonation types, using high-pitched child
speech simulated with a physical modeling approach, and
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using natural speech.
• Comparing TVQCP with popular formant tracking meth-

ods (Wavesurfer, Praat and KARMA) and with a recently
proposed deep neural network -based method (DeepFor-
mants) that is based on supervised learning.

• Studying the noise robustness of TVQCP for different
noise types and signal-to-noise ratio (SNR) scenarios.

In the following two sections, the optimization of the
TVQCP model is described by first presenting the time-
invariant (i.e., stationary) QCP analysis in Section II as
background information. After this, the TVQCP (i.e., non-
stationary QCP) analysis is presented in Section III. Formant
tracking experiments are reported in Section IV and conclu-
sions are drawn in Section V.

II. QUASI-CLOSED-PHASE ANALYSIS

QCP analysis belongs to the family of temporally weighted
LP methods with a specially designed weighting function
based on the knowledge of GCIs [33]. An overview of WLP
and the design of the QCP weighting function is given in this
section.

A. Weighted linear prediction

In conventional LP, the current speech sample x[n] is
predicted based on the past p speech samples as

x̂[n] = −
p∑

k=1

akx[n− k], (1)

where {ak}pk=0 with a0 = 1 denote the prediction coefficients
and p is the prediction order. Let us denote the estimated
transfer function of the vocal tract system as H(z) = 1/A(z),
where A(z) is the z−transform of the prediction coefficients
{ak}pk=0. The optimal prediction coefficients minimize the
overall prediction error given by the cost function

E =
∑
n

e2[n], (2)

where e[n] = x[n]− x̂[n] is the sample-wise prediction error,
the residual. The optimal prediction coefficients are computed
by minimizing the cost function (∂E/∂ai = 0, 1 ≤ i ≤ p),
which results in the following normal equations

p∑
k=1

ri,kak = −ri,0, 1 ≤ i ≤ p, (3)

where ri,k =
∑
n

x[n− i]x[n− k]. (4)

In the above formulation, it can be seen that the prediction
error is minimized in the least-square sense by having equal
temporal weighting for every sample. However, in WLP, a
different (positive) weighting value is imposed on each squared
residual sample, resulting in the following WLP cost function

Ew =
∑
n

w[n]e2[n], (5)

where w[n] denotes the weighting function on the sample-wise
prediction error e[n]. It should be noted that the weighting in

WLP methods is on the error signal and should not be confused
with the traditional short-time windowing (e.g., Hamming) of
the speech signal that is used for reducing truncation effects in
spectral analysis. The prediction coefficients can be computed
in a similar way to that of conventional LP by minimizing the
cost function (∂Ew/∂ai = 0, 1 ≤ i ≤ p) and solving the
resulting normal equations

p∑
k=1

bi,kak = −bi,0, 1 ≤ i ≤ p, (6)

where bi,k =
∑
n

w[n]x[n− i]x[n− k]. (7)

B. The choice of weighting function

As mentioned earlier in Section I, several weighting func-
tions have been proposed for WLP. STE is one of the popular
weighting functions used in WLP, and it is demonstrated in
Fig. 1. The figure shows an example of a vowel utterance,
an electroglottography (EGG) signal, and the derivative of
the EGG signal (dEGG), along with rough markings for the
closed phases and open phases. The STE weighting function
is computed as

w[n] =

(D+M)∑
k=(D+1)

x2[n− k], (8)

where the delay parameter D controls the peak position (or
emphasis) of the weighting function within the glottal cycle
and the length parameter M controls the peak width, as well
as the dynamic range and smoothness of the function. Typical
values for these two parameters are D = 0 and M = 12, the
latter corresponding to 1.5 ms at an 8 kHz sampling rate. It can
be seen that the STE function puts more weighting to the high-
energy closed-phase regions of the glottal cycle. However,
Fig. 1 also demonstrates that the degree of suppression in both
the glottal open phase and at the instant of the main excitation
depends on the decay of the speech signal waveform within
the glottal cycle. Therefore, the STE weighting function does
not necessarily suppress these regions completely. The effect
of this problem of the STE weighting function was studied
in our previous study on formant estimation of high-pitched
vowels [32]. This previous study indicated that by changing
the weighting function from STE to AME resulted in a clear
improvement in formant estimation accuracy particularly for
the first formant for which the average estimation accuracy
improved by almost 10 percentage units.

A weighting function based on the residual signal energy
can also be used. Fig. 1 shows a residual weighting function
derived by inverting and normalizing (between 0 to 1) a
zero-mean residual energy signal, computed similar to the
STE function. As can be seen from the figure, the residual
weighting function may not suppress some weaker glottal
excitations (at around 25 ms) as well as the stronger ones. This
effect can be more pronounced in the vowel beginning and
ending frames with a highly transient signal energy. Also, the
residual weighting function may not effectively down-weight
the contributions from the open-phase regions of the glottal
cycle. A QCP weighting function derived from knowledge of
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Fig. 1. An illustration of different weighting functions for use in WLP: (a)
the speech signal (the solid line) and the short-time energy (STE) weighting
function (the dashed line); (b) the LP residual (the solid line) and the weighting
function (the dashed line) derived from the residual; and (c) EGG (the solid
blue line), dEGG (the solid black line), and three different weighting functions:
speech signal–based STE weighting (the dashed red line), residual based
weighting (the dashed pink line), and QCP weighting (the dashed black line).

GCIs is also shown in Fig. 1. It can be seen that this weighting
function emphasizes the closed-phase region of the glottal
cycle, while at the same time the function de-emphasizes the
region immediately after the main excitation as well as the
open-phase region.

C. Quasi-closed-phase weighting function

An example of the QCP weighting function wn is shown
in Fig. 2, along with the Liljencrants-Fant (LF) glottal flow
derivative waveform un for about one glottal cycle. The QCP
weighting function can be expressed with three parameters: the
position quotient (PQ = tp/T0), the duration quotient (DQ =
td/T0), and ramp duration tr, where T0 is the time-length of
the glottal cycle. In order to avoid possible singularities in the
weighted correlation matrix given in Eq. (6), a small positive
value, dw = 10−5, is used (instead of zero) as the minimum
value in the weighting function.

The parameters of the QCP weighting function were opti-
mized in [33] using a set of about 65000 LF-excited synthetic
vowels of different phonation types and different fundamental
frequency values. Rather than aiming at a generic optimal
weighting function, the optimization procedure adopted in
[33] was based on using a simple, pre-defined waveform
depicted in Fig. 2 whose parameters were optimized in a grid
search. For more details about the optimization procedure, the
reader is referred to Section IV.A in [33]. The optimization
procedure reported in [33] gave both fixed QCP parameters
and parameters where one of the values (DQ) was pitch-
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Fig. 2. The design of the quasi-closed-phase (QCP) weighting function wn

(the dotted line), along with the LF glottal flow derivative signal un (the solid
line) for about one glottal cycle.

adaptive. In the current study, we used the pitch-adaptive
QCP parameters of [33] and the values of the two fixed
parameters were as follows: PQ=0.05 and tr=0.375 ms (which
corresponds to Nramp=3 samples using the notation of [33]).
DQ was varied between 0.5 and 0.9 (as will be reported in
Section IV-E.4) and was set to DQ=0.8.

Using the QCP function as a temporal weighting waveform
in WLP provides two distinct advantages when compared to
conventional LP (i.e., giving equal weighting to all squared
residual samples) or conventional WLP (i.e., weighting is
given using the STE function). The first advantage is that the
emphasis of the QCP weighting function is on the closed phase
region, which provides more accurate modeling of the vocal
tract by reducing the effect of coupling between subglottal and
supraglottal cavities. The second is that the QCP weighting de-
emphasizes the region immediately after the main excitation
of the vocal tract, which reduces the biasing effect of the
glottal source in the modeling of VTRs. De-emphasizing the
main excitation can also be justified from the observation that
this region typically shows large prediction errors that become
increasingly dominant with short pitch periods. QCP analysis
has previously been shown to be effective in estimating the
voice source with GIF [33].

III. TIME-VARYING QUASI-CLOSED-PHASE ANALYSIS

The spectral estimation and tracking method proposed in
this study, TVQCP analysis, combines the ideas of sample
selective prediction (i.e., the underlying idea of QCP), sparsity
of the prediction error, and long-time nonstationary analysis of
the vocal tract system (i.e., the underlying idea of TVLP). In
the following, the normal equations of the proposed TVQCP
analysis are derived by starting from conventional LP. Note
that the optimization schemes in Section II all used the L2

norm of the error signal whereas this section uses more general
optimization norms.

A. Linear prediction

In conventional LP, the current sample x[n] is predicted
according to Eq. (1) as a linear weighted sum of the past p
samples. By denoting the window size as N , the predictor
coefficients can be estimated as a solution to the convex
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optimization problem of generic norm Lm given by

â = arg min
a

||x−Xa||mm, (9)

where x = [x[0], x[1], . . . , x[N − 1]]T
N×1

, (10)

a = [a1, a2, . . . , ap]T
p×1

, (11)

X = [X0, X1, . . . , XN−1]T
N×p

, and (12)

Xn = [x[n− 1], . . . , x[n− p]]T
p×1

. (13)

The minimization of the L2 norm of the residual leads to the
least square solution of conventional LP. However, imposing a
sparsity constraint on the residual provides better modeling of
both the excitation and vocal tract system. This is achieved
by minimizing the L1 norm of the residual instead of its
L2 norm. This change in the optimization norm is known
to give a convex approximation of the solution to the L0

norm optimization problem, also referred to as sparse linear
prediction (SLP) [39], [40].

B. Weighted linear prediction

WLP analysis uses sample-selective prediction and gives
differential emphasis to different regions of the speech signal
within a glottal cycle (as discussed earlier in Section II-
A). Using a generic Lm norm, WLP can be expressed by
minimizing the weighted error signal given by

â = arg min
a

W ||x−Xa||mm, (14)

where WN×N is a diagonal matrix with its diagonal elements
corresponding to a weighting function wn, imposed on the
prediction error signal.

C. Time-varying linear prediction

TVLP is a generalization of conventional LP where the pre-
dictor coefficients are continuous functions of time. Therefore,
TVLP can be used in the spectral analysis of nonstationary
speech signals using long-time (e.g., 100–200 ms) frames.
TVLP imposes a time-continuity constraint on the vocal tract
system in the form of low-order basis functions. Due to this
time-continuity constraint, TVLP is capable of modeling the
slowly varying vocal tract system better than conventional LP
that is based on a piecewise constant quasi-stationary approxi-
mation. In TVLP, the current speech sample is predicted using
the past p samples as

x̂[n] =

p∑
k=1

ak[n]x[n− k], (15)

where ak[n] denotes the kth time-varying prediction filter
coefficient at time instant n. The time-variant predictor coef-
ficient ak[n] can be expressed using different basis functions,
such as polynomials (i.e., power series), trigonometric series,
or Legendre polynomials [35]. In this study, we use the simple
qth order polynomial approximation given by

ak[n] =

q∑
i=0

bki
ni. (16)

The TVLP coefficients are estimated by minimizing the Lm

norm of the error signal. This can be presented as the convex
optimization problem given by

b̂ = arg min
b
||x− Y b||mm, (17)

where x = [x[0], x[1], . . . , x[N − 1]]T
N×1

, (18)

b = [b10 , . . . , b1q , . . . , bp0
, . . . , bpq

]T
p(q+1)×1

, (19)

Y = [Y0, Y1, . . . , YN−1]T
N×p(q+1)

, and (20)

Yn = [x[n− 1], nx[n− 1], . . . , nqx[n− 1],

. . . , x[n− p], nx[n− p], . . . , nqx[n− p]]T
p(q+1)×1

. (21)

Again, the L2 and L1 norm minimization lead to the least
square solution and the sparse solution to the convex opti-
mization problem respectively [37], [39], [40]. It is to be noted
that the L2 norm minimization can be solved in closed form
whereas convex optimisation calls for an iterative approach
and therefore its computational complexity is larger. The
current study uses linear programming in convex optimization
for the L1 norm-based methods. Hence, the computational
complexity of the L1 norm-based LP methods studied in this
article is clearly higher than in the L2 norm-based LP methods.

D. Time-varying weighted linear prediction

As the final step of the model optimization, let us combine
WLP, the technique described in Section II-A and Section III-
B, and TVLP, the approach presented in Section III-C. The
combination of these two, time-varying weighted linear predic-
tion (TVWLP) analysis, is analogous to WLP where the pre-
dictor coefficients are estimated by minimizing the weighted
error signal given by

b̂ = arg min
b

W ||x− Y b||mm, (22)

where WN×N is a diagonal matrix with its diagonal elements
corresponding to the weighting function w[n], imposed on the
error signal.

Based on Eq. (22), in this study we propose a new TVQCP
analysis of speech signals that uses the QCP weighting func-
tion (described in Section II-C) in matrix W of the TVWLP
framework above. By using the L1 norm (i.e., assigning m = 1
in Eq. (22)), the TVQCP analysis enables imposing a sparsity
constraint on the excitation signal.

IV. FORMANT TRACKING EXPERIMENTS

One of the main problems with evaluating the performance
of a formant tracker and comparing it with other methods is
the availability of absolute ground truth in formant frequency
values. It is possible to have such absolute ground truth in
the case of synthetic speech signals. However, there are two
limitations with using synthetic speech signals. The first is
that the reference formant frequencies provided by synthetic
utterances can be biased towards a particular method of
formant tracking if there is a strong similarity in the synthesis
model and the analysis model of the tracker. The second is
that the formant trackers are ultimately required to process
natural speech signals that do not have any reference ground
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truth. The problem with using natural speech signals is the
need for a semi-supervised human annotation of the formant
frequency value, which by itself can vary from one annotator
to another [42]. Formant tracking from natural speech can also
be biased by the tools and techniques used for the annotation,
such as spectrographic representations and/or methods used for
deriving some of the initial estimates. Also, it should be noted
that actual resonance frequencies of the vocal tract cavities
need not exactly coincide with the apparent peaks in speech
spectra because these spectral peaks might also be harmonics
that are a result of the glottal excitation.

In order to address the above problem with reference ground
truth, the performance of formant tracking with the proposed
TVQCP method is studied using both synthetic and natural
speech signals. Two different types of synthetic signals were
used. In one type, vowels are produced with conventional
source-filter modeling of the speech production apparatus
using the LF glottal source model and an all-pole vocal tract
filter. In the other type, utterances are generated using physical
modeling of the vocal tract and glottal source [43], [44]. The
latter approach is different from the LF source-filter technique
because the speech signal is generated based on physical laws,
rather than by a digital parametric model similar to the model
assumed in LP and it variants. The physical modeling approach
is used to avoid any inherent bias that the LF source-filter
technique may have towards the proposed TVQCP method,
owing to the fact that both use LP-based methods in vocal
tract modeling.

A. Performance metrics
The formant tracking performance of different methods

is evaluated in terms of two different metrics: the formant
detection rate (FDR) and formant estimation error (FEE).
Throughout this study, formants are identified by looking for
the local peaks of the power spectrum. The FDR is measured
in terms of the percentage of frames where a formant is
hypothesized within a specified deviation from the ground
truth. The FDR for the ith formant over K analysis frames is
computed as

Di =
1

K

K∑
n=1

I(∆Fi,n), (23)

I(∆Fi,n) =

{
1 if (∆Fi,n/Fi,n < τr & ∆Fi,n < τa)
0 otherwise,

(24)

where I(.) denotes a binary formant detector function and
∆Fi,n = |Fi,n − F̂i,n| is the absolute deviation of the
hypothesized formant frequency F̂i,n for the ith formant at the
nth frame from the reference ground truth Fi,n. The thresholds
τr and τa denote the relative deviation and absolute deviation
respectively.

Using a single detection threshold, either a relative threshold
or an absolute threshold, is problematic on a linear frequency
scale. For higher formants, the relative deviation needs to
be smaller than that for the lower formants. Similarly, the
absolute deviation for lower formants needs to be smaller than
that for the higher formants. In order to define a common

detection strategy for all formants, two thresholds, one on
relative deviation and the other on absolute deviation, must
be used. The relative threshold controls the detection rates of
lower formants whereas the absolute threshold controls the
detection rates of higher formants.

The FEE is measured in terms of the average absolute
deviation of the hypothesized formants from the ground truth.
The FEE for the ith formant over K analysis frames is
computed as

Ri =
1

K

K∑
n=1

∆Fi,n. (25)

The FDR and FEE values are only computed for frames that
are voiced or for some particular phonetic category of interest.
One problem with accumulating FEEs over all frames is that
a few large error outliers can dictate the overall score. This
is even more severe for the root mean square error (RMSE)
criterion that is a widely used metric for measuring formant
estimation accuracy. In view of this, we propose using mean
absolute error, which is less sensitive to outliers, as a measure
for FEE. The reading of FEE scores in conjunction with FDR
scores, which denote the number of frames detected within a
fixed threshold, can give a better sense of the performance of
a formant tracker.

B. The choice of window size and polynomial order

As outlined in Section III-C, TVLP analysis involves two
parameters (in addition to prediction order p) that need to be
set: window size N and polynomial order q. Longer window
sizes (e.g., 500 ms) are useful for the efficient parameterization
of speech signals but would introduce longer delays. Moreover,
longer window sizes require higher polynomial orders in order
to model the time-varying characteristics of the vocal tract
and can lead to computational problems due to the inversion
of rank deficient matrices. Therefore, moderate window sizes
(e.g., 100–200 ms) are a good overall compromise that en-
ables the efficient parameterization of the slowly time-varying
characteristics of the vocal tract using low-order polynomials
(e.g., q = 3).

In order to study the choice of the window size and
polynomial order in TVLP analysis, an initial experiment was
conducted on a set of synthetic utterances. The effect of these
two parameters on a larger dataset of natural speech utterances
will be studied later. The synthetic speech utterances were
generated starting with ten (5 male, 5 female) randomly chosen
natural speech utterances from the TIMIT-VTR database [42].
The natural utterance was first inverse filtered using a high
order (p = 18) short-time LP analysis (20-ms frame size, 10-
ms frame shift, and a sampling rate of 8 kHz) to compute
a spectrally flat residual signal that was void of any formant
structure. This residual signal was then used to excite an 8th

order all pole model constructed using the first four reference
formants and bandwidths available for the utterances as part
of the VTR database [42].

The results of the experiment are shown in Fig. 3, which
depicts the relative deviation of the estimated formants from
their ground truth, averaged over the first three formants (F1,
F2, and F3) for different values of polynomial order and
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(a) The effect of polynomial order (window size = 100 ms)
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Fig. 3. Relative deviation (in percentage) of the TVLP-estimated formants
from their ground truth, averaged over the three first formants as a function
of (a) polynomial order and (b) window size.

window size. TVLP analyses computed using the L2 norm are
shown as blue bars and those computed with the L1 norm are
shown as red bars. Fig. 3(a) depicts the TVLP performance
using a fixed window size of 100 ms but with the varying
polynomial order q. It can be seen that the best performance
is obtained for polynomial orders between q = 2 and q = 4
and the performance starts to deteriorate at the order of q = 5.
Similarly, Fig. 3(b) shows the performance by varying the
window size at a fixed polynomial order of q = 3. It can be
seen that the performance is good with moderate window sizes
of 100 ms and 200 ms, but the performance starts to deteriorate
for longer window sizes. Therefore, in the experiments that
follow in the remainder of the paper, we used a window size
of 100 ms and a polynomial order of q = 3 in time-varying LP
analyses. An example of using two different polynomial orders
(q = 0 and q = 3) for an utterance produced by a female
speaker is shown in Fig. 4. The figure depicts the contours of
the two lowest coefficients (a1 and a2) computed using TVLP
with the L2 norm. It can be seen that the filter taps computed
using q = 0 and q = 3 follow a similar general trend over the
entire time-span shown in the figure but the contours computed
using q = 3 are clearly more dynamic and their values change
also during each frame.

C. Experiments on LF model–based synthetic data

The performance of the proposed TVQCP method in for-
mant tracking is studied next in this section by analyzing
how the method’s performance is affected by variations in
the glottal excitation (both in fundamental frequency and
phonation type). Formant tracking provided by the TVQCP
method is compared with that of TVLP using both the L1 norm
and L2 norm. In addition, a comparison with the traditional
LP covariance–based method (known as the entropic signal
processing system (ESPS) method [45]) used in the popular
open source tool Wavesurfer [11] (denoted by “WSURF”) is
also provided.

-2
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Fig. 4. The trajectories of ak[n] for q=0 and q=3 in TVLP-L2 for the first
and second coefficients (a1 and a2) are shown in (a) and (b), respectively. The
word ′materials′ produced by a female talker is used for the illustration.

The TVQCP and TVLP analyses are carried out over non-
overlapping 100-ms windows using a prediction order of p = 8
and a polynomial order of q = 3. The ESPS method used
in Wavesurfer adopts a short-time (25-ms Hamming window,
10-ms frame shift) 12th order stabilized covariance–based LP
analysis followed by a dynamic programming–based tracking
of formants [11].

1) The dataset: Four different phonation types (creaky,
modal, breathy, and whispery phonation) and four different
ranges of fundamental frequency (mean utterance F0 scaled
by the factors 1.0, 1.5, 2.0, and 2.5) are considered for
generating the synthetic speech test utterances. The phonation
type and F0 range are controlled by using the LF model for
the glottal source [46]. The LF source parameter values used
to synthesize the different phonation types in the current study
are taken from [47], [48].

The four different fundamental frequency ranges are gen-
erated by scaling the original F0 contour of a natural speech
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Fig. 5. The absolute deviation (FEE) of the estimated first three formants
(F1, F2, and F3) from their ground truth and their overall average for different
phonation types of the LF model–based synthetic data.
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utterance (3–5 sec long) by different factors before synthesiz-
ing the speech signal. A modal LF excitation is generated
based on the new F0 contour while retaining the original
rate of formants and hence keeping the speaking rate intact.
Speech signals are synthesized by filtering the LF glottal flow
derivative signal using an all-pole model with the first four
semi-automatically derived formants and bandwidths of the
natural utterance part of the VTR database [42]. Ten randomly
selected utterances (5 male and 5 female) from the VTR
database are synthesized for the four different phonation types
and four different mean F0 at a sampling rate of 8 kHz.

2) The effect of phonation type: The performance of the
TVQCP and TVLP methods are shown in Fig. 5 for the four
different phonation types. The TVQCP method that minimizes
the L2 norm (denoted by TVQCP-L2) performed best overall,
marginally better than the TVQCP method that minimizes the
L1 norm (denoted by TVQCP-L1). The L1 norm minimization
seemed to perform better than the L2 norm for most cases in
creaky and modal phonations while the L2 norm performed
better for breathy and whispery phonations that exhibit larger
open quotients and higher spectral tilts. Overall, it can be
seen that the TVQCP methods performed better than their
TVLP counterparts across all formants and all phonation types.
Moreover, the performance of the both TVLP and TVQCP
methods is clearly better than that of the popular Wavesurfer
tool.

3) The effect of fundamental frequency: The performance
of the TVQCP and TVLP methods are shown in Fig. 6
for all the four ranges of F0 values. It can be seen that
TVQCP optimized using both the L1 and L2 norms provided
consistent improvements over TVLP up to a scale factor of
2.0. The mixed performance for the scale factor 2.5 may be
due to the new F0 values moving very close to F1 in the
synthetic utterances. However, it has been observed that this
minor aberration gets corrected if F1 is shifted upward by a
small percentage. Also, the L1 norm optimization seemed to
perform better than the L2 norm in most cases except for
TVLP for F1 and F2 at F0 scale factor 1.0. In terms of
overall performance across all fundamental frequency ranges

(a) F 1

0

50

100

150

D
ev

. (
H

z)

WSURF TVLP-L2 TVQCP-L2 TVLP-L1 TVQCP-L1

(b) F 2

0

100

200

D
ev

 (H
z)

(c) F 3

0

100

200

D
ev

 (H
z)

(d) Overall

1.0 1.5 2.0 2.5 Avg
--> F 0  scale factor

0

100

D
ev

 (H
z)

Fig. 6. The absolute deviation (FEE) of the estimated first three formants
(F1, F2, and F3) from their ground truth and their overall average for different
mean F0 values of the LF model–based synthetic data.

TABLE I
THE ABSOLUTE DEVIATION (FEE IN HZ) OF THE ESTIMATED FIRST THREE

FORMANTS (F1 , F2 , AND F3) FROM THEIR GROUND TRUTH AND THEIR

OVERALL AVERAGE OVER ALL PHONATION TYPES AND FUNDAMENTAL

FREQUENCIES OF THE LF MODEL–BASED SYNTHETIC DATA.

WSURF TVLP-L2 TVQCP-L2 TVLP-L1 TVQCP-L1
(a) Avg. over all phonation types
F1 133.3 56.5 41.8 63.7 45.0
F2 252.7 64.2 54.8 80.6 59.8
F3 269.3 81.6 65.4 99.7 70.1

Avg 218.4 67.4 54.0 81.3 58.3
(b) Avg. over all F0 range
F1 83.5 82.7 59.0 57.2 47.5
F2 122.4 56.6 53.6 50.7 45.7
F3 143.5 69.7 61.0 52.6 48.1

Avg 116.5 69.7 57.9 53.5 47.1
(c) Avg. over all phonation types and F0 range
Overall 167.5 68.6 56.0 67.4 52.7

and formants, TVLP-L2, TVQCP-L2, TVLP-L1, and TVQCP-
L1 showed a consistent improvement in this order.

The overall performance of the formant tracking methods
is given in Table I by averaging over all phonation types and
F0 ranges. The general observation is that the FEE reduced
considerably with the use of QCP analysis (TVQCP analysis
vs. TVLP) and that there is a marginal reduction when using
the sparsity constraint (L1 norm vs. L2 norm). Overall, both
the TVLP and TVQCP methods provided large improvements
over the popular Wavesurfer tool with 60 to 70 percentage unit
reduction in the estimation error.

D. Experiments on simulated high-pitched child speech using
a physical modeling approach

The formant estimation accuracy of the proposed TVQCP
method is compared to that of TVLP using synthetic data
generated by an alternate, physical modeling approach of the
speech production apparatus [43]. The experiments in this
section try to address two issues with the evaluation of formant
estimation and tracking methods. One is the bias of the LF
model–based synthetic data towards LP–based methods, and
the other is the performance of these methods on speech
signals at very high fundamental frequencies.

An 8th order analysis is used for all the methods, and the
original data at 44.1 kHz is downsampled to 16 kHz and passed
through a preemphasis filter P (z) = 1−0.97z−1 before further
processing. The TVLP and TVQCP methods use a 100-ms
window size and a polynomial order of q = 3. The final
formant estimates are evaluated at a 20-ms frame shift to match
the reference formants rate.

1) The dataset: The simulated data consists of eight short
child speech utterances of a high pitch (as high as 600 Hz)
used in [44]. The eight utterances include two steady vowels,
[a] and [i], of 340 ms duration each with a constant F0

of 400 Hz. The six simulations of 1.03 s each are three
time-varying vocal tract shapes combined with two different
time-dependent F0 variations. The three time-varying vocal
tract shapes correspond to the sequence of sounds {i.a.i.a.i.a},
{ae.u.ae.u.ae.u}, and {i.a.i}. The fundamental frequency of the
utterances varies between 240 Hz to 500 Hz, one in a smooth
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TABLE II
THE ABSOLUTE DEVIATION (FEE IN HZ) OF THE ESTIMATED FIRST FOUR

FORMANTS (F1–F4) FROM THEIR GROUND TRUTH ON CHILD SPEECH

GENERATED USING THE PHYSICAL MODELING APPROACH.

Method F1 F2 F3 F4

TVLP-L2 70.8 163.9 69.3 76.8
TVLP-L1 52.8 105.0 61.4 106.4

TVQCP-L2 32.9 51.9 61.4 136.1
TVQCP-L1 33.0 48.3 54.4 148.4

increasing–decreasing pattern and the other in a reverse pattern
over the entire length of the utterance. All the utterances
have four vocal tract resonances and are stored at a 44.1
kHz sampling rate. More information on the formant and F0

contours used and other details of the dataset can be found in
[44].

2) The results: FEEs computed using both the L1 and L2

norms in the TVLP and TVQCP methods are given in Table II.
It is seen that the TVQCP method tends to give a consistent
shift in estimating the fourth formant. This could be due
to many reasons including the pre-emphasis, sampling rate,
model limitations, limited synthetic data, and this needs further
investigation. In view of this, further discussions in this section
are limited to the first three formants. It can be seen from the
table that imposing a sparsity constraint with the L1 norm
minimization clearly improves the accuracy of TVLP and
TVQCP. The continuity constraint imposed by time-varying
models (TVLP) do not seem to provide much improvement on
their own. However, when combined with the QCP weighting,
the continuity constraint seems to provide large improvements
in the case of TVQCP-L1 and some marginal improvement in
the case of TVQCP-L2. Owing to the limited availability of
data, it may not be possible to draw too many inferences from
this experiment. Nevertheless, it demonstrates the usefulness
of combining the ideas of QCP analysis, time-varying linear
predictive analysis, and the sparsity constraint for formant
tracking applications.

E. Experiments on natural speech data

One of the primary goals of this paper is to evaluate the
performance of the proposed TVQCP–based formant tracker
on real speech utterances. A detailed evaluation of the TVQCP
method and a comparison with some of the state-of-the-art
formant trackers is presented in this section.

1) The dataset: The performance of different methods in
formant tracking was evaluated on natural speech signals using
the VTR database published in [42]. The test data of the VTR
database is used for the evaluation and this data consists of
192 utterances (8 utterances pronounced by 8 female and 16
male speakers). The duration of each utterance varies between
2 and 5 s. The first four reference formant frequency and
bandwidth values derived using a semi-supervised LP–based
algorithm [49] are provided for every 10-ms interval. The first
three reference formant frequency values have been verified
and corrected manually based on spectrographic evidence. All
the speech data, originally recorded at a 16 kHz sampling rate,
are downsampled to 8 kHz before processing. A pre-emphasis

TABLE III
THE EFFECT OF WINDOW SIZE (IN MS), PREDICTION ORDER, AND

POLYNOMIAL ORDER ON THE FORMANT TRACKING PERFORMANCE OF

TVQCP-L1.

FDR (%) FEE (Hz)
F1 F2 F3 δF1 δF2 δF3

Nt Effect of window size (p=8, q=3)
50 ms 88.8 94.9 90.1 79.2 102.0 138.0

100 ms 90.9 96.5 92.2 67.6 91.7 123.9
200 ms 90.8 96.5 92.6 66.6 93.6 123.0

p Effect of prediction order (Nt=100 ms, q=3)
6 65.9 65.3 21.7 224.9 454.8 919.9
7 75.9 81.5 54.6 151.0 238.8 459.4
8 90.9 96.5 92.2 67.6 91.7 123.9
9 92.0 89.9 84.1 63.0 159.0 198.4
10 91.9 71.6 57.6 63.6 309.2 433.2

q Effect of polynomial order (Nt=100 ms, p=8)
0 88.3 92.5 89.4 72.2 114.4 143.3
1 91.0 96.5 92.8 65.4 90.3 119.5
2 91.0 96.6 92.5 66.3 90.2 121.4
3 90.9 96.5 92.2 67.6 91.7 123.9

TABLE IV
THE EFFECT OF DIFFERENT WEIGHTING FUNCTIONS ON THE FORMANT

TRACKING PERFORMANCE OF TVWLP (L1 NORM).

Weighting FDR (%) FEE (Hz)
func. F1 F2 F3 δF1 δF2 δF3

STE 89.1 95.1 90.5 73.6 105.1 141.3
Residual 90.6 96.3 91.8 68.2 93.2 126.9

QCP 90.9 96.5 92.2 67.6 91.7 123.9

filter of P (z) = 1− 0.97z−1 is used to preprocess the speech
signals. Based on our earlier experiments on formant tracking
using synthetic speech signals, we use a default window size
of 100 ms, a prediction order of 8, and a polynomial order
of 3 for the time-varying linear predictive methods unless
otherwise mentioned. All the performance metrics presented
in this section are average scores computed over vowels,
diphthongs, and semivowels. These are phonetic categories
whose manually corrected formant ground truths are more
reliable compared to other categories.

2) The effect of window size, prediction order, and poly-
nomial order: The effect of the choices for the window
size, prediction order, and polynomial order for the tracking
performance of the TVQCP-L1 and TVQCP-L2 methods is
provided in Table III and VI by denoting window size in ms
as Nt. It can be seen that the performance of the TVQCP
methods is quite stable over a range of values for the window
size and polynomial order. However, the performance seems
to be slightly sensitive to the choice of prediction order, which
needs further investigation.

3) The choice of weighting function: The effect of using
different weighting functions within the framework of TVWLP
for L1 norm and L2 norm on formant tracking performance is
given in Table IV and VII. The different weighting functions
studied include the signal energy–based STE function, the
residual–based weighting function, and the QCP weighting
function discussed earlier in Section II-B. It can be seen that



10 IEEE TRAN. AUDIO, SPEECH, AND LANG. PROC.

TABLE V
THE EFFECT OF GCI DETECTION ERRORS ON FORMANT TRACKING

PERFORMANCE WITH TVQCP-L1. Rerr AND Ferr REFER TO RANDOM

AND FIXED ERROR, RESPECTIVELY. THE EFFECT OF THE DURATION

QUOTIENT (DQ) OF THE QCP WEIGHTING FUNCTION IS ALSO

PRESENTED.

FDR (%) FEE (Hz)
F1 F2 F3 δF1 δF2 δF3

Rerr The effect of GCI error
0 90.9 96.5 92.2 67.6 91.7 123.9
4 90.9 96.3 92.0 68.4 92.7 125.3
8 90.7 96.1 91.7 69.1 94.6 127.6

12 90.6 96.2 91.9 69.1 94.1 127.7
16 90.6 96.0 91.5 69.2 94.9 129.9

Ferr The effect of GCI error
-16 90.1 95.8 91.4 71.0 98.7 133.8
-8 90.5 96.0 91.3 69.3 96.1 132.1
-4 90.3 96.0 91.4 68.8 95.1 131.2
0 90.9 96.5 92.2 67.6 91.7 123.9
4 90.8 96.1 91.9 71.0 95.9 125.5
8 90.5 95.9 91.3 72.2 97.7 130.9

16 88.5 95.6 90.1 74.4 100.4 143.2

DQ The effect of DQ
0.5 90.8 96.0 91.7 70.7 97.0 129.1
0.6 90.8 96.0 92.0 69.5 95.9 127.1
0.7 90.9 96.3 92.0 68.1 93.6 125.2
0.8 90.9 96.5 92.2 67.6 91.7 123.9
0.9 90.9 96.3 92.2 68.0 92.4 124.5

the QCP weighting function performs best among the three
compared weighting functions. Note that the TVWLP method
with the QCP weighting in Table IV and Table VII corresponds
to TVQCP-L1 analysis and TVQCP-L2 analysis, respectively.

4) Robustness to GCI detection errors and the DQ parame-
ter: The robustness of the proposed TVQCP method to errors
in GCI detection was studied by artificially inducing errors in
the estimated GCI locations. Two types of errors were studied.
In the first, a uniformly distributed random error (Rerr) was
added to the estimated GCIs. In the second, there was a fixed
error (Ferr) that gives a consistent bias to the estimated GCIs.
The formant tracking results for random and fixed GCI errors
is given in Table V and VIII for TVQCP-L1 and TVQCP-
L2, respectively. It can be seen that the performance of the
proposed TVQCP methods is robust to GCI errors in the range
of 1–2 ms.

Simulating a fixed GCI error is equivalent to altering
the position quotient (PQ) of the QCP weighting function
(described in Section II-C). The performance of TVQCP in
relation to varying the duration quotient (DQ) of the QCP
weighting function between 0.5 and 0.9 is given in Tables V
and VIII using L1 and L2 norm minimization, respectively.
It can be seen that TVQCP performed robustly over a range
of DQ values, and the best performance was obtained with
DQ=0.8, i.e., using a weighting function, which suppresses the
residual energy in 20% of the samples during the fundamental
period. Therefore, this value of DQ was used in all the analyses
of the study.

TABLE VI
THE EFFECT OF WINDOW SIZE (IN MS), PREDICTION ORDER, AND

POLYNOMIAL ORDER ON THE FORMANT TRACKING PERFORMANCE OF

TVQCP-L2.

FDR (%) FEE (Hz)
F1 F2 F3 δF1 δF2 δF3

Nt Effect of window size (p=8, q=3)
50 ms 90.9 94.4 90.2 67.8 111.0 139.7

100 ms 90.6 96.1 92.0 68.4 94.5 126.2
200 ms 89.9 93.9 91.0 68.3 118.7 137.9

p Effect of prediction order (Nt=100 ms, q=3)
6 66.8 65.6 21.9 226.9 454.2 922.1
7 75.5 78.6 53.0 152.7 261.8 477.0
8 90.6 96.1 92.0 68.4 94.5 126.2
9 91.6 89.0 83.6 62.5 165.3 201.6
10 92.2 72.1 55.2 61.3 292.6 448.9

q Effect of polynomial order (Nt=100 ms, p=8)
0 87.8 90.6 87.3 73.1 125.4 157.8
1 90.6 94.5 91.4 65.7 112.6 132.8
2 90.7 94.3 91.2 66.5 113.3 135.5
3 90.6 96.1 92.0 68.4 94.5 126.2

TABLE VII
THE EFFECT OF DIFFERENT WEIGHTING FUNCTIONS ON THE FORMANT

TRACKING PERFORMANCE OF TVWLP (L2 NORM).

Weighting FDR (%) FEE (Hz)
func. F1 F2 F3 δF1 δF2 δF3

STE 87.4 93.0 88.1 80.0 121.9 161.2
Residual 89.6 95.9 91.6 68.3 96.8 132.1

QCP 90.6 96.1 92.0 68.4 94.5 126.2

5) A comparison of time-variant linear predictive methods
and other formant tracking methods for clean speech: The
performance of the TVLP and TVQCP methods with different
norms are compared to some of the popular formant tracking
methods in Table IX. “PRAAT” denotes the Burg method of
LP analysis with a 50-ms Gaussian-like window function that
is used in formant tracking in Praat, a widely used speech
research tool [12]. “MUST” denotes an adaptive filter-bank
based method proposed by Mustafa et al. [50]. “WSURF”
denotes the formant tracker part of Wavesurfer [11] that uses a
stabilized covariance analysis over a 25-ms Hamming window.
“KARMA” denotes the state-of-the-art KF–based formant
tracking method published in [14]. “DeepF” (DeepFormants)
denotes the deep-learning based formant tracking method
proposed recently in [16], [18], [51]. It is worth emphasizing
that DeepF is based on supervised learning and calls for an
annotated speech corpus to be trained.

It can be seen from Table IX that the TVLP and TVQCP
methods clearly performed better (a 20–60% reduction in
error across the three formants) compared to the popular
formant tracking methods (Praat and Wavesurfer) that use a
two-stage detect-and-track approach. The proposed TVQCP
method provided an improvement in the performance (both
FDRs and FEEs) of tracking the second and third formants
(a reduction in the estimation error of around 30% and 50%
respectively) compared to KARMA. The KARMA method
performed slightly better than the TVQCP method (with a
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TABLE VIII
THE EFFECT OF GCI DETECTION ERRORS ON FORMANT TRACKING

PERFORMANCE WITH TVQCP-L2. Rerr AND Ferr REFER TO RANDOM

AND FIXED ERROR, RESPECTIVELY. THE EFFECT OF THE DURATION

QUOTIENT (DQ) OF THE QCP WEIGHTING FUNCTION IS ALSO

PRESENTED.

FDR (%) FEE (Hz)
F1 F2 F3 δF1 δF2 δF3

Rerr The effect of GCI error
0 90.6 96.1 92.0 68.4 94.5 126.2
4 90.3 96.0 91.4 68.9 95.5 130.2
8 89.9 95.5 91.0 69.7 99.3 134.8

12 89.6 95.5 90.9 69.8 98.3 136.7
16 89.3 95.4 90.7 70.6 99.8 138.0

Ferr The effect of GCI error
-16 87.7 94.4 89.1 75.5 109.8 150.8
-8 88.5 95.1 90.0 72.0 103.2 143.9
-4 89.0 95.3 90.5 71.1 100.9 141.1
0 90.6 96.1 92.0 68.4 94.5 126.2
4 90.7 95.7 91.4 71.8 97.8 128.6
8 89.8 95.6 91.0 73.6 99.8 132.1

16 87.0 92.6 85.5 80.9 121.4 171.3

DQ The effect of DQ
0.5 90.6 95.9 91.8 69.8 96.6 127.7
0.6 90.8 96.1 92.0 68.9 95.0 126.1
0.7 90.6 96.1 92.0 68.4 94.5 126.2
0.8 90.6 96.2 92.0 68.2 94.0 125.9
0.9 90.5 96.1 92.1 68.5 94.5 126.5

TABLE IX
FORMANT TRACKING PERFORMANCE ON NATURAL SPEECH DATA IN

TERMS OF FDR AND FEE FOR DIFFERENT METHODS.

FDR (%) FEE (Hz)
Method F1 F2 F3 δF1 δF2 δF3

PRAAT 86.0 70.0 63.1 87.9 268.3 340.1
MUST 81.1 86.3 76.9 90.5 152.3 229.8

WSURF 86.6 82.7 80.8 87.3 222.5 228.2
KARMA 91.5 89.4 74.7 61.9 145.8 250.3

DeepF 91.7 92.3 89.7 85.1 119.6 142.8
TVLP-L2 88.8 94.9 89.3 70.1 104.9 149.8

TVQCP-L2 90.6 96.1 92.0 68.4 94.5 126.2
TVLP-L1 90.3 96.2 91.7 68.9 94.4 129.6

TVQCP-L1 90.9 96.5 92.2 67.6 91.7 123.9

relative improvement of around 9%) in tracking the first
formant. Compared to DeepF, the proposed TVQCP method
provided an improvement in FEEs of around 20%, 21% and
12% for all the three formants, respectively. In terms of FDR,
DeepF performed slightly better (around 1%) than TVQCP
for the first formant. However, for the second and third
formants, TVQCP improved the FDR by around 4% and 3%,
respectively, compared to DeepF. Differences in performance
within the family of time-varying methods were not as evident.
However, it can be seen from the results that the use of
TVQCP analysis seems to improve the performance of formant
tracking. It can also be observed that TVLP-L1 is slightly
better than TVLP-L2, and TVQCP-L1 is slightly better than
TVQCP-L2. Between TVLP-L1 and TVQCP-L1, TVQCP-L1
is better than TVLP-L1 in both FDRs and FEEs for all the

TABLE X
THE FORMANT TRACKING PERFORMANCE OF KARMA, DEEPF,

TVLP-L1 AND TVQCP-L1 IN TERMS OF FDR AND FEE FOR DIFFERENT

PHONETIC CATEGORIES OF NATURAL SPEECH DATA.

FDR (%) FEE (Hz)
Phonetic category F1 F2 F3 δF1 δF2 δF3

KARMA
Vowels (V) 92.6 89.0 74.5 57.1 149.5 251.1

Diphthongs (D) 92.5 92.3 76.5 62.8 128.7 239.8
Semivowels (S) 86.9 86.9 73.6 76.1 154.8 258.3

V+D+S 91.5 89.4 74.7 61.9 145.8 250.3
All voiced sounds 87.9 88.4 75.0 70.9 151.7 248.0

DeepF
Vowels (V) 92.7 93.7 91.0 81.5 112.9 135.4

Diphthongs (D) 93.2 93.8 90.6 84.8 112.2 132.9
Semivowels (S) 87.0 86.1 84.4 96.1 148.4 176.2

V+D+S 91.7 92.3 89.7 85.1 119.6 142.8
All voiced sounds 88.8 90.6 88.7 86.8 129.7 147.4

TVLP-L1
Vowels (V) 91.9 97.0 92.8 63.3 86.4 117.8

Diphthongs (D) 92.0 98.1 93.7 64.9 81.4 114.9
Semivowels (S) 83.6 91.6 85.9 90.1 133.4 182.0

V+D+S 90.3 96.2 91.7 68.9 94.4 129.6
All voiced sounds 83.6 90.9 87.2 96.0 133.8 162.9

TVQCP-L1
Vowels (V) 92.6 97.4 93.6 62.0 82.5 110.6

Diphthongs (D) 92.5 98.3 94.3 63.6 77.4 107.7
Semivowels (S) 84.2 91.7 85.5 89.0 135.7 182.5

V+D+S 90.9 96.5 92.2 67.6 91.7 123.9
All voiced sounds 84.1 91.2 87.5 95.1 131.4 159.2

three formants (a reduction in the estimation error of around
2%, 3% and 4% for F1, F2 and F3, respectively).

A detailed comparison in the formant tracking performance
of KARMA, DeepF, TVLP-L1 and TVQCP-L1 is given in
Table X for different phonetic categories. It can be seen that
the estimation error of TVQCP-L1 is 15–40% and 25–55%
smaller than that of KARMA for F2 and F3 respectively.
Likewise, KARMA gave an estimation error that was 1–
15% smaller than that of TVQCP-L1 for F1 across different
phonetic categories. In comparison to DeepF, the estimation
error of TVQCP-L1 was 7–25%, 9–30% and 13–20% smaller
for F1, F2 and F3, respectively (except in semivowels for
F3). The performance of DeepF for F3 in semivowels was
better (by around 4%) than that of TVQCP-L1. It can also be
observed that the performance of TVLP-L1 for F2 and F3 in
semivowels was slightly better (by around 1%) than that of
TVQCP-L1. On the other hand, the performance of TVQCP-
L1 for F1, F2 and F3 was better (by around 2–6%) than
that of TVLP-L1. When all the voiced sounds are considered,
the performance of DeepF was better than the other methods
reflecting the fact that DeepF benefits from supervised learning
of the formant contours in the model training. Note that the
reliability of the manually corrected reference ground truth
is less for the other phonetic categories. In view of this, we
can argue that the proposed TVQCP method provided the best
overall formant tracking performance compared to the popular
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TABLE XI
FORMANT TRACKING PERFORMANCE FOR DIFFERENT METHODS USING

SPEECH DEGRADED WITH VOLVO, BABBLE AND WHITE NOISE AT SNR
LEVELS OF 20 DB, 10 DB, AND 5 DB.

FDR (%) FEE (Hz)
Method F1 F2 F3 δF1 δF2 δF3

Volvo at 20 dB
KARMA 90.1 88.5 73.3 68.1 153.8 266.4

DeepF 90.0 92.0 88.2 96.1 117.5 149.3
TVQCP-L1 91.0 96.2 92.1 68.0 93.2 125.3

Volvo at 10 dB
KARMA 86.2 86.6 71.7 80.4 167.6 278.8

DeepF 89.4 91.5 87.4 97.3 120.4 153.7
TVQCP-L1 90.7 95.8 91.5 70.9 96.9 130.2

Volvo at 5 dB
KARMA 80.8 84.9 70.6 96.4 182.9 299.3

DeepF 89.7 90.7 85.9 95.4 124.7 160.3
TVQCP-L1 89.8 95.1 90.8 76.3 105.2 138.2

Babble at 20 dB
KARMA 91.7 88.0 74.2 61.4 152.6 247.8

DeepF 91.3 91.7 87.1 89.7 118.0 155.1
TVQCP-L1 89.6 94.7 89.9 68.6 103.2 136.9

Babble at 10 dB
KARMA 90.3 83.8 71.8 65.1 176.1 246.0

DeepF 91.1 86.6 81.7 88.4 145.9 182.7
TVQCP-L1 84.3 88.1 82.5 78.1 144.5 181.0

Babble at 5 dB
KARMA 88.2 78.9 68.7 70.9 200.9 260.3

DeepF 89.8 81.4 76.1 89.9 177.3 209.1
TVQCP-L1 80.9 83.2 76.6 86.4 174.0 212.7

White at 20 dB
KARMA 90.4 87.6 73.6 64.4 150.5 240.6

DeepF 90.1 90.4 84.4 95.4 125.9 167.9
TVQCP-L1 92.0 93.0 79.6 68.3 129.1 205.7

White at 10 dB
KARMA 86.2 80.1 68.8 75.5 191.3 256.5

DeepF 89.8 80.8 71.6 99.2 184.3 238.7
TVQCP-L1 90.3 85.2 66.1 73.7 179.2 280.7

White at 5 dB
KARMA 80.1 72.5 64.0 91.6 232.5 279.2

DeepF 89.2 71.7 64.5 101.1 238.7 274.3
TVQCP-L1 88.3 77.9 59.6 82.4 220.1 314.5

and state-of-the-art reference methods. A qualitative compar-
ison of the formant tracking performances of the TVQCP-L1
and KARMA methods is demonstrated by Fig. 7 for utterances
produced by a male and female speaker. It can be seen from
the figure that the TVQCP-L1 method clearly performed better
than KARMA in tracking F2 and F3, with a comparable
performance for F1.

6) A comparison of time-variant linear predictive methods
and other formant tracking methods for noisy speech: In
this section, the performance of the TVQCP-L1 method is
compared to KARMA and DeepF in formant tracking of noisy
speech, as these methods were shown to perform better than
the other methods for clean speech. Noisy speech was obtained
by corrupting the original clean signals of the VTR speech

database with different types of additive noise. The results
obtained for stationary and non-stationary noise of three types
(volvo, babble, and white) in three SNR categories (20 dB, 10
dB and 5 dB) are given in Table XI. From the results, it can
be observed that the performance of the methods drops as the
SNR decreases from 20 dB to 5 dB. For signals corrupted by
volvo noise, it is observed that the performance of TVQCP-L1
is better than that of the other methods in all SNR categories
in both FDR and FEE for all the formants. In the case of
the babble noise, the methods behave similarly as in clean
speech. That is, FDR of F1 is better for DeepF, FEE of F1 is
better for KARMA, and the proposed method is better in both
FDR and FEE for F2 and F3 formants. In the case of white
noise (without pre-emphasis), the performance of the proposed
method for F1 and F2 is better than others in both FDR and
FEE (except at 20 dB SNR). Whereas, the performance of the
DeepF method for F3 is better than others in both FDR and
FEE.

V. CONCLUSIONS

In this paper, we proposed a new formant tracking method,
TVQCP, for speech signals. The TVQCP method combines the
advantages of QCP analysis (reducing the effect of the glottal
source in formant estimation by using temporal weighting of
the prediction error), the increased sparsity of the prediction
error due to the L1 norm minimization and TVLP analysis
(imposing a time-continuity constraint to take into account the
slowness of movements in the real human vocal tract). The use
of a time-continuity constraint on the vocal tract parameters
eliminates the need for a two-stage detect-and-track strategy
to combine them into one. Formant tracking experiments
on synthetic speech utterances demonstrate the advantages
of the proposed TVQCP method over TVLP. A comparison
of performance on natural speech utterances shows that the
TVQCP method performs better than some of the state-of-
the-art formant trackers, such as Praat, Wavesurfer, KARMA
and DeepFormants. One limitation of the proposed TVQCP
method is its apparent sensitivity to the choice of prediction
order, though a prediction order of 8 works consistently well in
tracking formants over a large set of natural speech utterances
of male and female talkers. In addition, there is a need for
devising a better coasting strategy (such as the one that is
used in KARMA) for tracking formants in non-speech and
non-voiced sections or in less-reliable voiced regions.
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