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A B S T R A C T

Forests are critical in regulating climate by altering the Earth's surface albedo. Therefore, there is an urgent need
to enhance our knowledge about the effects of forest structure on albedo. Here, we present a global assessment of
the links between forest structure and albedo at a 1-km spatial resolution using generalized additive models
(GAMs). We used remotely sensed data to obtain variables representing forest structure, including forest density,
leaf area index, and tree cover, during the peak growing season in 2005 with pure forest pixels that cover ~7% of
the Earth's surface. Furthermore, we estimated black-sky albedo at a solar zenith angle of 38° using the most
recent collection of the moderate resolution imaging spectroradiometer (MODIS; version 6) at shortwave, near-
infrared, and visible spectral regions. In addition, for the first time, we mapped the magnitude of the relationship
between forest structure and albedo at each pixel with a 0.5-degree spatial resolution. Our results suggested that
forest structure may modulate albedo in most of the sub-biomes. The response of shortwave albedo was always
positive to the leaf area index and negative to the tree cover (except for deciduous broadleaf forests in medi-
terranean and temperate regions), while the response to forest density varied across space in 2005. The spatial
map affirmed that the links between forest structure and albedo vary over geographical locations. In sum, our
study emphasized the importance of forest structure in the surface albedo regulation. This paper provides the
first spatially explicit evidence of the magnitude of relationships between forest structure and albedo on a global
scale.

1. Introduction

Forests are critical for regulating climate by altering the amount of
radiation that Earth reflects back to the atmosphere, known as surface
albedo. Although albedo is considered an essential variable in climate
studies (GCOS, 2003, 2006), it is still among the most uncertain com-
ponents of the radiation budget in the climate modeling (Liang, 2007).
The role of forests in regulating climate through albedo has been
highlighted in recent studies (Bright et al., 2017; Luyssaert et al., 2018;
Doughty et al., 2018). This suggests an urgent necessity for a better
understanding of the factors that control the surface albedo variations
in forests on a global scale.

Theoretically, land surface albedo may decrease if changes in a
forest result in Earth's surface absorbing more incoming solar radiation
(e.g., due to vegetation cover development) (Betts, 2000). However, the
surface albedo may increase if the changes in a forest result in reflecting
more incoming solar radiation (e.g., due to wider canopy gaps where

more underlying forest floor is exposed). Previous studies showed that
forest structure can physically determine the albedo of forests (Hovi
et al., 2019; Kuusinen et al., 2016; Lukeš et al., 2014; Manninen and
Stenberg, 2009).

Despite numerous studies to investigate the links between forest
structure and albedo (Abera et al., 2019; Bright et al., 2015, 2018; Culf
et al., 1995; Gao et al., 2005; Roberts et al., 2004), inconsistent results
in previous research suggest that the relationship between albedo and
forest structure has not been understood sufficiently (Dore et al., 2012;
Lukeš et al., 2013a; Sun et al., 2010). In some studies, measurements
showed a negative relationship between forest structure (i.e., forest
density and tree height) and albedo affected by management activities,
such as logging and thinning (Sun et al., 2010), while other studies
showed slightly positive relationships between forest structure (i.e.,
forest density, tree height, leaf area index, diameter at breast height)
and albedo (Dore et al., 2012; Lukeš et al., 2013a).

Part of the challenge in producing consistent results is that forest
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structure, along with the forest floor that usually has different optical
properties than the tree canopy layer, can considerably influence al-
bedo values (Hovi et al., 2016). Thereby, the degree to which forest
structure can explain albedo may vary due to the confounding effects of
understory and overstory in a forest (Alibakhshi et al., 2019). Another
challenge is that the structural variables and albedo datasets used in the
past studies were obtained from different satellite images with various
spatial resolutions and/or used different methods that lead to difficul-
ties in precisely understanding the mechanisms behind the links. In
addition, the majority of the previous studies have been conducted over
limited geographic locations, and therefore they may not represent
different forest structures with varying proportions of different un-
derstory species or compositions that might be the reason behind in-
consistent results of previous studies. Thus, the clear lack of re-
presentation of the links between forest structure and albedo at
different biomes highlights the need for a study on a global scale. Until
such contradictions can be resolved and the influence of forest structure
on albedo is better understood, the research question of how forests
modulate albedo remains unanswered.

This study aims to enhance our knowledge of how variations in
forest structure affect albedo and to quantify the degree to which forest
structure and forest types can explain albedo changes on a global scale.
The global spatial coverage from satellite images can offer new insights
into this study. We hypothesized that the links between forest structure
(represented in this study by forest density, tree cover, and leaf area
index) and albedo are dependent on geographical locations. We tested
this hypothesis by generating the first global map representing the
magnitude of the relationship between forest structure and albedo lo-
cally at the pixel-level.

Since solar zenith angle and snow can considerably influence albedo
at different geographical locations (Ni and Woodcock, 2000), we re-
moved pixels containing snow and estimated albedo at a fixed solar
zenith angle. Our analyses were strengthened by (1) identifying pure
forest type pixels including evergreen needleleaf (EN), evergreen
broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB),
mixed forests (Mixed), and woody savannah forests (WS) at a 1-km
spatial resolution over major biome zones, including boreal, medi-
terranean, temperate, and tropical regions, (2) assessing the quality of
the images using water and slope masks at a 30-m spatial resolution,
and (3) using the most recent version of moderate resolution imaging
spectroradiometer (MODIS) satellite images, i.e., version 6 (Wang et al.,
2018).

2. Materials and methods

2.1. Overview

In this study, we used a large variety of freely available remotely
sensed data (Table 1). Although no comprehensive definition exists for
forest structure (Delang and Li, 2012), we used a set of variables de-
scribing different aspects of forest structure by presenting information
on the distribution of forest layers horizontally, including forest den-
sity, tree cover, and leaf area index (LAI).

First, we performed a set of pre-processing steps to keep only high-
quality pixels in the datasets used in this study (Section 2.2). Next, we
described the procedure of identifying sub-biomes based on the ecor-
egions and land cover maps (Section 2.3), to later identify the timing of
the peak growing season (Section 2.4). Then, we prepared a separate
dataset for each sub-biome to test the hypothesis (Section 2.5). The
information related to the multicollinearity test, fitting of generalized
additive models (GAMs), quantifying R2, variable importance, and re-
sponse curve estimations are described in Sections 2.6 and 2.7. We
explored further by quantifying the magnitude of changes in albedo in
response to forest structure at each sub-biome (Section 2.8) and map-
ping the R2 of the link between forest structure and albedo (Section
2.9).

All statistical analyses and visualizations were performed in R sta-
tistical software (R Core Team, 2013), QGIS (QGIS Development Team,
1991), and Google Earth Engine (Gorelick et al., 2017). We used dif-
ferent R packages, including “raster” (for basic raster analysis)
(Hijmans and van Etten, 2012), “rts” (for time series analysis) (Naimi,
2016), “mgcv” (for fitting GAMs) (Wood, 2011), “phenopix” (for de-
tecting peak growing season) (Filippa et al., 2016), “usdm” (for mul-
ticollinearity test) (Naimi et al., 2014), “ggplot2” (Wickham, 2016),
and “rasterVis” (for visualizations) (Lamigueiro and Hijmans, 2018).

2.2. Datasets and quality

2.2.1. Major biome zone
We used the ecoregions map (Olson et al., 2001) to identify four

major biome zones. Ecoregions were defined as extensive lands con-
taining distinct ecosystems and species with boundaries that approx-
imate their original extent. This map was calculated from biogeo-
graphical studies that synthesized information about the distributions
of plants and animals, the world's biotic province maps, and different
vegetation types (Olson et al., 2001). To identify the major biome
zones, we selected all ecoregions representing forests, except mangrove
forests (Table A1, Fig. 1). Mangrove forests are usually mixed with
water, which can profoundly influence their reflectance, causing un-
certainties in albedo values over MODIS pixels (see Section 2.2.7).

2.2.2. Forest type
To detect the boundary of forest types, we used the classes provided

by the International Geosphere-Biosphere Program (IGBP, Channan
et al., 2014), obtained from the Land Cover Type 1 of the MODIS
product (MCD12Q1 version 6: Friedl and Sulla-Menashe, 2019) with a
500-km spatial resolution for the year 2005. This product identified
forests based on the canopy cover percentage and tree heights (e.g., tree
cover> 10%, and height> 2-m), the leaf type (broadleaf, needleleaf),
and their phenology (evergreen, deciduous), using a supervised classi-
fication method. We selected the MCD12Q1 product over other land
cover maps, because its spatiotemporal resolution is well-matched with
other data chosen in this study (Table 1) and because it had an ac-
ceptable overall accuracy of 73.6% (Sulla-Menashe et al., 2019).

According to the Food and Agriculture Organization of the United
Nations (Carle and Holmgren, 2003), land with more than 10% tree
cover and an area of more than 0.5 ha is considered a forest. However,
we only selected forest types with tree cover greater than 30%, in-
cluding EN, EB, DN, DB, Mixed, and WS forest classes (Table A2), be-
cause of low classification accuracy (i.e., 25%) reported for forest types
with tree cover less than 30% in the MCD12Q1 product (Friedl et al.,
2010). Furthermore, we used the quality assessment flags of MCD12Q1
to exclude low-quality pixels. As an additional step, we also excluded
the pixels with tree cover less than 30% using the vegetation continuous
fields (VCF) dataset (Section 2.2.5).

2.2.3. Leaf area index (LAI)
LAI is defined as a one-sided green leaf area per unit ground area in

broadleaf canopies and as one-half of the total needle surface area per
unit ground area in coniferous canopies (Myneni et al., 1999). LAI
describes the number of equivalent layers of leaves relative to a unit
ground area (Myneni et al., 1999). In this study, we used LAI for two
purposes: first, to detect the peak growing season in each sub-biome (a
forest type in a biome), and second, as one of the forest structure
variables that may explain albedo. We obtained LAI for the year 2005
from the MODIS product (MCD15A3H version 6, 4-day composite, 500-
m x 500-m spatial resolution) (Myneni et al., 2015). In the MCD15A3H,
LAI is estimated from atmospherically corrected bi-directional re-
flectance factors in the red and NIR spectral bands of MODIS images
using a radiative transfer model designed for vegetation (Knyazikhin
et al., 1998). We used the quality tags in the ancillary data of the
MCD15A3H product (Myneni et al., 1999) to exclude low-quality LAI
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pixels as well as pixels with snow based on the main algorithm re-
trievals (both with and without saturation).

2.2.4. Forest density
To obtain the forest density, we used the only available forest

density map on a global scale with a spatial resolution of 1-km, pro-
duced by Crowther et al. (2015), for the year 2005. This map was
originally calculated from a predictive model that used 19 variables as
predictors, including topographic (i.e., latitude, slope, elevation, aspect,
and roughness), climatic (i.e., temperature, precipitation, aridity, and
evapotranspiration), and vegetation variables (i.e., enhanced vegeta-
tion index and LAI, obtained from MODIS products), and over 420,000
forest inventory field plots as training data. The R2 of the forest density
was reported as 0.97 for country-wise total values (Crowther et al.,
2015). From this variable, we excluded the pixels with a value of zero,
which discarded 0.5% of all the pixels in the dataset.

2.2.5. Tree cover
Tree cover is generally defined as the proportional, vertically pro-

jected area of vegetation (including leaves, stems, branches, etc.) of
woody plants above a given height (Sexton et al., 2013). We obtained
the high-quality tree cover map from the vegetation continuous fields
(VCF) dataset with a 30-m spatial resolution for the year 2003–2008
(Sexton et al., 2013). This product was derived from seven bands of
Landsat-5 Thematic Mapper (TM) and/or Landsat-7 enhanced thematic
mapper plus (ETM+) satellite images. VCF was estimated using a pie-
cewise linear function of surface reflectance and temperature. The
training data to estimate the tree cover were derived from the MODIS
tree cover layer at 250-m.

In this study, all the forest structure variables and albedo were
obtained for the year 2005, except tree cover that was calculated from
data obtained between 2003 and 2008, since it was the only available
product that was matched with other datasets. We assumed the VCF

Table 1
List of data products used in this study.

Name Unit Product Spatial resolution and sensor Year Projection system Data source

Sub-biomes

Ecoregions – – – 1973–2000 Geographic Olson et al., 2001
Forest type – MCD12Q1 500-m

(MODIS)
2005 Sinusoidal Friedl and Sulla-Menashe, 2019

Forest structure components

Forest density number of trees/km2 – 1-km 2005 Geographic Crowther et al., 2015
Tree cover percentage, % VCFa 30-m

(Landsat)
2003-2008 Geographic Sexton et al., 2013

LAI m2/m2 MCD15A3H 500-m
(MODIS)

2005 Sinusoidal Myneni et al., 2005

Albedo and ancillary datab

BRDF parameters - MCD43A1 500-m
(MODIS)

2005 Sinusoidal Schaaf and Wang, 2015

BRDF-albedo quality – MCD43A2 500-m
(MODIS)

2005 Sinusoidal Schaaf and Wang, 2015

Solar zenith angle degree,
°

MCD43A2 500-m
(MODIS)

2005 Sinusoidal Schaaf and Wang, 2015

Snow – MCD43A2 500-m
(MODIS)

2005 Sinusoidal Schaaf and Wang, 2015

Digital elevation model m – 90-m
(SRTMd)

– Geographic Jarvis et al., 2008

Water area – JRCc 30-m
(Landsat)

2005 Geographic Pekel et al., 2016

a Vegetation continuous fields (VCF).
b Google Earth engine (GEE).
c Joint Research Center (JRC).
d Shuttle radar topography mission (SRTM).

Fig. 1. Forest characterization based on forest type and major biome zone. A:
major biome zones according to the ecoregions map, B: forest types, including
evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf
(DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody savannah
forests (WS), according to the MODIS land cover map for the year 2005.
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product could sufficiently represent tree cover for the year 2005, be-
cause land cover changes between 2003 and 2008 were removed in this
product by calculating the standard deviation of annual tree cover
changes over 10% (Sexton et al., 2013). In addition, the comparison
between this product and the light detection and ranging (lidar)-based
measurements for the growing season of 2005–2006 demonstrated
reasonable agreement with root mean square error (RMSE) of 16.8%
(Sexton et al., 2013). In this study, we removed the uncertain tree cover
pixels with RMSE greater than 30%, using pixel-wise reports of un-
certainty in the product.

2.2.6. Slope and water masks
We used a digital elevation model (DEM) dataset, obtained from the

shuttle radar topography mission (SRTM) with a 90-m spatial resolu-
tion, to calculate slope values (Jarvis et al., 2008) that were used for
pre-processing of albedo datasets (Section 2.2.7). We generated the
slope values using the R “raster” package (the terrain function). We
then aggregated the slope values spatially from 90-m to 1-km using the
arithmetic mean function.

Furthermore, we obtained the JRC yearly water classification his-
tory dataset (v1.0) with a 30-m spatial resolution in 2005 (Pekel et al.,
2016), and used it for pre-processing of albedo (Section 2.2.7). This
product is derived from top-of-atmosphere reflectance and brightness
temperature images of Landsat. This dataset contains the locations and
distribution of permanent surface water, with a classification accuracy
of 98.56% (Pekel et al., 2016).

2.2.7. Albedo dataset
We estimated albedo for three different spectral regions, i.e.,

shortwave (SW, 300–5000 nm), near-infrared (NIR, 700–5000 nm), and
visible (VIS, 300–700 nm) (Wang et al., 2018). We used these three
spectral regions because they represent essential information on forest
and climate. Also, a combination of NIR and VIS spectral regions can
provide a wealth of information about vegetation dynamics (Treitz and
Howarth, 1999).

We used MODIS products of MCD43A1 and MCD43A2 with a 500-m
spatial resolution to obtain the parameters of bidirectional reflectance
distribution function (BRDF) model, solar zenith angle (SZA), incre-
mental quality values and snow information. We took advantage of
numerous improvements in algorithms of the latest version of the
MODIS product (i.e., v006) (Wang et al., 2018). To eliminate the effects
of SZA variations between biomes, we computed black-sky albedo at
fixed SZA using the following equation (Strahler et al., 1999):

= + − − × + × +

− − × + ×

α θ λ

f λ f λ θ θ f

λ θ θ

( , )

( ) ( )( 0.007574 0.070987 0.307588 )

( )( 1.284909 0.166314 0.041840 )

bs

iso vol geo
2 3

2 3 (1)

where αbs (θ,λ) is black sky albedo, which describes the albedo under
direct illumination conditions (i.e., the sun as a point source of illu-
mination), at band λ, and θ is the SZA. In this study, θ of 38° was used,
because it is a realistic value for all the sub-biomes. We selected this
value by computing the minimum, maximum and mean values of SZA
in each sub-biome (Table A3). Based on this analysis, we observed that
the mean of SZA for all the forest pixels included in this study was 28°.

However, 28° would be an unrealistic value for the boreal region, be-
cause SZAs in the boreal region are usually larger. Therefore, we
decided to use the mean SZA of the boreal region (i.e., 38°) to calculate
albedo for all forest pixels (Table A3). The fiso(λ), fvol(λ), and fgeo(λ)
refer to the three weighting parameters in the model (isotropic, volu-
metric, and geometric, respectively) for λ (i.e., SW, NIR and VIS). We
selected the black-sky albedo in this study because it is free from at-
mospheric effects and thus reveals the effects of forest structure without
disturbing factors. Note that white- and blue-sky albedos were highly
correlated with black sky albedo (slope: ~1 and intercept: ~−0.0002),
and therefore, results for white- and blue-sky albedos would likely be
similar to black sky albedo (see Section A1.1 and Fig. A1).

To avoid the error in forests located in rugged terrain due to topo-
graphy-related issues, we excluded pixels with a slope greater than 10°.
The number of pixels excluded due to high slope values (greater than
10°) was equal to 3%, 6%, 9%, and 5% of the total pixels in the boreal,
mediterranean, temperate, and tropical regions, respectively (Fig. A2).

Furthermore, the very low reflectance of water may affect albedo
values significantly in pixels that are partly water-covered. Although
the MCD12Q1 product has a separate class for water, it is possible that
pixels partially covered by water have been classified as forest. Thus,
we used a water mask with 30-m resolution (data in Section 2.2.6) to
exclude forest pixels that had water cover greater than 5% of a pixel
area this step resulted in excluding low-quality pixels equal to 15% of
all the pixels in the boreal region, 5% in the mediterranean region, 6%
in the temperate region, and 4% in the tropical region (Fig. A3).

2.3. Sub-biomes identification

We used the major biome zones (Section 2.2.1) and the forest types
(Section 2.2.2) to identify sub-biomes. We considered different forest
types within each biome as a sub-biome. For example, boreal DB forest
is a sub-biome of the boreal region. To identify pure forest pixels, we
aggregated the 500-m forest type pixels to 1-km spatial resolution using
a modal function. Then, we set a criterion that if all the fine resolution
pixels have the same forest type within a coarse resolution pixel, it is
then considered as a pure pixel. This procedure resulted in removing
7,113,859 out of 42,069,856 high-quality forest pixels at a 1-km re-
solution (Table 2). The remaining pixels were classified either as mixed
forests (tree cover more than 60%) or woody savanna (tree cover be-
tween 30%–60%), based on tree cover (land cover map definitions:
Table A2 and Fig. 1).

2.4. Peak growing season

We calculated the peak growing seasons in different sub-biomes to
use their corresponding times later for obtaining LAI and albedo (Fig.
A4). In this study, the peak growing season was defined as the period
over a year when environmental conditions are suitable for plants to
reach their maximum leaf area index in a forest. We limited our ana-
lyses to the peak growing season to exclude the influence of snow and
varying phenological stages of vegetation on the relationship between
forest structure and albedo. Thereby, our results represent a similar
phenological stage in different sub-biomes.

To estimate the timing of the peak growing season, we first

Table 2
Area [km2] of pure forest pixels over the growing season in 2005. The columns refer to total area as well as area per each forest type, including evergreen needleleaf
(EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody savannah forests (WS).

EN EB DN DB Mixed WS Total

Boreal 1,579,456 0 362,540 114,201 3,965,227 6,370,820 12,392,244
Mediterranean 22,612 32,573 0 11,997 41,924 155,178 264,284
Temperate 1,045,315 389,547 24,328 1,561,611 3,046,696 2,794,644 8,862,141
Tropical 14,792 10,020,388 0 282,731 977,587 2,141,830 13,437,328
Total 2,662,175 10,442,508 386,868 1,970,540 8,031,434 11,462,472 34,955,997

S. Alibakhshi, et al. Remote Sensing of Environment 246 (2020) 111854

4



extracted high-quality LAI time series (Section 2.2.3) using an ar-
ithmetic mean function for each sub-biome between the 1st of January
and the 31st of December 2005. Then, we identified the time window of
the stable phase around the peak growing season. We noted that the
length of the window should not be long enough to include leaf area
changes, for example, due to seasonality or timing of flushing that may
change the albedo since the newly emerged leaves usually have higher
albedos (Hovi et al., 2017), and also not so short that it would sub-
stantially reduce the number of high-quality observations.

We explored the methods available in the “phenopix” R package to
detect the time window of the stable phase (Filippa et al., 2016). We
found that only the Gu method produced consistent results with the
least likelihood of failure compared with the other methods. The same
reasoning for selecting the Gu method is reported by Snyder et al.
(2016). The Gu method quantifies the photosynthetic cycle of plant
communities and breaks down the dynamics of plant community pho-
tosynthesis into five distinctive phases in sequence. One of these five
phases is a stable phase that refers to the length of the period between
the stabilization day (i.e., the day on which the peaked canopy pho-
tosynthetic capacity is predicted to occur), and the downturn day (i.e.,
the day on which the peak growing season starts to decrease sharply).
We detected the time window of peak growing season in LAI time series
for the year 2005 by looking at the stable phase derived from the Gu
method. As an example, we showed two plots of the stable phase esti-
mated by the Gu method, one from the boreal region and another from
the tropical region (Fig. A5).

We found that in most of the biomes, selecting one month as the
stable phase around the peak growing season would meet our criteria,
i.e., ± 15 days around the max value of LAI in one year. We assigned a
month (i.e., ± 15 days) around the maximum LAI in each sub-biome,
except for EB forests in the tropical region where we considered two
months (i.e., ± 30 days), as it experienced a lengthier stable phase than
the other sub-biomes (Fig. A5). The EB forests in the tropics rarely had
good-quality pixels due to the cloud conditions. The selection of a two-
month window allowed us to have a greater number of high-quality
pixels (around three million more pixels), that ultimately resulted in a
better representability of the tropical region in our analysis. Next, we
used the high-quality LAI product to identify when the LAI value
reached its maximum (Fig. A4), and then we assigned the length of the
window obtained from the Gu method.

2.5. Data extraction and quality assessment

To have a consistent spatial database, all the data were aggregated
to a 1-km spatial resolution. We used a mean function for all the da-
tasets, except for the land cover map that was aggregated with a modal
function. In addition, all the data were analyzed with the geographic
coordinate system, and therefore, the MODIS products were trans-
formed from a sinusoidal to a geographic coordinate system. We per-
formed all the analyses using geographic coordinates, since only the
albedo, LAI, and land cover products had a sinusoidal coordinate
system among all the eight datasets.

Based on the quality assessments (Section 2.2), we kept not only
high-quality records of all the variables but also ensured that if a pixel
was missing from one variable, it was excluded from all the other
variables, even if it had high-quality values for the other variables.
Thereby, for example, the mean LAI was taken from the pixels con-
sidered to be “high quality and not missed” for all other variables (see
Table 3). This step was essential in exploring the relationships correctly
(e.g., comparison between mean LAI and mean albedo at each sub-
biome), as many albedo pixels were removed due to the quality issues,
though they were not necessarily removed due to low quality in the
other products. Finally, we calculated the mean of each variable (al-
bedo, LAI, forest density and tree cover) extracted from the pure forest
pixels in each sub-biome.

2.6. Test of multicollinearity

We performed a multicollinearity test as a final step in the data
preparation procedure. Multicollinearity refers to a situation in which
at least two strongly correlated variables are used as predictors in a
predictive model. Multicollinearity may lead to a misleading inference,
therefore, performing a multicollinearity test is a necessary step before
fitting the model. Given that we used a predictive model (Section 2.7)
to explore the links between forest structure and albedo, we tested
whether the predictor variables (i.e., forest density, tree cover, and LAI)
were subject to the multicollinearity issue. We used two standard
methods to test multicollinearity, called variance inflation factor (VIF)
and pairwise correlation (PC), which uses the Pearson correlation
coefficient (Naimi et al., 2014). As a rule of thumb, a VIF greater than
10 or a PC greater than 0.7 could be a signal that the predictors have a
collinearity problem (Dormann et al., 2013). The results of multi-
collinearity test can be seen in Section 3.2.

2.7. Generalized additive model (GAM)

In order to investigate the relationship between forest structure and
albedo, we used generalized additive models (GAMs) (Hastie and
Tibshirani, 1990) implemented in the “mgcv” library in R (R Core
Team, 2013; Wood et al., 2016). This modeling method is a flexible
non-parametric approach for exploring linear or non-linear relation-
ships (Eqs. (2)–(3)), that can characterize patterns in a complex system
such as a forest ecosystem. Unlike parametric linear models, the shape
of the relationship in GAMs is data-driven (rather than model-driven as
specified by assuming a form of parametric relationship), which al-
lowed for the use of smoothing functions to deal with highly non-linear
and non-monotone relationships (Hastie and Tibshirani, 1990). In this
study, GAMs were fitted using the restricted maximum likelihood es-
timator (REML), which has been shown to be more robust compared
with the other estimators (Wood, 2017). We fitted the following
models:

= + + + +α γ s s s ε(λ) (Density) (Tree cover) (LAI)bs 0 1 2 3

ε N σ~ (0, )2 (2)

αbs(λ) = γ0 + s1(Density) + s2 (Tree cover) + s3 (LAI) + ti1
(Density,Tree cover) + t2 (Tree cover,LAI) + t3 (Density,LAI) + ε

ε N σ~ (0, )2 (3)

where αbs for λ (i.e., SW, NIR and VIS) is the black-sky albedo at 38° of
SZA, γ0 refers to the model intercept, s1, s2, s3 are the smooth functions
fitted using splines, t1, t2, t3 are the tensor product interactions smooth
functions for the interaction terms, and ε refers to the residuals of the
model assumed to follow a normal distribution as N(0,σ2). We then
used a variance partitioning method to test the proportion of albedo
explained by each forest structure variable. A common problem in using
flexible nonlinear methods, like GAMs, is the overfitting issue
(Hawkins, 2004), which makes the model more complex than is needed.
We used the penalized iteratively re-weighted least squares (P-IRLS)
method (Wood, 2000) implemented in the mgcv library to avoid and
control the overfitting issue.

We used the deviance explained and adjusted R2 statistics to mea-
sure the performance (goodness-of-fit) of the GAMs. For each model,
the p-value was extracted that shows whether the model fit, i.e., the
links between the forest structure and albedo, was significant (Hastie
and Tibshirani, 1990).

To understand whether there is any interaction between the pre-
dictor variables that explain the albedo variation, we also fitted a new
model, to which the interactions between different pairs of the forest
structure variables were added as new terms to the original form of the
model (Eq. 3).

To fit the models, we first drew 10,000 pixels randomly from each
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sub-biome and extracted the high-quality data from the forest structure
and albedo. The dataset (with 10,000 records) was then used to fit two
GAMs (with and without interaction terms). We repeated this procedure
100 times, resulting in 200 GAMs (100 for each modeling form) for
each sub-biome. We used these models to explore the links between
forest structure and albedo and quantify the confidence interval for
each parameter extracted (e.g., R2, response curve).

In addition, we measured the importance of each forest structure
variable (hereafter “variable importance”) in explaining albedo in the
models using a permutation test. This method measures Pearson's cor-
relation coefficient (COR) between the predicted values of albedo (by
the model) and predictions where a predictor variable is randomly
permuted. If the contribution of a predictor variable to the model is
high, it is expected that the predictions are more affected by a per-
mutation, and therefore, the correlation is lower. Therefore, “1 – COR”
can be considered as the measure of variable importance (Naimi et al.,
2014).

Furthermore, we defined the marginal effects (Williams, 2012) as
the expected changes of albedo in response to changes in a forest
structure variable, while other forest structure variables are kept con-
stant at their mean values. The results were visualized as a plot for each
variable that clarifies the form and shape of the relationship. The plot is
also named the model's response curve (Elith et al., 2005; Heegaard,
2002).

2.8. Quantifying the trend of changes

To quantify the magnitude of the albedo trend change (%) due to
the forest structure change, we used the Theil-Sen's slope (hereafter
called Sen's slope) test (Sen, 1968). Sen's slope is a non-parametric test
that is known as an alternative to parametric linear regression since it is
robust to outliers. This method estimates the slope between all the
possible pairs of records (Eq. (4)) and then takes the median of all the
slope values. This test computes the slope (i.e., the linear rate of
change) as:

=

−

−

d median
y y
x xij
i j

i j (4)

where yi and yj are data values at times xi and xj (or two consecutive
values), respectively with i > j. The median of N values of dij is Sen's
estimator of the slope. Then, we estimated the change magnitude of the
slope (Yue and Hashino, 2003) as a percentage of mean expressed as a
percentage (% change), i.e. % change of albedo due to change in a
forest structure variable as:

=

× −

change
d max (x) min (x)

mean(y)
%

( )ij

(5)

We calculated the % change of albedo due to change in each forest
structure variable in each sub-biome, using the drawn sample data used
for the GAMs.

2.9. Spatial analyses

To examine the spatial dependencies of the links between forest
structure and albedo, we fitted a new set of GAMs over a globally ex-
tended coarse resolution (coarse grid cell: 50-km × 50-km) regular grid
map. Instead of sub-biomes, each coarse grid cell was used as a spatial
unit over which we fitted a GAM (using Eq. 2 following the same
procedure used in Section 2.7) and then assigned the model's R2 to the
coarse grid cell. We repeated this procedure to also test the links be-
tween each forest structure variable and albedo separately (i.e., each
model used an individual forest structure variable as the predictor).
These tests allowed for spatially explicit explorations of the relationship
between forest structure and albedo, in order to understand the mag-
nitude of the relationships, and to test whether and how the relation-
ships vary over space.

3. Results

The following sub-sections focus on the main results of the links
between forest structure and albedo. We reported the results of the
quality assessment of observations in Section A1.2 of the supplement
and, based on these analyses, we summarized the number of available
pixels at each sub-biome (Table A4). We also reported the results for the
detection of peak growing season (Fig. A4, Section A1.3) and variable
importance of GAMs (Section A1.4) in the supplement.

3.1. The mean and standard deviation of forest structure components and
albedo

The mean and standard deviation values of albedo showed obvious
variations in SW, NIR, and VIS regions in each sub-biome (Table 3,
Table A5). The mean and standard deviation of VIS albedo showed
notably lower values than NIR albedo, while SW albedo exhibited mid-
range values between NIR and VIS albedos (Table 3, Table A5). In
addition, the mean albedo varied significantly over major biome zones;
otherwise, the variation of albedos was reasonably low over forest types
(Table 3). The lowest values of SW albedo were evident for EN forests
(mean albedo was 0.09) and the highest for DB forests (mean albedo
was 0.13).

3.2. Multicollinearity

Multicollinearity test among the predictors showed that VIF values
were always between 1.02 and 1.89 in all the cases, meaning that the

Table 3
Mean values of variables used in this study during the peak growing season in 2005 in pure forest pixels at a 1-km spatial resolution. The columns refer to forest types,
including evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody savannah
forests (WS). The density values are rescaled (divided by 10,000) representing the number of 10,000 trees (e.g., 6.09 = 60,900 trees).

SW albedo NIR albedo VIS albedo
EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS

Boreal 0.09 NA 0.11 0.12 0.11 0.1 0.15 NA 0.18 0.21 0.19 0.17 0.02 NA 0.02 0.03 0.02 0.03
Mediterranean 0.1 0.11 NA 0.15 0.12 0.11 0.16 0.18 NA 0.25 0.19 0.17 0.03 0.03 NA 0.02 0.03 0.03
Temperate 0.09 0.11 0.11 0.14 0.12 0.12 0.15 0.18 0.19 0.25 0.21 0.2 0.02 0.02 0.02 0.02 0.02 0.03
Tropical 0.09 0.12 NA 0.11 0.12 0.13 0.15 0.2 NA 0.18 0.2 0.21 0.02 0.02 NA 0.03 0.03 0.03

Density [number of trees/km2] Tree cover [%] Leaf area index [m2/m2]

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS
Boreal 6.09 NA 4.47 7.18 6.95 5.22 60 NA 46 48 57 41 2.7 NA 3.96 3.11 3.68 2.45
Mediterranean 7.31 8.57 NA 16.5 9.27 6.74 46 54 NA 53 47 37 2.14 4.13 NA 4.93 3.4 1.86
Temperate 6.06 5.9 5.49 5.27 5.94 4.48 60 63 55 56 57 42 2.87 4.64 3.76 4.77 4.12 3.4
Tropical 7.04 4.25 NA 5.08 4.54 3.39 60 73 NA 52 50 40 3.39 5.71 NA 2.42 4.14 3.5
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predictors were independent, and therefore, there was no sign of mul-
ticollinearity (Table A6). In addition, the results of the pairwise cor-
relation (Table A7) were consistent with the VIF test and showed no
sign of the issue.

3.3. Performance of GAMs in each sub-biome

The GAM models that used the interaction terms between the forest
structure components (in addition to the original variables) did not
significantly improve the goodness of fit. Therefore, we used the models
without the interaction terms in this study (Table 4).

The relationships between the forest structure and SW, NIR, and VIS
albedos during the peak growing seasons, as estimated by GAMs, were
significant, with R2 varying from 0.07 to 0.77 over different sub-biomes
(Table 4). In addition, we observed that the R2 of the SW albedo models
were more similar to the R2 of the NIR albedo models than to the R2 of
the VIS albedo models. Further, our results showed a varying range for
relative importance of the forest structure variables in explaining al-
bedo over different sub-biomes (Fig. A6).

3.4. The response curve of albedo to forest structure

The responses of SW, NIR, and VIS albedos to forest density were
weak (Fig. 2). The response of SW albedo to the wide range of forest
density variation (between 330 and 833,735 trees per km2) was within
a rather narrow range (between 0.07 and 0.16) with large variations in
sign and magnitude of response between sub-biomes. NIR albedo var-
iations were slightly higher than SW albedo variations (between 0.10
and 0.27) across the wide range of forest density values (Fig. A7). VIS
albedo varied only marginally (between 0.01 and 0.04) in response to
the forest density variations (Fig. A8). In addition, the confidence in-
tervals of albedo response to forest density (Fig. 2) were wider than
those of albedo response to tree cover (Fig. 3) and LAI (Fig. 4) (see also
the response curves in Fig. A7-A12 and scatter density plots in Fig. A13-
A21).

Regarding the response of albedo to tree cover, negative relation-
ships were obtained in all the sub-biomes, except for DB forests in the
mediterranean and temperate regions (Fig. 3). By looking at the re-
sponse curves, it is apparent that SW, NIR, and VIS albedos responded
to the tree cover variations (from 30% to 83%) within a range between
0.08 and 0.16, 0.12 and 0.28, and 0.01 and 0.05, respectively (Fig. 3,
Fig. A9-A10). Furthermore, for denser canopies with tree cover of more
than ~70% in particular, the albedo values showed a sudden increase

in some sub-biomes, that might be related to the GAM's adapting
(overfitting) to the sparse observations in this range (Fig. A16).

We observed positive relationships between SW, NIR and VIS al-
bedos and LAI (varying from ~0.1 to ~6.9) in all the sub-biomes
(Fig. 4). The range for SW albedo was between 0.06 and 0.17, for NIR
albedo between 0.08 and 0.27, and for VIS albedo between 0.01 and
0.06 in different sub-biomes (Fig. 4, Fig. A11–12).

3.5. The % change of the albedo in response to forest structure variables

While increases in NIR and SW albedos with increasing LAI were
clear in all the sub-biomes, the relationships between tree cover and
NIR and SW albedos in all the sub-biomes were negative, except for DB
forests in the mediterranean and tropical regions (Table 5). The %
change of the albedo in response to forest density varied diversely
among sub-biomes (Table 5). VIS albedo decreased in response to in-
creasing forest density, tree cover and LAI in the majority of the sub-
biomes.

3.6. Spatial analyses

We mapped the spatial distribution of albedo and forest structure
(Fig. A22-A27), as well as the spatial distribution of R2 between forest
structure and albedo (Fig. 5, A28-A30). The results showed no clear
pattern in the R2 values across latitudinal and longitudinal gradients
(grey shades surrounded the images in Fig. 5, A28-A30). The mean R2

substantially varied pixel-wise on a global scale. The forest structure
showed a slightly weaker relationship with VIS albedo (mean R2=
0.40) than with SW and NIR albedos (mean R2= 0.43 for both SW and
NIR) (Fig. 5).

4. Discussion

4.1. Relationships between forest structure and albedo

In this study, we explored the links between forest structure and
albedo on a global scale. We observed varying R2 of the relationships
between forest structure and SW albedo within the same forest types
(Table 4). For example, our results showed that among all the forest
types, the lowest R2 (i.e., 0.06) was observed in DB forests in the
temperate region (Table 4), which is in line with the marginal response
of albedo to the increasing tree cover and LAI in this sub-biome (Figs. 2-
4). Observing the lowest R2 of relationship may be related to a varying

Table 4
Mean R2 values derived from 100 models (GAMs), with and without interaction terms, that were fitted between albedo (response variable) and forest structure
predictor variables including forest density [number of trees/ km2], tree cover [%], and leaf area index [m2/m2] at the peak growing season in 2005 in each sub-
biome. The columns refer to forest types, including evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed
forests (Mixed), and woody savannah forests (WS).

GAMs with interactions

SW albedo NIR albedo VIS albedo

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS
Boreal 0.5 NA 0.29 0.39 0.39 0.4 0.53 NA 0.28 0.42 0.4 0.46 0.24 NA 0.19 0.29 0.19 0.17
Mediterranean 0.16 0.28 NA 0.14 0.43 0.7 0.18 0.33 NA 0.18 0.54 0.77 0.47 0.22 NA 0.33 0.36 0.32
Temperate 0.4 0.33 0.26 0.07 0.46 0.63 0.42 0.37 0.27 0.08 0.47 0.67 0.21 0.39 0.1 0.16 0.16 0.27
Tropical 0.57 0.34 NA 0.58 0.34 0.33 0.59 0.35 NA 0.69 0.4 0.42 0.57 0.25 NA 0.71 0.4 0.24

GAMs without interactions

SW albedo NIR albedo VIS albedo

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS
Boreal 0.47 NA 0.27 0.36 0.37 0.37 0.5 NA 0.26 0.4 0.38 0.43 0.22 NA 0.17 0.27 0.18 0.15
Mediterranean 0.14 0.26 NA 0.07 0.42 0.69 0.15 0.31 NA 0.1 0.53 0.76 0.46 0.21 NA 0.28 0.35 0.3
Temperate 0.38 0.29 0.23 0.06 0.43 0.58 0.4 0.34 0.24 0.06 0.44 0.63 0.19 0.36 0.08 0.13 0.13 0.23
Tropical 0.49 0.3 NA 0.5 0.3 0.32 0.53 0.31 NA 0.6 0.37 0.41 0.48 0.22 NA 0.62 0.37 0.23
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range of forest structure variables among different sub-biomes (Table 3,
Table A5), or the confounding effects of optical properties of forest
structure and forest floor in this specific sub-biome (DB forests in
temperate region), compared with the other sub-biomes.

Regarding the relationships between forest density and SW albedo,
the results showed diverse responses in different sub-biomes (Fig. 2 and
Table 5). This may imply that forest density alone cannot be considered
as a key explanatory factor for SW albedo in different sub-biomes
during the peak growing season. In general, forest density is one of the
explanatory variables used in physical modeling of albedo (e.g., Wang,
2005). However, forest density together with other parameters (e.g.,
the biomass of foliage) explains the forest albedo variation. In addition,
forest density may have no strong link to the other relevant variables,
e.g., LAI, as a certain value of LAI may represent a few big trees (low
density), or several small trees (high density).

Our results showed a negative relationship between the tree cover
and albedo in all forests (except for DB in the mediterranean and
temperate regions) (Fig. 3, Table 5). The tree cover usually has a lower
reflectance compared with soil and understory (Bonan, 2008; Zhao and
Jackson, 2014). This is why an increase in tree cover can lead to a
decrease in albedo through the higher absorption (Planque et al., 2017).

Previous studies have reported that LAI is negatively connected with
SW albedo through a year (Alibakhshi et al., 2019; Tian et al., 2018).
This might be because, in some forest environments, developing tree-
layer vegetation can decrease surface albedo by eliminating the effects
of background such as the forest floor, which may have higher surface
albedo than overstory vegetation. In this study, however, we showed
positive relationships between LAI and SW albedo during the peak

growing season across the space (Fig. 4 and Table 5), which is in line
with the results of other studies during peak growing seasons (Abera
et al., 2019; Hollinger et al., 2010).

4.2. Spatially explicit assessment of the links between forest structure and
albedo

The importance of geographic locations has been frequently em-
phasized in previous studies (Hovi et al., 2016, 2019; Lukeš et al.,
2014), while no spatially-explicit map exists representing the links
between forest structure and albedo on a global scale. In previous
studies, geographic dependencies have been examined by, e.g., ex-
ploring patterns in R2 values across latitudinal and longitudinal gra-
dients (e.g., Lukeš et al., 2014). In this paper, we also visualized the
overall changes of R2 during the peak growing season across latitudes
and longitudes (grey shades surrounding the images in Fig. 5) that re-
vealed no significant pattern. The reason is related to having both high
and low values of R2 along a latitude (or a longitude), which may
compensate each other through arithmetic mean. This argument can be
confirmed by the observed R2 of the relationships with substantially
varying values over different geographic locations (Fig. 5). Therefore,
the spatial map of the links between forest structure and albedo implies
that the R2 values of the relationships are very much dependent on the
location, as it has also been previously shown by Hovi et al. (2019) for
the boreal region.

Some contradictory results for the relationships between forest
structure and albedo have been shown in previous studies (Dore et al.,
2012; Lukeš et al., 2013a; Sun et al., 2010). Despite the weak latitudinal

Fig. 2. The response of SW albedo to forest density [number of trees/km2] during the peak growing season in 2005. The rows refer to the biomes, and the columns
refer to forest types, including evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and
woody savannah forests (WS). In each graph, the x-axis refers to the value of forest density, and y-axis refers to albedo values. The density values are rescaled (divided
by 10,000, e.g., 6.09 = 60,900 trees). The grey areas around the response curves represent the confidence intervals.
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and longitudinal gradients of SW, NIR, or VIS albedos, there is a sharp
diversity in R2 values globally (Fig. 5). Such varying dependencies can
be related to diverse values in forest structure variables (Fig. A22–24)
with varying proportions of forest floor, such as different species
composition and visible understory in each pixel. The large geo-
graphical diversity in the response of albedo to forest structure (Fig. 5)
may explain the contradictory results in previous studies.

The spatial maps showed that the R2 values were higher in the
northern parts of the boreal region (e.g., North America and central
Eurasia) compared with the other regions (Fig. 5). The R2 values of the
links between albedo and individual forest structure variables suggest
that all the variables contributed to explaining albedo (Fig. A28–30). As
expected, R2 of the models that used all the forest structure variables as
predictors were greater than those of the models that used each in-
dividual variable separately.

We also quantified the spatial distribution of SW, NIR and VIS al-
bedos (Fig. A24-A27). We showed that VIS albedo was considerably
smaller than SW and NIR albedos, and NIR albedo always had higher
values than SW and VIS albedos (Fig. 2). We observed obvious de-
pendencies of mean SW, NIR, and VIS albedo on forest type, as was also
reported by Gao et al. (2005). The mean values of SW albedo of nee-
dleleaf forests (either evergreen or deciduous) were lower than those of
broadleaf forests (either evergreen or deciduous). In general, the albedo
of a needle is usually smaller than that of leaves (e.g., Lukeš et al.,
2013b).

4.3. Uncertainty assessment

Several factors contributed to uncertainty in this study. First, con-
sidering a single time period as the peak growing season for all areas
within one sub-biome causes a potential uncertainty. Some biomes,
such as mediterranean and temperate, are distributed partly in the
northern hemisphere and partly in the southern hemisphere, which
results in different peak growing season timing. However, these po-
tential inconsistencies have a negligible impact on our analysis for two
reasons: (1) the number of high-quality forest pixels located in medi-
terranean and temperate regions in the southern hemisphere was sig-
nificantly lower than in the northern hemisphere (Fig. 1); (2) we
compared the values of R2 over forest types separately in the northern
and southern hemispheres, reaffirming tight similarity in the values,
except for EN forests in the mediterranean region (Fig. 5). The second
source of uncertainty is related to the varying quality over pixels in the
data products we used in this study. To offset the potential uncertainty
among the products, we performed the analysis with only high-quality
data through careful preprocessing actions (Section 2.2). It is note-
worthy to mention that we showed a weak relationship between albedo
and forest density (Fig. 2). However, it should be noted that although
the overall accuracy of the forest density dataset on a global scale is
quite acceptable (Crowther et al., 2015), there is no report of con-
fidence in forest density prediction on a local scale. Third, the spatial
representativeness of the data may involve some uncertainties. Al-
though the number of high-quality pixels was quite substantial in each
sub-biome, we also had to remove a considerable number of low-quality
pixels from some sub-biomes, such as the tropical region. The

Fig. 3. The response of SW albedo to tree cover [%] during the peak growing season in 2005. The rows refer to the biomes, and the columns refer to the forest types,
including evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody savannah
forests (WS). In each graph, the x-axis refers to the value of tree cover, and the y-axis refers to albedo values. The grey areas around the response curves represent the
confidence intervals.
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Fig. 4. The response of SW albedo to leaf area index (LAI) [m2/m2] during the peak growing season in 2005. The rows refer to the biomes, and columns refer to the
forest types, including evergreen needleleaf (EN), evergreen broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody
savannah forests (WS). In each graph, the x-axis refers to the value of LAI, and the y-axis refers to albedo values. The grey areas around the response curves represent
the confidence intervals.

Table 5
The % change of SW, NIR, and VIS albedos due to the forest structure variation. The columns refer to forest types, including evergreen needleleaf (EN), evergreen
broadleaf (EB), deciduous needleleaf (DN), deciduous broadleaf (DB), mixed forests (Mixed), and woody savannah forests (WS). All the trends have been significant
at the level of 90%.

SW albedo

Density Tree cover LAI

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS

Boreal 17 NA 19 −18 16 9.3 −34 NA −24 −19 −24 −6 57 NA 2 50 41 55
Mediterranean −13 16 NA −4 8 4.7 −20 −15 NA 4 −9 −25 12 50 NA 6.2 57 74
Temperate 8.1 −8 −9 11.3 6 −10 −26 −29 −6 5 −19 −13 41 31 10 3 25 50
Tropical −22 −20 NA −29 −16 −14 −12 −14 NA −3 −19 −6 59 10 NA 39 29 27

NIR albedo

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS
Boreal 24 NA −2 −3 −13 34 −43 NA −25 −15 −35 −43 65 NA 4 78 54 67
Mediterranean −14 34 NA −5 13 14 −25 −11 NA 9 0 −24 31 45 NA −7 62 94
Temperate −2 30 6 2 −6 −9 −25 −33 −2 7 −10 −21 52 44 14 3 30 67
Tropical −25 −20 NA −41 3 −32 0 −15 NA −1 −24 −7 70 29 NA 59 57 46

VIS albedo

EN EB DN DB Mix WS EN EB DN DB Mix WS EN EB DN DB Mix WS
Boreal −17 NA 0 0 0 12 −64 NA −20 −32 −33 −46 −8 NA 1 −48 −13 −26
Mediterranean −26 2 NA −3 −5 −9 −21 −82 NA −57 −50 −40 −77 37.7 NA −17 −6 −46
Temperate 0 0 −10 −3 7 11 −47 −72 −17 −32 −40 −24 1 −46 2.1 −4 −9 −21
Tropical −65 −28 NA −49 5 −32 −99 −44 NA 41 −4 −11 −11 −18 NA −105 −73 −58
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unbalanced distribution of pixels may influence the results in the tro-
pical region (Fig. 5). We tested if our results are biased towards the
varying number of available pixels over space by estimating a Pearson
correlation between the number of forest pixels and the obtained R2

from GAMs over spatial locations. The low correlation coefficient (0.21)
confirmed no strong bias (the results are not illustrated). Finally, an-
other source of uncertainty could be a narrow SW, NIR, or VIS albedo
range within a sub-biome (Fig. A13-A21), which allows for sudden
variation due to outliers. To reduce the influence of outliers, we used
high-resolution satellite images (slope and water masks) to perform
additional quality assessment on top of the standard preprocessing as-
sessments (Section 2.2.7). In addition, it should be noted that we lim-
ited our study to peak growing season, as the results of this study would
probably have been considerably different throughout a year, due to
seasonality of vegetation and environmental conditions (see Section

2.4).

5. Conclusion

We used spatial analysis of remotely sensed images to explore the
links between forest structure and albedo, quantifying the degree to
which forest structure can explain albedo in different sub-biomes on a
global scale. We showed that forest structure changes could sig-
nificantly affect SW, NIR, and VIS albedos during the peak growing
season (R2 = 0.43). However, we observed a considerably high varia-
tion in R2 in different sub-biomes. Our results demonstrated that LAI
had a positive relationship with SW albedo, while the response of SW
albedo to tree cover was negative (except for DB forests in mediterra-
nean and temperate regions). The relationships between albedo and
forest density were not consistent, and varied from negative to positive
over different sub-biomes. The first global map of links between forest
structure and SW, NIR, and VIS albedo reaffirmed that the relationships
between forest structure and albedo were extremely dependent on
geographic location. All the data and maps generated in this study are
freely available on our web application: https://albedo.shinyapps.io/
shiny_apps/.
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