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Contactless Body Movement Recognition during
Sleep via WiFi Signals

Nan Lin, Fuchao Wang, Xinxin Lu, Yangjie Cao, Member, IEEE, Bo Zhang, Member, IEEE, Zhi
Liu, Member, IEEE, and Stephan Sigg, Member, IEEE

Abstract—Body movement is one of the most important in-
dicators of sleep quality for elderly people living alone. Body
movement is crucial for sleep staging and can be combined with
other indicators such as breathing and heart rate to monitor
sleep quality. Nevertheless, traditional sleep monitoring methods
are inconvenient and may invade users’ privacy. To solve these
problems, Contactless Body Movement Recognition (CBMR)
method via WiFi signals is proposed. Firstly, CBMR uses the
commercial off-the-shelf WiFi devices to collect Channel State
Information (CSI) data of body movement and segment the CSI
data by sliding window. Then, the context information of the
segmented CSI data is learned by a Bi-directional Recurrent
Neural Network (Bi-RNN). Bi-RNN can fuse the forward and
backward propogation information at some point, and input it
into a deeper Independently Recurrent Neural Network (IndRN-
N) with residual mechanism to extract the deeper features and
capture the time dependencies of CSI data. Finally, the type of
body movement can be recognized and classified by the softmax
function. CBMR can effectively reduce data preprocessing and
the delay caused by manually extracting features. The results of
the experiment conducted on a complex body movement dataset
show that our method gives desirable performance and achieves
average accuracy of greater than 93.5%, which implies a prospect
application of CBMR.

Index Terms—body movement recognition, WiFi, CSI data,
deep learning, RNN

I. INTRODUCTION

ACCORDING to statistics, elderly population over the
age of 65 will reach about 1.5 billion by 2050 [1].

Furthermore, the number of elderly people living alone will
also increase. The health problems of elderly people living
alone have aroused great attention of the society and families.
Sleep quality of the elderly is an important indicator to
measure whether the body is healthy or not. Investigations
show that poor-quality sleep may lead to various health issues
such as high blood pressure [2], depression [3], and migraine
[4], etc., which seriously threaten the normal life of elderly
people living alone.

To monitor people’s body movements during sleep, the
researchers used a variety of sleep monitoring technologies.
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One approach is contact-based method, e.g. Polysomnography
(PSG) [5], Actigraph [6], [7], Pressure sensors [8]–[10]. These
aproaches normally result in good performance, but with the
trade off of employing numerous sensors. These sensors are
normally either highly sensitive and precisely positioned, or
to be weared by the monitoring target. A better approach
is device-free method. In comparison, device-free method
is often more economical and convenient, such as comput-
er vision based sleep monitoring [11], [12]. However, this
method may invade people’s privacy and is often susceptible
to illumination; Some researchers utilize Radio Frequency
(RF) technology like the Doppler radar [13], which rely on
specialized hardware device, thus limiting its deployment. In
contrast, WiFi, another RF technology, overcomes the above
disadvantages, by utilizing the existing ubiquitous in-house
WiFi signal, freeing the personel from any on-body equipment,
as well as avoiding the effect of illumination and unnecessary
personal privacy invasion.

Inspired by the advantages of WiFi signals, Contactless
Body Movement Recognition (CBMR) method is proposed in
this paper to explore the relationship between body movement
and WiFi channel state information (CSI) data collected from
commercial off-the-shelf WiFi devices. The deep learning
model adopted by CBMR is designed to handle the complex
CSI time series and automatically extract features of body
movement. CBMR bears several advantages. First of all, it
is releaved from laborious and delicate data pre-processing
such as denoising and manual feature extraction. Furthermore,
CBMR achieves zero burden recognition by requiring no on-
body equipment.

The contributions of this paper are summarized as follows:
1. CBMR is proposed to extract deep features of raw CSI

data obtained from WiFi signals, which is further used for
body movement recognition during sleep.

2. A sleep body movement dataset is built for sleep research.
Different actions (turning over, raising a leg, sitting up, etc.)
of multiple testee are collected using WiFi devices.

3. To evaluate the performance of CBMR, we conducted ex-
tensive experiments concerning parameter tuning, recognition
accuracy comparision with state-of-the-arts, model complexity
analysis, furniture setup variation adaptability, etc. Experiment
results demonstrate that CBMR achieves desirable result and
has an average accuracy of up to 93.5%.

The remaining of this paper is organized as follows. Section
II provides related work of sleep monitoring technologies and
an introduction about WiFi sensing. We will introduce CBMR
architecture and analyze CSI characteristics in Section III,
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followed by experimental results, evaluation and presents some
existing problems in Section IV. We finally conclude the work
in Section V.

II. RALATED WORK

In this section, we first summarize sleep monitoring tech-
nologies in general, then introduce WiFi sensing in detail.

A. Sleep Monitoring Technologies

Major technologies for sleep monitoring can be catego-
rized into contact-device based approaches and device-free
approaches.

1) Contact-device based approach: PSG includes electro-
myogram, electro-cardiogram, electro-encephalogram, and
electro-oculogram; it is comprehensive and diverse, providing
an accurate assessment of sleep architecture and sleep qual-
ity [5]. PSG requires a large number of sensors accurately
attached to the corresponding parts of the body. Actigraph
(e.g., smart watch, smart bracelet) [6], [7] can continuously
monitor sleep quality and is convenient to carry and take down.
Although actigraph is convenient comparing to PSG, it may
cause sensor reading failure duo to unconscious movements
of the subject. Sometimes, people may forget to wear or even
lose it. Pressure sensors based sleep monitoring technology
are in comparison less invasive [8]–[10]. The pressure sensor
is placed under a mattress or a customized bed and can
detect fine-grained indicators of sleep conditions such as
lying postures, breathing and heart rate according to pressure
changes. Unfortunately, this technology requires the sensors to
be highly sensitive and precise positioned in order to produce
satisfactory measurements.

2) Device-free approach: Vision-based sleep monitoring
technology is a typical contactless sleep monitoring approach
[11], [12]. Researchers used an infrared camera to simulta-
neously analyze respiration, head posture, and body posture
during sleep [11]. Philips vital signs camera focused on the
rise and fall of chest and abdomen to calculate the breathing
rate [12]. Nevertheless, the drawbacks of these technologies
are obvious, e.g., high expense, susceptible to light and may
invade people’s privacy. At present, despite the fact that there
are some studies using Radio Frequency (RF) technologies like
the Doppler radar [13], the frequency modulated carrier waves
to detect vital signs [14], these technologies rely on specialized
devices, limiting their deployment. In contrast, WiFi, another
RF technology, overcome the above disadvantages. WiFi based
monitoring technique deduces the state of a person by combin-
ing the refraction and reflection of surrounding wireless signals
[15], [16]. It is wearable-device free, immune to illumination
conditions, and can protect personal privacy. Table I lists the
advantages and disadvantages of the above technologies. It is
obvious that WiFi based approach surpasses other technologies
in almost every aspect, which represents a new trend of sleep
quality evaluation method in the future.

B. WiFi Sensing

1) Applications of WiFi sensing: WiFi sensing technology
has been repidly developing in recent years, and can be applied

in many fields. For gesture recognition, WiGest [17] used CSI
to sense in-air hand gestures around the user’s mobile device.
HuAc system [18] recognize human activity using CSI. WiFi-
ID [19] is amoung the first body of work that tries to identify
people using WiFi signals. WiFall [20] detects a fall activity
by combining a one-class support vector machine classifier
with a random forest algorithm. EmoSense [21] is a first-of-its-
kind WiFi-based emotion sensing system. For sleeping posture
changes, Gu et al. proposed Sleepy that can recognize both
stationary and active states during sleep [22].

2) Methods of WiFi sensing: Many researchers have applied
CSI to recognize and monitor vital signs [23], [24]. In [23],
respiration was monitored using passive WiFi sensing via
the Convolutional Neural Network (CNN). A sleep prediction
model of body movement via CNN was established by Aarti et
al., who also attempted to estimate human sleep patterns using
a variant of RNN called Long Short-Term Memory (LSTM),
with a moderate 84% accuracy achieved [24].

Hybrid networks are increasingly favored by researchers
from a variety of areas. Different hybrid networks are designed
for image captioning [25], visual question answering [26],
time series classification [27], etc. In [27], LSTM Fully
Convolutional Networks (LSTM-FCN) have been proposed
for classification of time series in general. Since CSI data
belongs to time series, we applied LSTM-FCN to CSI-based
sleep movement classification in this paper to evaluate its
performance. Following the parameter setup as in [27] and
use the CSI data we collected as the training data, LSTM-
FCN obtained an accuracy of 82.8%. The possible explana-
tions for this unsatisfactory result lies in that LSTM-FCN
is not specifically designed and optimized for our problem.
An appropriate hybrid network design for CSI-based sleep
movement classification problem is non-trivial, and is left as
our future work. We therefore will not discuss hybrid network
in the remainder of this paper.

III. CBMR ARCHITECTURE

In this section, an overview of CBMR is first presented,
followed by detailed description of major modules.

A. Overview of CBMR
The proposed CBMR characterizes body movement data

into levels of movements. CBMR mainly consists of three
parts as shown in Fig. 1. In the sensing phase, WiFi signal
source and sink are placed at opposit sides of a bed. The
sink captures wireless signals along the line-of-sight path and
those reflected by static objects, as well as signals distorted by
body movements. CSIs of the captured signals are segmented
to form shortterm CSI data before being fed into the deep
learning model. In the data extraction and model building
phase, Bi-RNN [28] and IndRNN [29] are utilized with
residual mechanism for extracting features of body movement
data. Finally, a softmax classifier is used to classify the types
of body movement as CBMR’s output. Six common kinds of
body movements are studied during sleep, including turning
over, curving legs, raising an arm, raising a leg, lying down,
and sitting up. The components of CBMR are introduced in
detail as follows.
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TABLE I: Comparison beween various sleep technologies.

Technologies Privacy preservation illumination independence Non-wearable Non-contact Low cost

PSG [5]
√ √

Actigraph [6]
√ √ √

Pressure Sensor based [8]–[10]
√ √ √ √

Vision-based [11], [12]
√ √ √

Radar-based [13], [14]
√ √ √ √

WiFi-based [15], [16]
√ √ √ √ √

Fig. 1: Overview of CBMR.

B. Data Collection and Representation

Commercial off-the-shelf WiFi transmitter(Tx) and receiver
(Rx) are deployed for WiFi signal collection. CSI data is
extracted from data packets using software tools developed
by Halperin et al. [30]. Orthogonal frequency division mul-
tiplexing (OFDM) technology is applied to obtain channel
response information of multiple subcarriers and to decompose
CSI data. The CSI data received is a Nt×Nr×n matrix, where
Nt and Nr represent the number of transmitter antenna and
receiver antenna respectively. The third dimension n stands
for subcarrier index in OFDM. A CSI data is sliced into
m = Nt × Nr short term CSI segments, each containing a
piece of data from all n subcarriers. CSI segments can be
represented as follows:

CSI1 = {CSI1,1, CSI1,2, · · · , CSI1,n}
CSI2 = {CSI2,1, CSI2,2, · · · , CSI2,n}

· · · · · ·
CSIm = {CSIm,1, CSIm,2, · · · , CSIm,n},

where CSIm,n represents the n-th subcarrier of the m-th
data stream. The data streams shown in Fig. 2 refer to the
sequence of amplitude data collected by the receiver over a
period of time. The CSI of a single subcarrier is expressed
as CSIm,n = H(fn) = ||H(fn)||ej∠H(fn), ||H(fk)|| and
∠H(fk) indicate its amplitude and phase, respectively. Let
xn = {CSI1,n, CSI2,n, · · · , CSIm,n}, all subcarriers at time
t can be expressed as xt = {x1

t , x2t , · · · , xmt }.
In this paper, the sliding window is used to segment long-

term CSI sequence data and to extract jitter of data stream
for analyzing short-term body movement. The sliding step
length determines overlap percentage between adjacent sliding

windows, which augments CSI data volume and as a result,
enhance movement feature extraction. We take all CSI data
of a complete body movement as a group of CSI time series
denoted by S. We select T as the size of sliding window and
set d (d < T ) as the sliding step length . CSI time series
is then divided into (S − T )/d + 1 overlapping short time
windows. Meanwhile, our method extracts the amplitude of
CSI data and uses CSI segments of identical window as a set
of input for the neural network.

C. Network Architecture

The continuous and unique motion trajectory of body move-
ment during sleep is composed of the action characteristics
of each sampling point in a period of time, and the sam-
pling points are both semantically inseparable and temporally
close to each other. Taking the temporality and complexity
of body movement data into account, we have proposed a
model of deep bi-directional independently recurrent neural
network with residual mechanism which is shown in Fig. 3.
It consists of the following two parts. The key characteristics
and functions of each part are as follows.

The first part is Bi-RNN with ReLU. The regular RNN
provides a very elegant approach for solving the problem
of time series effectively in virtue of recurrent mechanism
that can predict the current state based on the previous
data information. Nevertheless, the prediction performance of
RNN decreases along with the increase of sequence length,
and some important one-directional information cannot be
captured. The emergence of bidirectional RNN addresses this
issue very well by linking the previous information with the
future via current output. Such feature is of great help to learn
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Fig. 2: CSI data stream structure.
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Fig. 3: Proposed model network structure.

the context information of CSI data of body movements. Bi-
RNN is made up of two RNN cells, which together determine
the output.

In Fig. 3, there is a forward and backward sequence in the
hidden layer of Bi-RNN. For the current moment, the forward
and backward hidden layer

→
ht,
←
ht and the output layer x1t can

be defined as follows:
→
ht= g(W→

h
x0t + U→

h

→
ht−1 +b→

h
), (1)

←
ht= g(W←

h
x0t + U←

h

←
ht−1 +b←

h
), (2)

x1t = g(V→
h

→
ht +V←

h

←
ht +b→

h
←
h
), (3)

where ht−1 denotes the output of the hidden layer in the pre-
vious moment, Wh, Uh, Vh and bh present the input weight,
recurrent weight, output weight and bias, respectively. We use
non-saturated ReLU as the activation function of Bi-RNN.
ReLU function can reduce the computation of neural network
and solve the problem of gradient vanishing, and it will make
the output of some neurons 0, which will cause the sparseness
of network, and reduce the interdependence of parameters,
alleviating the occurrence of overfitting problems. Moreover,

we average the two results for maintaining consistent input
and output dimensions, which are calculated as

→
ht= ReLU(W→

h
x0
t + U→

h

→
ht−1 +b→

h
), (4)

←
ht= ReLU(W←

h
x0
t + U←

h

←
ht−1 +b←

h
), (5)

x1
t = Add(

→
h ,
←
h )/2. (6)

The second part is IndRNN with Residual Mechanism.
The IndRNN with ReLU activation function whose network
architecture, shown in Fig. 4 (a), was proposed by Li et al..
It differs from standard RNN, shown as Fig. 4 (b), in that
its recurrent weight u is represented by a vector instead of
a matrix. Each neuron in a layer is independent of another
neuron, and each neuron accepts only the current input and its
own hidden state from the previous time. The current moment
can be described as

hl
t = ReLU(Wxl−1

t + u� hl−1
t−1 + b), (7)

where xl−1
t denotes the output of previous layer; l (l > 2) is

the layer index of IndRNN; the recurrent weight u is a vector;
� represents Hadamard product; W, u are shared parameters at
different times. The standard RNN can be regarded as a multi-
layer perceptron that shares parameters over time, while the
IndRNN can be thought of as an independently aggregating
space (i.e. through W) over time (i.e. through u), utilizing
two or more layers to exploit the correlation between different
neurons.

In addition, we add residual mechanism based on IndRNN
to build a deeper network architecture. The residual mech-
anism transmits the lower information to the upper layer
directly through a highway, merging the underlying features
into subsequent operations. The highway architecture with skip
connections can skip many layers in height. In this way, the
complex problem can be simplified as two addition problems,
which also helps counter this problem of gradient vanishing.
One layer is skipped here as shown in Fig. 3, and the output
of hidden layer can be defined as

hl
t = ReLU(Wxl−1

t + u� hl−1
t−1 + b) + hl−1

t . (8)

Batch Normalization (BN) is adopted in the proposed model.
It can normalize the data, which keeps the input of each layer
of neural networks in the same distribution and accelerates the
convergence and training speed [31].

Combining the above two parts, a deep neural network
is constructed. The proposed model reduces the number of
parameters and solves the problem of gradient vanishing to
some extent. It is good for learning the deep semantics and
extracting effective features of CSI data generated by WiFi
signals affected by body movement.

D. Classification

Assume that body movements are divided into y ∈
(1, 2, ..., k) categories, CBMR aims to create a deep learning
model that can be used to accurately predict label y based
on the input CSI time series X of which the size of sliding
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(a) Simulated bedroom setting (b) Bedroom layout

Fig. 5: Bedroom layout in the experiment.

windows is T . The activation function of softmax is used for
classification; it calculates the probability of each output ỹ as

ỹi = P (y|X) =
exp(zy)∑k
y=1 exp(zy)

, y ∈ [1, k], (9)

where zy denotes the final output of IndRNN with residual
mechanism.

The overall model can be trained by minimizing the cross-
entropy loss function using Adam optimizer [32] between the
probabilistic outputs and the real labels, which can be defined
as

Jyi(ỹi) = −
∑

yilog(ỹi). (10)

IV. EXPERIMENT AND EVALUATION

In this section, we experimentally confirm the effectiveness
of the proposed neural network model using real human body
movement data. Firstly, the dataset we collected is described in
Section IV-A. Then, the experimental setup is introduced in
Section IV-B, followed by the evaluation metrics in Section
IV-C. Finally, the experimental results are presented and
discussed in detail in Section IV-D.

TABLE II: Details of our deep neural network.
Setting items Detail
Learning rate 0.0002
Training iters 3000

Batch size 64
subcarrier num 90

sliding window size 800
n hidden 200
n classes 6

Dropout rate 0.5

A. Dataset Description

We simulate the bedroom scene in a laboratory. The au-
thentic environment and room layout is shown in Fig. 5. The
distance between the Wireless Router and the laptop is about
2.5m and they are placed 1m above the ground. Between these
two devices, a bed is placed, with 1m×2m in size and 0.5m
high.

Eight volunteers (five male and three female; age: 19-26;
height: 1.58-1.85m; weight: 51-80kg) are monitored in the
above setting to collect CSI data of their body movements.
They lie on the bed and try their best to simulate the
movements during sleep to ensure the authenticity of the
experimental data. Each volunteer repeats six body movements
for 80 times in 3 hours, without interruption. Finally, 3840
records are collected, and each of them lasts 3 seconds. All raw
CSI data is remixed through the sliding window processing,
and the amount of data is increased by (S − T )/d+ 1 times.
Moreover, the body movement data is evaluated with the
following ten-fold cross-validation method. The remixed CSI
data of body movements is divided into ten parts, of which
nine parts are taken as training data and the rest one is used
for testing in turn, without data cross. The experimental results
return average value of ten results.

B. Experimental Setup

CBMR consists of two WiFi devices: one is the TP LINK
AC1750 wireless router as the Tx, and the other is the Think-
Pad X201 laptop equipped with an Intel 5300 802.11n WiFi
NIC as the Rx. The Tx has one detectable antenna, and the
Rx has three external antennas that helps to solve the problem
of data loss caused by the internal current of the laptop and
hence to improve the quality of CSI data captured. With these
antennas, a pair of Tx and Rx hence forms a 1×3 CSI data
streams. Each CSI data stream consists of 30 subcarriers,
distributed evenly in the 56 subcarriers of a 20MHz channel
[33], so that 90 (1×3×30) CSI data streams can be collected
for each time instance. All the experiments conducted in this
research are performed in 5GHz frequency band for its ability
to obtain better body movement resolution. The sample rate
of CSI data is set to 1000 packets/s.

Unless otherwise mentioned, we set the size T of sliding
window to 800 and choose d = 200 as the sliding step
length to construct sample data, with 75% overlap percentage,
which increases the amount of CSI data and improves the
generalization capacity of the model. The deep learning model
described here is implemented by Tensorflow in python, and



IEEE INTERNET OF THINGS JOURNAL 6

its training and classification are run on a GPU with 2880
cores, 875MHz clock speed and 24GB RAM. The detailed
parameter setup in our neural network are shown in Table II.

C. Evaluation Metrics

We use the following four metrics to evaluate the per-
formance of CBMR. The first is the most commonly used
accuracy, and others are Precision, Recall and F1. Take turn
over as a True or Positive (TP) example and not turn over (or
one of other body movements) as a False or Negative (FN)
example. TP refers to the number of samples that turn over
is correctly judged as turn over; FN refers to the number of
samples that turn over is judged as not turn over; FP refers to
the number of sample that not turn over is incorrectly judged
as turn over; and TN refers to the number of samples that not
turn over is correctly judged as not turn over.

Precision is defined as the ratio of the number of correctly
predicted as turn over to the number of predicted as both turn
over and not turn over, which is computed as

Precision =
TP

TP + FP
. (11)

Recall refers to the proportion that turn over is truly
predicted when the real label is turn over, which is computed
as

Recall =
TP

TP + FN
. (12)

To avoid extreme situations in which the precision or recall
is 1 and the other one is 0, the harmonic average of precision
and recall, F1, is used to evaluate the performance of CBMR,
which is computed as

F1 =
2× Precision×Recall

Precision+Recall
. (13)

The above formulas can solve a two-class problem, but a
multi-class classification is required in this paper. Since the
number of each body movement in our dataset is relatively
balanced, the average F1 value can be defined as

F1 =
2

k

Nk

Ntotal

∑
k

Precisionk ×Recallk
Precisionk +Recallk

, (14)

where k is class index of body movement, Nk is the number
of samples of k-th class, and Ntotal is the total number of
dataset. Precisionk and Recallk are the Precision and Recall
of body movement of k-th class, respectively.

D. Experimental Results

To evaluate whether the angle (the bed against LOS between
Transmitter and Receiver) of bed placement has an effect
on recognition for CBMR, we collect six different types of
body movement data under different angles (i.e. 0, 30, 60,
90) shown in Fig. 6. The red arrow refers to the angle that
the bed meets the two devices. Fig. 7 presents the average
performance of classification under different angles. As can
be seen, classiffication at 0 degree achieves poor results with
the recall of 93.5% and the precision of 93.7%, but the clas-
sification performance under different angles differs by less

Tx

Rx

Tx-Rx Distance: 2.5m

Tx

Rx

Tx

Rx

Tx

Rx

60°

30°

90°

0°

Fig. 6: Data collection of different angles.

than 1% between 93.5% and 94.3%. The results demonstrate
that different angles of the bed have minimal effect on the
experimental results. Therefore, all the experiments are done
at 90 degree.

In addition, to verify the ability of CBMR to adapt to the
environment. We did the following experiments. After training
CBMR with the data of which the bed is set at 60 degree, we
directly test the trained model with the 90 degree data, with
the resulting accuracy of only 67.5%. Subsequently, we using
merely 50 data sequences of 90 degree to fine-tune the model
trained for 60 degree setup, then we again use the 90 degree
of data to test the fine-tuned model and the accuracy rises to
92.8%. This shows that CBMR has excellent adaptability in
scenarios with minor environmental changes.

In CBMR, the most important parameter is the number of
hidden layers. In order to determine the number of the most
appropriate hidden layers, the effect of different numbers of
hidden layers are examined and compared with baseline LSTM
under the dataset we collected. The baseline LSTM is well-
known because it improves the overall performance of vanilla
RNN and adds the idea of gate architecture for solving the
gradient vanishing problem. The results of our observation
are shown in line chart Fig. 8, the deeper the network layer
is, the higher the classification performance of CBMR and
the baseline LSTM can be achieved. When the layers exceed
a certain number, the accuracy of the model begins to drop.
When the layer number is small, the model is not sensitive
enough to capture signal changes. Conversely, overfit of the
training data leads to a decrease in test set accuracy, but
even when the average accuracy drops, CBMR decreases in a
slower speed than the baseline LSTM. The advantages of Bi-
RNN, residual mechanism and BN mentioned in Section III-C
improve the performance of CBMR in feature extraction of
CSI data, so CBMR achieves better classification performance
than baseline LSTM. The research result shows that CBMR
can effectively solve the problem of gradient vanishing and
achieve good performance.

Furthermore, the accuracy of the training data and validation
data for CBMR and baseline LSTM is presented in Fig. 9. As
the number of iterations increases, the train and validation
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Fig. 8: Comparison of different hidden layers.

results converges. Under the same model parameters, CBMR
converges faster than LSTM and is more stable.

The sliding window plays an important role in our experi-
ment and helps remove redundant data labeled as Null. Within
a sliding window, if more than 40% of the sampled data is
labeled Null (i.e. data without movement), all the data in this
sliding window will eventually be tagged Null and discarded.
As the sliding window slides, the data labeled as one of six
body movements is constantly selected for training and testing.
However, the size of sliding window has a great impact on the
experimental results. The smaller the sliding window is, the
more data after data segmentation, resulting in the increase of
training time and the waste of memory.

When the size of sliding window is large, the division
of data into without movement and with movement is not
accurate enough. The results of classification are compared
under three different sizes of sliding window (See Table III).

(a) Baseline LSTM (b) CBMR

Fig. 9: Accuracy trends of models. The blue line shows train
data, and the orange line indicates test data.

TABLE III: Classification results under different sliding win-
dows.

the size of sliding window Precision Recall F1
1000 78.7% 76.26% 87.5%
800 89.1% 90.5% 89.8%
600 86% 86.9% 86.1%

TABLE IV: Model accuracy of different sliding step length
and overlap percentage.

sliding step
length

100 200 300 400 600 800

overlap
percentage

87.5% 75% 62.5% 50% 25% 0%

Accuracy 92.98% 93.34% 92.29% 89.32% 90.7% 90.5%

The values of average precision, average recall and average F1
of all body movements are the highest when T = 800 from our
experiment. which, therefore, is chosen as the size of sliding
window in this paper.

In addition, we did another set of experiments to select the
appropriate sliding step length. We selected six sets of data
with the sliding step length of 100, 200, 300, 400, 600, and 800
as the sliding step length increases, the number of sequences
into which each CSI sequence is divided and the overlap
percentage will decrease. As shown in the experimental results
in Table IV, we chosen d = 200 as the most suitable sliding
step length in this paper. Using limited raw data, by verifying
different overlap percentage parameters and combining with
the optimal sliding window, we find the best combination of
sliding window and sliding step length that makes the model
have the best generalization capacity.

The confusion matrix of all body movements (TO, CL, RA,
RL, LD, and SU represent Turning over, Curving legs, Raising
an arm, Raising a leg, Lying down, Sitting up, respectively)
using CBMR with testing data is shown in Table V. The row
represents the real body movements given in the label, and
each column represents body movements tested by CBMR.
The values of precision in six types of body movement ranges

TABLE VI: Recognition results of each body movement
before and after data filtering.

body movement data Precision Recall F1

TO
original 96% 91% 93.4%
filtered 85% 91.7% 88%

CL
original 95.3% 91.7% 93.5%
filtered 96.5% 90.5% 93.4%

RA
original 95.8% 94.1% 94.9%
filtered 91.2% 96.8% 93.9%

RL
original 89% 95.8% 87.8%
filtered 92.9% 97.9% 95.3%

LD
original 94.8% 95.5% 95.1%
filtered 93% 89.4% 91.2%

SU
original 95.6% 97.9% 96.7%
filtered 97.9% 96.7% 97.3%
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TABLE V: Matrix confusion using CBMR.

TO CL RA RL LD SU Recall
TO 262 4 0 6 8 8 91%
CL 2 264 1 20 1 0 91.7%
RA 3 1 271 8 5 0 94.1%
RL 2 6 3 276 0 1 95.8%
LD 1 2 6 0 275 4 95.5%
SU 3 0 2 0 1 282 97.9%

Precision 96% 95.3% 95.8% 89% 94.8% 95.6% 94.4%

TABLE VII: The performance comparison between different models.

Models Turning over Curving legs Raising an
arm

Raising a leg Lying down Sitting up

Baseline LSTM [34] 91.7% 62.5% 66.7% 91.7% 70.8% 81.3%
Bi-RNN [28] 65.6% 68.8% 52.1% 89.6% 52.1% 91.7%
IndRNN [29] 95.8% 60.4% 97.9% 41.7% 97.9% 96.5%

CBMR 88.5% 95.8% 93.8% 96.9% 80.2% 97.9%

TABLE VIII: Number of parameters and FLOPs between different models (in millions).
Models Baseline LSTM Bi-RNN IndRNN CBMR

Number of parameters 2.48 1.24 0.3 0.44
FLOPs 7.42 3.71 0.91 1.38

from 89% to 96%, and the values of recall are between 91%
and 97.9%. The results show that turning over is the most
difficult to be recognized, because its range of movement is
the least in all body movements. It is worth noting that the
motion trajectory of curving legs is almost the same as that of
raising a leg, so it is difficult to distinguish these two types of
body movement. Fortunately, CBMR, as shown in Table V, has
obtained considerable recognition results on these two types
of body movement.

To verify CBMR can accurately recognize body movement
without processing CSI data, we use cauer filter to process the
CSI data and remove some signal noise to make amplitude
fluctuations smoother. Fig. 10 shows the filtering effect of
six body movements which have different effects on WiFi
signals. The amplitude changes of all body movements are
clearer after being filtered. The experimental results before
and after filtering do not show much difference, as shown
in Table VI. The three types of body movements of curving
legs, raising an arm and sitting up have similar degree of
recognition before and after filtering. The recognition results of
raising a leg in the case of filtering is better than not filtering.
Unexpectedly, the recognition of turning over and lying down
after data filtering is not good. The reason may be that CSI
data information of these two body movements is removed
by the filter, resulting in the loss of important features. No
matter whether the experiments are conducted with raw data
or filtered data, our deep learning model has achieved desirable
results. To sum up, CBMR helps eliminate the trouble of data
pre-processing, reduce the experimental operation process and
operation time.

We compare the experimental results across different mod-
els. Table VII presents the performance of CBMR and the
existing neural network models such as baseline LSTM, Bi-

(a) Turning Over (b) Lying Down

(c) Raising an Arm (d) Raising a leg

(e) Curving legs (f) Sitting down

Fig. 10: Amplitude information of all body movements before
and after data filtering.
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RNN and IndRNN. Within all the models, sitting up is the
most accurately recognized, especially in CBMR, with 97.9%.
Surprisingly, raising an arm only obtains an accuracy of 41.7%
in IndRNN, yet higher in other models. It is obvious that
CBMR outperforms the others, and achieves better recognition
accuracy for each body movement. The main reason is that
CBMR combines the advantages of the other models, and
revises the details such as activation function and BN to make
it more suitable for handling time series data of tiny body
movement. In a different experiment in which the testee is
with a cover on his/her body, CBMR still achieves an average
accuracy of 87.5%, which verifies the robustness of CBMR as
well.

Otherwise, we take the number of parameters and FLOPs
as indicators of the computational complexity of the model. In
Table VIII we report the number of parameters and FLOPs for
each model. From the Table VIII we can see that CBMR also
has obvious advantages in complexity. The internal mechanism
of IndRNN determines that the number of parameters and
FLOPs are reduced and the accuracy does not decrease [29].
CBMR integrates the IndRNN network, thus reducing the
number of parameters and FLOPs.

In the field of WiFi sensing research in a single-person
environment [35], [36], there are always some dynamic factors
like presence of multiple human or mobility from surrounding
objects. These factors will indeed affect the research results,
removing these irrelevant dynamic factors is a hard problem
widely acknowledged in WiFi sensing research. To investigate
the effect of these factors on CBMR, we did the following
two sets of experiments. In the first group of experiments,
when collecting the data of the subjects, an irrelevant person
walks back and forth outside the red circle (far from the
line of sight) as shown in Fig. 5 (b), making some slight
movements. Retraining CBMR using this set of data, the
results of the experiment is 92.4%, which is 1.1% different
from the accuracy of single-person environment. In the second
group of experiments, when collecting the data of the subjects,
an irrelevant person does irregular actions slightly in the red
circle (near the line of sight). In this case, the accuracy of the
model is very poor, only 62%. The above two experiments
show that dynamic factors appearing near the line of sight
have a greater impact on the model results. In our proposed
application scenario, however, itfs rarely the case that presence
of multiple human or motion from surrounding objects is
involved. Instead, the condition of the PoI, who almost always
lives alone, is our major concern, e.g. Slitary elderly. In our
future work, we plan to solve the hard problem.

V. CONCLUSION

In this paper, CBMR, a Contactless Body Movement Recog-
nition model, has been proposed. It determines the types of
tiny body movement during sleep using CSI data collected
from a commercial off-the-shelf WiFi router and a laptop,
without complex equipment deployment. CBMR greatly re-
duces time of manually extracting features. Moreover, we con-
ducted extensive experiments to evaluate CBMR, the experi-
ment results indicate that the model gets desirable performance
and achieves average accuracy of greater than 93.5%.
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