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During joint actions, people typically adjust their own actions according to the ongoing actions of the partner,
which implies that the interaction modulates the behavior of both participants. However, the neural substrates
of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain
activity of leaders and followers performing hand actions.
Sixteen participants as 8 pairs performed continuous, repetitive right-hand opening and closing actionswith ~3-s
cycles in a leader–follower task. Subjects played each role for 5min. Magnetoencephalographic (MEG) brain sig-
nals were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was moni-
tored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the
hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands.
Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensori-
motor cortices. In the occipital region, beta modulation was stronger in followers than leaders; these oscillations
originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the
modulation indices, alpha and beta power did not differ between the conditions.
Our results indicate that the betamodulation in the early visual cortices depends on the subject's role as a follow-
er or leader in a joint hand-action task. This finding could reflect the different strategies employed by leaders and
followers in integrating kinematics-related visual information to control their own actions.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Our daily social life is filled with joint actions, during which we ad-
just our movements according to the ongoing actions of others to fit
the demands of various tasks. Behavioral studies have shown that
interacting individuals dynamically adapt their motor behaviors during
joint action (Konvalinka et al., 2010; Noy et al., 2011). Such a smooth ad-
aptation likely relies on the individual action–perception loops (Hari
and Kujala, 2009) that make it possible to both perform appropriate ac-
tions and to represent the actions of others. However, the neural basis of
such between-individuals mutual adaptation is still unclear.

In studies of social cognition, increasing attention is currently being
paid to interacting individuals (Babiloni and Astolfi, 2014; Dumas et al.,
2010, 2011, 2012; Schilbach et al., 2013; Sebanz et al., 2006). This trend
is in part due to recent developments in dual-scanning (or hyper-
scanning) methods using fMRI (Montague et al., 2002; Scholkmann

et al., 2013), fNIRS (Cui et al., 2012; Scholkmann et al., 2013), EEG
(Babiloni et al., 2006), and MEG (Baess et al., 2012; Hirata et al., 2014;
Zhdanov et al., 2015) to record brain activity of two or more persons at
the same time to facilitate studying the neural substrates of social interac-
tion (for reviews see, Babiloni and Astolfi, 2014 and Koike et al., 2015).

Hyperscanning studies have provided insight into themodulation of
band-specific EEG power within brains of interacting subjects in differ-
ent social contexts (Konvalinka et al., 2014;Naeemet al., 2012). Howev-
er, these studies have not linked the brain activity to movement
kinematics that, in addition to the context within which the movement
occurs, provides important cues for interpreting the actions of others
(Grafton and Hamilton, 2007).

A number of brain-imaging studies have demonstrated that limb-
kinematics parameters, such as velocity and acceleration, are coher-
ent with MEG brain signals during both executed and observed ac-
tions (Bourguignon et al., 2011, 2012, 2013; Piitulainen et al.,
2013). The coherence peaks at the movement frequency and its har-
monics, and the coherent brain signals mainly arise from the contra-
lateral primary sensorimotor cortex (Bourguignon et al., 2011, 2012;
Jerbi et al., 2007; Piitulainen et al., 2013). Qualitatively similar but
weaker coherence has been detected in the primary sensorimotor
cortex during action observation between the observer's MEG and
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the acting subject's hand kinematics (Bourguignon et al., 2013).
Moreover, during action observation, the amplitude of the beta-
band (about 20 Hz) sensorimotor rhythm co-varies with kinematics
parameters (Press et al., 2011). Coupling between limb kinematics
and brain activity thus seems a useful measure to study the neural
underpinnings of one's own movements.

The present study aimed to clarify how social interaction modulates
movement parameters and the brain activity related to hand kinemat-
ics. For this purpose, we adopted a joint hand-movement task in
which one subject of a dyad either followed or led the movements of
their partner. The brain signals of the twoparticipantswere recorded si-
multaneously using two accurately synchronized MEG systems located
5 km apart (Zhdanov et al., 2015), and the handmovements weremon-
itored at the same time using accelerometers. Phase–amplitude modu-
lation index (MI; Tort et al., 2008), a cross-frequency couplingmeasure,
was used to quantify the coupling between the phase of the acceleration
signal and the amplitude of MEG signals. We focused our analysis on
the alpha (7–13 Hz) and beta (13–25 Hz) frequencies, especially in
the sensorimotor cortices, where their role in both action execution
and action observation is clearly established (Caetano et al., 2007;
Hari et al., 1998).

Methods

Subjects

Nine gender-matched pairs of subjects (altogether 6 females and 12
males;mean±SD age 27.1±5.6 years, range 21–43 years) participated
in the experiment. All subjects were right-handed by self-report, had no
motor disorders, and had normal or corrected-to-normal vision. Before
participation, each subject signed a written informed consent form. The
study had a prior approval by the Ethics Committee of the Hospital Dis-
trict of Helsinki and Uusimaa. The experiment was conducted in accor-
dance with the Declaration of Helsinki.

Behavioral task

During the experiment, Subject A (SA) of a dyad was seated inside a
three-layer magnetically shielded room (Imedco AG, Hägendorf,
Switzerland) in theMEG Core of Aalto NeuroImaging in Espoo and Sub-
ject B (SB) in another three-layer magnetically shielded room
(Euroshield/ETS Lindgren Oy, Eura, Finland) at the BioMag laboratory
in Helsinki, 5 km apart. Subjects' upper bodies were visible to the
other partner as a video image on a screen about 1 m in front of them
(Fig. 1A). The end-to-end lag of the video transmission was about
100ms due to the delays in the camera, Internet connection and projec-
tor (Zhdanov et al., 2015). Themovement task used in the present study
was, however, robust with respect to the lag, since no interactive adap-
tation for the movement was necessary.

Subjects were asked to keep their right hand on the right side of the
body, at the height of their face, and to perform ~0.5 Hz repetitive
flexion–extensions of the right-hand fingers with fingers touching the
thumb at the most-flexed phase of the movement (see Fig. 1A). Hand
movements were performed in three 5-min sessions: (1) SA leading
and SB following, (2) SA following and SB leading, (3) SA and SB syn-
chronizing their movements with no specified leader or follower. The
behavioral data of the synchronous condition (3) have been presented
in a previous publication that describes the dual-MEG setup (Zhdanov
et al., 2015); here we did not analyze data from this condition since
the movements were almost sinusoidal and thus quite different from
those in the follow–lead conditions. The order of the sessions was ran-
domized and counterbalanced across the dyads. We will refer to the
condition as FOLLOW when a subject is following and LEAD when he/
she is leading.

Recordings

Brain signals were recorded simultaneously from both subjects
using two similar 306-channel whole-scalp MEG devices: Elekta
Neuromag® (Elekta Oy, Helsinki, Finland) at MEG Core of Aalto and
Vectorview™ at BioMag (Elekta Oy, Helsinki, Finland); see Baess et al.
(2012) and Zhdanov et al. (2015) for the full details of the dual-MEG
setup. Both devices have 102 sensor elements, each comprising one
magnetometer and two orthogonal planar gradiometers. Subjects'
hand movements were monitored with a 3-axis accelerometer (ACC;
ADXL335 iMEMS Accelerometer, Analog Devices, Inc., Norwood, MA,
USA) attached to the index finger. The MEG and ACC data were band-
pass filtered at 0.01–330 Hz and digitized at 1 kHz.

Because one follower–leader data block was not recorded for one of
the pairs due to an operator error, we excluded this pair from further
analysis. ACC andMEG data of SA and SBwere synchronizedwith an ac-
curacy of ~3 ms, as previously described (Baess et al., 2012). From the
5-min recordings, we analyzed 4 min of data; the first 20 s were
excluded to give the subjects time to adapt to the task and the last
40 s of data were discarded to avoid possible fatigue at the end of
the recording.

Analysis of ACC data

Figure 1B indicates preprocessing of ACC data. The ACC time series
from the three orthogonal channels were band-pass filtered between
0.05 and 195Hz using a finite-impulse-response (FIR)filter implement-
ed in FieldTrip Matlab toolbox (Oostenveld et al., 2011). The FIR filter
was used for the rest of the analysis unless stated otherwise. The
power-line noise was removed with notch filters centered at 50, 100,
and 150 Hz (bandwidths 10 Hz). Principal component analysis (PCA)
was then applied to the pre-processed ACC time series.

Since our subjects performed the movements mainly in the up–
down direction, the first principal component of the ACC signals
accounted for as much as 82.3% ± 11.6% (mean ± SD) of the total var-
iance. Accordingly, this first component was retained for the MI analy-
ses and multiplied by ±1 to match the polarities between the two
subjects of each dyad. Since themovementswere performed at frequen-
cieswell below3Hz, we used a 3-Hz low-passfilter to remove the sharp
transients occurring when the fingers touched the thumb. Finally, the
ACC signals were down-sampled to 250 Hz.

Synchronization of movements between SA and SB was evaluated
using the phase locking value (PLV) (Lachaux et al., 1999), which is de-
fined as

PLV ¼ 1
N

XN

t¼1

e j ϕ1 tð Þ−ϕ2 tð Þð Þ
�����

�����;

where N is the number of time points and ϕ1(t) (resp. ϕ2(t)) is the time
series of the instantaneous phase of the ACC signal for SA (resp. SB). The
phases ϕ1(t) and ϕ2(t) were extracted from the analytic signal obtained
by applying Hilbert transform to the ACC signal. The PLV yields a value
between 0 and 1, where 0 means no phase synchronization and 1
means perfect phase synchronization. The threshold for statistical signif-
icance of the PLVwas evaluated as the 95th percentile of a distribution of
200 surrogate PLV values. These values were calculated, as described
above, between the real ACC signal of SA and the surrogate ACC signals
of SB, obtained by Fourier transforming the original ACC signal, random-
izing the phases of Fourier coefficients, and performing an inverse Fouri-
er transform (Faes et al., 2004).

Preprocessing of MEG data

MEG data were preprocessed off-line using signal-space separation
(SSS) to suppress external interference and to correct for head move-
ments (Taulu et al., 2004). To remove eye-blink and heartbeat artifacts,
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independent component analysis was applied to the preprocessed data
band-pass filtered to 0.1–25Hz (Vigário et al., 2000). Components relat-
ed to artifacts were identified by visual inspection, and 0–5 components
(mean ± SD 2.4 ± 1.3) were removed from the data. Artifact-free data
were down-sampled to 250 Hz.

Determination of individual alpha frequencies

Individual frequencies of the alpha rhythmwere identified based on
a global MEG spectral power (computed based on all gradiometer sen-
sors). To do so, power spectral density at each gradiometer sensor was
estimatedwithWelch's method (window length 1024 samples, overlap
512 samples, hamming window), based on the artifact-free data from
all conditions. The global spectrum was then computed by averaging
across all gradiometers. Given that individual spectral peaks were clear-
ly within the 7–13-Hz frequency bands (see Results), we selected that
frequency range for further analyses of the alpha band.

Analysis of phase–amplitude coupling

The MEG data were band-pass filtered to the alpha (7–13 Hz) and
beta (13–25 Hz) frequency bands. Coupling between ACC and MEG
was studied with MI. First, the instantaneous amplitude of each MEG
time series was obtained with a Hilbert transform of the band-pass fil-
tered data. Next, the signals from the two planar gradiometers at each
sensor location were combined into one signal by calculating their
Euclidean norm at each time point. We included signals only from pla-
nar gradiometers because they are sensitive to activity right underneath
the sensor. We also computed a whole-brain amplitude time series by
taking the Euclidean norm of the time series from all gradiometer
sensors.

A composite time series was then constructed by combining the
phase time series of the ACC signal (ϕacc(t)) and the envelope of the
band-pass-filteredMEG signal (Ameg(t)). TheMEG power at each sensor
location was calculated as the mean of the square of Ameg(t) and the
whole-brain power was calculated by averaging the squared envelope
time series across time and sensors.

Second, the ACC time series ϕacc(t) was binned into K = 36 bins of
10°, and the average band-limited MEG amplitude within each bin

was calculated, resulting in a phase–amplitude distribution, which is
denoted as b Ameg N ϕacc(i) (i = 1, 2, …, K). Then, an entropy measure
H was calculated as

H ¼ −
XK

i¼1

pi log pið Þ;

with pi given by

pi ¼
bAmegNϕacc ið Þ

XN

i¼1

bAmegNϕacc ið Þ
:

Finally, theMIwas defined as the entropyH normalized by themax-
imum possible entropy (log(K)):

MI ¼ log Kð Þ−H

log Kð Þ :

TheMIwas calculated separately for each gradiometer pair, frequen-
cy band, condition, and subject. We first calculated the MI between the
subject's MEG and ACC signals. Then, group-level MI maps were
generated by averaging MI maps across subjects.

Determination of statistical significance of the MI

The statistical significance of the MI was tested by comparing the
real MI value (MIreal) with a set of 200 surrogate MI values (Canolty
et al., 2006), which were calculated from real Ameg(t) and surrogate
ϕacc(t). The surrogate time series ϕacc(t) was obtained from the surro-
gate ACC signals generated as described above. Finally, a z-score was
calculated for the MIreal as z = (MIreal − μ)/δ where μ and δ are the
mean and standard deviation of the surrogate MI distribution.

Statistical analysis

Comparison of theMEGpower and theMI between the FOLLOWand
LEAD conditions was performed for each sensor and each frequency
band with a two-tailed paired t test. Data were log-transformed before

Time (s)
0 2 4 6 8

ACC [site1]

ACC [site 2]

A B

P
C

A

Fig. 1.Experimental setup and summary of acceleration (ACC) signal analyses. (A) Experimental setup at one laboratory (upper panel, reproduced fromZhdanov et al., 2015) and one cycle
of handmovement (lower panel). (B) Sample of ACC signals from a representative pair of subjects. ACC signals were band-pass filtered between 0.05 and 195 Hz and notched at 50, 100
and 150 Hz, followed by principal component analysis (PCA). The first component of ACC signals was further low-pass filtered at 3 Hz.
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the statistical analysis. Bonferroni correction was used to correct for
multiple comparisons across sensors, i.e., a difference was deemed sta-
tistically significant at p b 0.05/102 = 0.00049.

Source analysis

To locate the sources of MEG signals displaying statistically signifi-
cant MI, source reconstruction was performed using the widely-
employed linearly constrained minimum-variance beamformer (Van
Veen et al., 1997), with fixed orientation. Since we did not have the an-
atomical brain images for all subjects, the Montreal Neurological Insti-
tute (MNI) template brain was used for each subject in the source
analysis. The MEG data and the segmented template brain were co-
registered using the anatomical fiducial points and extra head-surface
points. The forward solution was computed for a 1-cm uniform grid
spanning the brain volume, and the contribution of volume currents
taken into account using a realistically-shaped single-compartment
boundary-element model. A common beamformer spatial filter was de-
rived from the combined broadband preprocessed data of the two con-
ditions for each subject. Then, source time series were reconstructed for
each conditionwith the common filter. Finally, theMI at each grid point
was calculated as described above, and the resulting MI maps were in-
terpolated onto the anatomical image. A group source-level MI map
was obtained by averaging across subjects within each condition.

Results

Behavioral results

All subjects succeeded in performing the task according to the ex-
perimental instructions, as confirmed by a careful review of the record-
ed video of the experiments. Each follower was able to follow the pace
of the leader, without adding or dropping any movement cycles. The
mean ± SD movement frequencies for the follower and leader were
the same, on average 0.39 ± 0.17 Hz (range 0.24–0.80 Hz).

The proper behavioral performance was further validated by the
strong synchronization between the ACC signals of subjects SA and SB
(mean ± SD PLV 0.80 ± 0.16, all p b 0.005; upper panel in Fig. 2). ACC
phase differences between leaders and followers were on average

0.55 ± 0.28 rad (range 0.17–1.23 rad; lower panel in Fig. 2), confirming
that all leaders were in phase lead with respect to the followers. Hence
the role of leader/follower was played as instructed.

Individual alpha frequencies

The mean ± SD peak alpha frequency was 9.9 ± 1.4 Hz (range
7.1–12.2 Hz) based on the power spectral density averaged across all
gradiometer sensors (thereby including both occipital and rolandic
alpha). Thus, the individual spectral peaks were clearly within the
7–13 Hz frequency bands that we used for computing the modulation
indices.

Power and modulation index

Table 1 summarizes the whole-brain power and MI. During the
FOLLOW condition, the MI increased in both alpha and beta bands (for
all subjects, p b 0.05). However, alpha and beta powers did not differ be-
tween conditions (for all subjects, p N 0.05).

In both LEAD and FOLLOW conditions, the spatial distributions of
alpha and beta power showed clear peaks at the sensors over the left
and right sensorimotor cortices and the occipital region (Fig. 3A) but
the conditions did not show statistically significant differences
(p N 0.05, corrected). However, the ACC andMEG signals showed strong
cross-frequency phase–amplitude coupling, as quantified by MI
(Fig. 3B), at the sensors over both sensorimotor cortices; this effect
was seen in both alpha and beta frequencies and in both FOLLOW and
LEAD conditions. Source analysis showed that the strong beta MI
peaked bilaterally in the primary sensorimotor and in the occipital re-
gion (Fig. 4, Table 2).

The occipital beta MI was higher in the FOLLOW than in the LEAD
condition as revealed by between-condition comparison; the effect
was statistically significant (p b 0.05, corrected) at 3 sensors in the oc-
cipital region (Fig. 3B). All 16 subjects showed significant MI in at least
one of these sensors in the FOLLOW condition and 13/16 subjects in
the LEAD condition (Z-score threshold 1.96, corresponding to an uncor-
rected p b 0.05).

Fig. 5 shows, for each subject, the average betaMIs across these three
sensors in each condition. In 15/16 subjects, the MI was higher in the
FOLLOW than in the LEAD condition (mean ± SD of log10(MI) in FOL-
LOW −3.17 ± 0.34, in LEAD −3.40 ± 0.23; Cohen's dz = 1.44, p b

0.0001, paired t test performed on log-transformed data). Furthermore,
the FOLLOWand the LEAD conditions did not differ in power (log-trans-
formed after normalization by 1 f T2 cm−2) in the corresponding alpha
(mean ± SD in FOLLOW 3.23 ± 0.30, in LEAD 3.20 ± 0.29; dz = 0.22,
p = 0.39, paired t test) and beta (FOLLOW 3.10 ± 0.18, LEAD 3.08 ±
0.20; dz = 0.24, p = 0.36).

To further elucidate the role of the occipital beta MI, we calculated
the MI between the subjects' MEG signals and partners' ACC signals at
these 3 sensors and compared it with those calculatedwith the subjects'
MEG signals and their own ACC signals. The beta MI between subjects'
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Fig. 2. Between-subjects kinematics coupling. Phase-locking values (PLVs) and phase dif-
ferences at the movement frequency between the (acceleration) ACC signals of SA and SB
for each session and each pair. All pairs showed strong movement synchronization as in-
dicated by the high PLV. The phase-difference graph demonstrates that the leader's ACC
phase always preceded follower's one.

Table 1
Mean ± SD whole-brain modulation index (top two rows) and log-transformed MEG
power (bottom two rows; power normalized by 1 fT2 cm−2 prior to log-transforming)
in alpha and beta bands. The numbers within the brackets refer to the number of subjects
with Z N 1.96. The last two columns present the result of the group-level lead vs. follow
comparison.

FOLLOW LEAD Cohen's
dz

p value
(paired t test)

Modulation index
Alpha −3.28 ± 0.50 (15) −3.59 ± 0.49 (12) 0.84 0.0042
Beta −3.24 ± 0.52 (16) −3.43 ± 0.49 (15) 0.70 0.014

MEG power, mean ± SD
Alpha 2.73 ± 0.23 2.70 ± 0.23 0.36 0.17
Beta 2.64 ± 0.15 2.62 ± 0.17 0.23 0.36
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MEG signals and their own ACC signals was significantly higher than
that between the subjects' MEG signals and partners' ACC signals in
the FOLLOW condition (mean ± SD of log10(MI) −3.25 ± 0.3, dz =
0.58, p = 0.036) but not in the LEAD condition (−3.43 ± 0.23, dz =
0.35, p = 0.19).

Bar plots in Fig. 6 illustrate the across-subjects averaged phase–
amplitude coupling between ACC signals and beta activity. The mean
phase (across subjects and conditions) of peak amplitude in the
phase–amplitude distribution and its confidence interval were estimat-
ed using the CircStat Matlab toolbox (Berens, 2009). Table 3 summa-
rizes these results. The amplitude of beta oscillations peaked at ACC
phases around 0. The mean peak phase differences between the
FOLLOW and LEAD conditions and that between the left rolandic area
and the occipital region were not statistically significantly different
from 0 rad (95% confidence interval).

Furthermore,we segmented theACC andbeta-amplitude time series
into 8-s epochs (with a maximum overlap of 4 s) centered at the ACC
signal troughs. Line plots in Fig. 6 show the group-level ACC–beta-
amplitude distributions that were obtained by first averaging within
and then across subjects. The data were from representative sensors
showing the maximum MI in the FOLLOW condition from the left
rolandic area and for the occipital region.

Discussion

In the present study, we simultaneously measured MEG from pairs
of subjects who were performing interactive repetitive right-hand
movements as leaders or followers in successive runs. Strong modula-
tions of alpha and beta amplitudes as a function of the phase of hand ac-
celerations occurred both in the bilateral sensorimotor and occipital
cortices. Phase–amplitude coupling between hand kinematics and the
MEG beta activity at early visual areas was stronger in the FOLLOW
than LEAD condition. In the rolandic areas, the level of the mu rhythm
was dynamically modulated in the primary sensorimotor cortex, as re-
ported by previous studies of action execution and observation
(Babiloni et al., 2002; Caetano et al., 2007; Cochin et al., 1999; Hari
et al., 1998; Kilner et al., 2000, 2003; Press et al., 2011).

Role-specific beta modulation in the occipital cortex

The role-specific occipital beta MI (higher MI in the FOLLOW than
LEAD condition), likely arising from the early visual areas, could, in prin-
ciple, be related to attentional changes in the follower to both one's own
and partner's movements, so as to accurately maintain the movement
synchrony with the leader. However, the general effect of visual
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attention is to dampen the parieto-occipital alpha (~10 Hz) oscillations
(Foxe et al., 1998; Klimesch, 1999) whereas no such dampening has
been observed for the occipital beta (~20 Hz) power (Capilla et al.,
2014; Jones et al., 2010; van Ede et al., 2014). Our present data did not
show any between-condition differences in the parieto–occipital alpha
power, even when examined with a lenient statistical threshold at the
site of the significant effect on the occipital betaMI. Accordingly, it is un-
likely that our findings would be related to attentional effects.

A potential explanation for the role-specific occipital beta MI is that
it reflects the different strategies followers and leaders employed in in-
tegrating the kinematics-related visual information to control their own
movements. This interpretation is in linewith functions of the dorsal vi-
sual stream, extending from early visual areas to parietal cortices, in the
processing of visual information to integrate themwith elaborate action
plans (Goodale and Milner, 1992).

In our task, the leaders were able to perform the actions without re-
lying on the visual information (although they were all the time seeing
the follower) whereas the followers needed to accurately integrate the
visual information about the leader's actionswith the proprioceptive in-
formation about their own actions. This viewpoint is supported by the
finding that the occipital beta MI obtained using subjects' MEG signals
and their partners' ACC signals was not different from that obtained
using subjects' MEG signals and own ACC signals during the leader role.

On the contrary, the followers had higher occipital beta MI calculat-
ed using their own ACC signals than when using the partners' ACC sig-
nals. However, the ACC signals between subjects in the dyad
resembled each other closely, as can be seen from the high PLVs

between them. Thus, the modulation of the MEG signal by one's own
and partner's ACC signal could not be totally separated and we have to
be cautious in interpreting this finding. In addition, as we did not have
any non-interactive conditions, in which the subjects would have
movedwithout seeing each other, further studies are needed to unravel
the impact of the interactive condition itself on the beta MI.

Since we did not find any statistically significant effects of the role
the subjects played on the occipital alpha MI, our results are suggestive
of a functional dissociation between the occipital alpha and the occipital
beta during the applied hand-movement imitation task.

Role-non-specific alpha- and beta-power modulations in rolandic cortex

Modulation of rolandic alpha and beta power has been previously
reported in several interactive hand-movement tasks (Konvalinka
et al., 2014; Naeem et al., 2012). In a study by Naeem et al. (2012),
pairs of participants performed movements either in-phase, anti-
phase, or without interaction. Anti-phase and in-phase movements
were associated with significant suppression of the 10–12-Hz rolandic
rhythm in comparison with a rest period, whereas such suppression
was not observed for the movements without interaction (Naeem
et al., 2012). Along the same line, the interactive condition was related
to a stronger suppression of rolandic alpha (8–12 Hz) and beta
(13–25 Hz) power compared with non-interactive condition in a syn-
chronized finger-tapping task (Konvalinka et al., 2014). Additionally,
stronger rolandic alpha suppression was associated with the role of a
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Fig. 4. Group-level maps of beta modulation index (MI) at the source level. Maximal MI was observed in the bilateral sensorimotor cortex in both conditions. The MI also peaked in the
occipital region in the FOLLOW condition, as well as in the LEAD condition but with values lower than the visualization threshold.

Table 2
Values and MNI coordinates of local maxima of beta modulation index. L left hemisphere, R right hemisphere, SD standard deviation.

FOLLOW LEAD

Region Modulation index
(mean ± SD) × 10−3

MNI coordinates
[x y z]

Modulation index
(mean ± SD) × 10−3

MNI coordinates
[x y z]

Rolandic, L 5.1 ± 4.3 [−32 23 67] 5.5 ± 3.4 [−39 −25 57]
Rolandic, R 4.8 ± 5.7 [31 −23 65] 3.9 ± 5.5 [31 −22 63]
Occipital, L 1.1 ± 0.7 [−16 94 7] 0.6 ± 0.6 [−5 −92 30]
Occipital, R 1.2 ± 1.3 [26 89 11] 0.6 ± 0.4 [1 −90 28]
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leader. We did not find such power differences in the alpha or beta fre-
quencies between leaders and followers.

This discrepancy might be linked to differences in the experimental
setups. Indeed, the participants of Konvalinka et al. (2014) did not see
each other but instead received an auditory beat signaling the phase
of the partner's tapping. More importantly, in their study, the roles of
the leader and follower were not predefined but dynamically taken by

the participants as the task unfolded. This task difference may be of im-
portance since perceiving one's role as a leader vs. follower is associated
with increased BOLD activity in the right inferior frontal gyrus and right
inferior parietal lobule, interpreted as signs of increased cognitive con-
trol and self-processing that minimize variability of one's own perfor-
mance when acting as a leader (Fairhurst et al., 2014). Our result of
similar rolandic alpha and beta MIs during leader and follower roles is
in line with this interpretation as it was not necessary to minimize ac-
tion variability in our study since the leader and follower roles were
specified at the beginning of the task instead of dynamically competed
for.

Methodological considerations

The present study focused on the effects of roles in modulating
the coupling between the peripheral acceleration signal and brain
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Fig. 5. Beta modulation index (MI) and power at the occipital sensors. The data displayed
were obtained by averaging the MIs and power across the three sensors showing statisti-
cally significant group-level differences between the LEAD and FOLLOW conditions. Data
from the same subjects are connected with a line, showing that all but one subject had
higher occipital MI in the FOLLOW vs. LEAD condition.
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Table 3
Mean ± SD peak phases of the phase–beta-amplitude distributions across subjects. L left
hemisphere, CI confidence interval. Phases were wrapped to (−π, π).

FOLLOW LEAD FOLLOW–Lead
(mean [95% CI])

Rolandic, L −0.04 ± 0.92 −0.10 ± 0.89 0.1 [−0.07, 0.27]
Occipital 0.23 ± 0.85 −0.11 ± 1.05 −0.27 [−0.95, 0.41]
Occipital–rolandic, L
(mean [95% CI])

0.15 [−0.5, 0.8] 0.37 [−0.25, 0.99]
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activity. The dual-MEG setup would also make it possible to study
how social interaction modulates the interbrain functional coupling,
i.e., “hyperconnectivity”. However, since the hyperconnectivity changes
might reflect experimental conditions and/or synchronous changes in
physiological signals, identifying the real brain signatures of social in-
teraction remains challenging (Hari et al., 2015). Accordingly, method-
ological developments are needed to realize the benefit of
hyperscanning in increasing our understanding of social interaction.

Conclusion

The present dual-MEG study sought for kinematics-related differ-
ences in brain activity of leaders and followers during a simple hand
opening–closing task. Our main finding was a higher beta-band modu-
lation index in the occipital but not in rolandic regions in followers com-
pared with leaders, suggesting that leaders and followers employ
different strategies in integrating kinematics-related visual information
to control their own movements.
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