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Graph Sets Method (GSM) for Multi-Coil Wireless
Power Transfer Systems, Part I: Principles

Farzad Farajizadeh, Student Member, IEEE, D. Mahinda Vilathgamuwa, Fellow, IEEE, Prasad
Jayathurathnage, Member, IEEE, and Gerard Ledwich, Fellow, IEEE

Abstract—A new approach to derive the equations of Multi-
Coil Wireless Power Transfer (MCWPT) systems and to simplify
and analyze them is proposed in this paper. By parametrically
solving the equations governing MCWPT systems and mapping
the resultant transfer functions into Graph Sets (GSs), a set of
rules is developed to form the transfer function amongst the
voltages across and currents through the coils. Using these rules,
some important aspects, such as effective paths for the power to
flow, the effect of active coils on each other and on passive coils,
dynamic behavior of the system, and reflected impedances can
be comprehensively analyzed. This can be done by following GS
rules and without complex mathematical calculations. GS Method
(GSM) also provides an effective tool to design compensators
and power electronic converters driving MCWPT systems and to
estimate the receiver (pickup) parameters. Moreover, simplifying
the behavior of the coils into three basic types of Current
Driven (CD), Voltage Driven (VD), and PaSsive (PS) coils, helps
to reduce the complexity of the model and to have a better
understanding of the system. This simplification can be further
expanded by removing ineffective couplings between the coils.
This work is presented in two parts. In Part I, GSM is explained
and its different analytical steps are established, and Part II is
dedicated to show the effectiveness and validity of this approach
by numerically modeling and experimentally evaluating a three-
coil MCWPT system.

Index Terms—Graph Sets, Signal Flow Graphs,Wireless Power
Transfer.

I. INTRODUCTION

NEAR-FIELD non-radiative Wireless Power Transfer
(WPT) systems have been receiving increased attention

for a long time. One of the first WPT systems recorded in
the history was proposed by Nicola Tesla, in which a pair of
loosely coupled coils wirelessly transfer power from one coil
to another. The principles of WPT systems have not changed
too much since then [1]. These systems exhibit some attractive
features, such as the absence of mechanical connectors, safety,
charging while the receiver is on the move (dynamic charging),
and being eco-friendly in some applications [2]–[4]. These
features make them quite useful for charging devices such
as laptops, handsets, stationary and moving Electric Vehicles
(EVs) [3], [5]–[7].

Scientific progress in studying and designing WPT systems
has increased leaps and bounds in recent times as there have
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been numerous WPT applications in different domains with
increasingly complex configurations and diverse specifications.
Short range low frequency WPT systems have progressed to
medium range with the use of magnetic resonators [8]. Using
the same approach, transfer distance has been extended further
by using domino repeaters [9], [10]. Multiple transmitters are
used to obtain a smoother power profile of the EV dynamic
wireless chargers [5], [11]–[14]. Moreover, WPT systems with
multiple receivers have been proposed for consumer electronic
applications where different receivers are distinct in terms
of physical size, power level, and load characteristics [15].
Therefore, WPT systems can encompass multiple transmitters,
multiple receivers, and multiple repeaters, or different combi-
nations of these.

Apart from the WPT coil topologies, the configuration of
the power source can be either voltage source or current
source depending on the application criteria. For example,
an LCC compensator along with its input voltage source can
function as a current source at its tuning frequency [11], [16].
Likewise, a series compensators helps to achieve ideality of the
voltage source at its tuning frequency [17], [18]. With different
higher order compensation networks, load independent and/or
coupling independent working conditions can also be achieved
[19].

From all these examples, it is obvious that the systems
are far more complicated than the single-transmitter-single-
receiver topology proposed by Nicola Tesla. Increasing the
number of coils and energy storage elements (capacitor and in-
ductors) in the compensators significantly increases the system
complexity, which makes it extremely difficult to analyze and
characterize. Therefore, it is important to investigate a unified
analysis to model generalize WPT systems with multiple
transmitters, receivers, and passive coils.

To analyze the WPT characteristics, different modeling tech-
niques have been proposed and used. The most fundamental
approaches is to use equivalent circuits to model and analyze
WPT systems. For this purpose, the coupling between the coils
can be modelled in T or Π equivalent circuit,or by a current
controlled voltage source. Therefore, using this approach the
matrix equations of the system can be mapped to electric
circuits. This approach has been extensively used to model and
design WPT systems. For example, Rong et al. [20] use this
technique to analyze meta-material WPT systems, and Fang
et al. [21] use this concept to optimize WPT coils. The other
example is multi-port technique. In this approach, the wireless
systems are considered as multi-port systems and the flow of
energy is analyzed with the use of network port parameters.
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Fig. 1: 3D view of the three-coil prototype.

Coetzee et al. [22] use this approach to design a multi-port
antenna with isolated ports, he also uses this technique to
propose a compact mono-pole array with decoupled ports [23].
The last example is coupled mode theory. In this approach,
with the use of differential equations of a WPT system, and
re-arranging these equations in terms of energy, the system
can be analyzed, optimized and designed. This technique
is especially useful for analyzing and designing magnetic
resonators [?], [8]. Although these techniques are so useful
to understand and analyze WPT systems, when the number of
WPT coils increases, the complexity of the resultant circuit
makes conventional matrix based equations easier to be dealt
with.

In this article, a novel approach of Graph Sets Method
(GSM) is introduced to analyze WPT systems consisting of
any number of coils. For this purpose coils are categorized
into Voltage Driven (VD), Current Driven (CD), and PaSsive
(PS) Coils. The proposed GSM is explained with the use
of an MCWPT system shown Fig. 1. In this system, coils
1, 2, and 3 depict LCC compensated CD transmitter, series
compensated VD transmitter, and PS receiver respectively.
Neglecting the Equivalent Series Resistance (ESR), series
compensated transmitter can behave as a VD coil [24], and
LCC compensated transmitter can behave as a CD coil [16].
Repeater coils can be categorized into VD coils because
they are identical in equivalent circuit except for repeaters
where the applied voltage Vi is zero (Fig. 2(c)). It should
be noted that the proposed GSM can easily be applied to
different compensation topologies, and when coils exhibit VD,
CD, or PS characteristics, it helps simplifying the approach.
The standard state-space equations that govern the system in
Fig. 1 consist of 8× 8 state matrix that describes the dynamic
behavior of the system as characterized by its eigenvalues
and eigenvectors. The state-space representation can become
even more complicated when the effect of coupling (and its
variations) amongst coils over the flow of power is to be
studied. Therefore, inspired by Mason’s laws to analyze linear
systems [25], and other similar works in which signal flow
graphs are used to model linear systems [26]–[28], a new
approach for formulation of MCWPT equations in a simplistic
way is proposed in this article. This approach helps to have a
better understanding of the system, in terms of effective power
flow paths, finding desirable and undesirable induced voltages
and currents, and calculation of the reflected impedances.

The proposed GSM is presented in two parts. In the first
part, the principles of this method have been established, and

in Part II, an MCWPT system is numerically analyzed and
experimentally tested to show the validity of GSM. Part II also
highlights the significance of this approach in different appli-
cations. This part (Part I) is organized as follows. To clarify
the concept of GSM, WPT coils are categorized into three
main types of VD, CD, and PS coils, which are elaborated
in Section II along with the equivalent circuit analysis. Then
in Section III, how to form the Detailed Model (DM) of an
MCWPT system is described, and by parametrically solving
the DM of a simple MCWPT system consisting of these
different coils, its governing equations are derived to form the
graph sets. In this section, it is also explained how different
steps of simplifications can reduce the complexity order of the
governing equations. Using the mathematical pattern between
graph sets, Section IV establishes the basic rules of forming
graph sets to represent the system behavior. In Section V, how
to derive the gains of voltage path, gains of current path, and
reflected impedances from the graph sets is explained. Finally,
in Section VI, a summary of how to use the proposed approach
in MCWPT systems is explained.

II. ANALYZING AND CATEGORIZING WPT COILS

One of the main purposes of the compensators used in WPT
systems is to make WPT coils behave as a voltage source or
current source driven coil [29], [30]. Considering this point,
coils can be classified into three different types of VD, CD, and
PS. In the following subsections, circuit equations are formed
and each of these coil types are elaborated.

A. Equivalent Circuit Analysis

In this sub-section, using the equivalent circuit analysis,
the governing dynamic equations of a generic WPT system,
consisting of CD, VD, and PS coils, as shown in Fig. 1, is sys-
tematically formed to show the complexity of the calculations
using the conventional standard approach. Kirchhoff’s laws
governing this system in the s-domain provide the following
equations.[EL,CD
EL,VD
EL,PS

]
︸    ︷︷    ︸

EL

= s ×

[LCD,CD LCD,VD LCD,PS
LVD,CD LVD,VD LVD,PS
LPS,CD LPS,VD LPS,PS

]
︸                                     ︷︷                                     ︸

L

×

[IL,CD
IL,VD
IL,PS

]
︸   ︷︷   ︸

IL

=

−

[ RCD OCD,VD OCD,PS
OVD,CD RVD OVD,PS
OPS,CD OPS,VD RPS

]
︸                                      ︷︷                                      ︸

R

×

[IL,CD
IL,VD
IL,PS

]
︸   ︷︷   ︸

IL

+

[ ICD,CD
OVD,CD
OPS,CD

]
︸       ︷︷       ︸

ΛLP

×VP,CD

−

[ ICD,CD OCD,VD OCD,PS
OVD,CD IVD,VD OVD,PS
OPS,CD OPS,VD IPS,PS

]
︸                                      ︷︷                                      ︸

I

×

[VS,CD
VS,VD
VS,PS

]
︸    ︷︷    ︸

VS

+

[ ICD,CD OCD,VD
OVD,CD IVD,VD
OPS,CD OPS,VD

]
︸                       ︷︷                       ︸

ΛLI

×

[
VI,CD
VI,VD

]
︸    ︷︷    ︸

VI

(1)

ES,CD = sLSILS,CD =
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Fig. 2: Equivalent circuit for (a) CD LCC compensated coil 1, (b) VD series compensated coil of 2, and (c) PS compensated
coil 3 (Zin,ii is the coil i input impedance seen from the coil terminals, and Zrfl,ii is the reflected impedance due to the other
coils seen from coil i terminals).

[
ICD,CD OCD,VD

]︸                     ︷︷                     ︸
ΛSI

×

[
VI,CD
VI,VD

]
︸    ︷︷    ︸

VI

−VP,CD (2)

IP,CD = sCPVP,CD =

ILS,CD −
[
ICD,CD OCD,VD OCD,PD

]︸                                     ︷︷                                     ︸
ΛPL

×

[IL,CD
IL,VD
IL,PS

]
︸   ︷︷   ︸

IL

(3)

[IS,CD
IS,VD
IS,PS

]
︸   ︷︷   ︸

IS

=

[IL,CD
IL,VD
IL,PS

]
︸   ︷︷   ︸

IL

=

s ×

[ CS,CD OCD,VD OCD,PS
OVD,CD CS,VD OVD,PS
OPS,CD OPS,VD CS,PS

]
︸                                      ︷︷                                      ︸

CS

×

[VS,CD
VS,VD
VS,PS

]
︸    ︷︷    ︸

VS

(4)

where I and O are the identity and zero matrices respectively,
EL,CD, EL,VD, and EL,PS are the induced voltage vectors
in CD, VD and PS coils respectively. LCD,CD, LCD,VD,
LCD,PS = LPS,CD, LVD,VD, LVD,PS = LPS,VD, and LPS,PS are
the inductance matrices representing the self-inductance and
mutual inductance between CD-CD, CD-VD, CD-PS, VD-VD,
VD-PS, and VD-PS group of coils. IL,CD, IL,VD, and IL,PS are
the vectors of currents in CD, VD, and PS coils respectively.
RCD, RVD, and RPS are the diagonal matrices of the CD, VD,
and PS coil resistances respectively. VS,CD, VS,VD, and VS,PS,
are the vectors of voltages across series capacitor used in CD,
VD, and PS coils respectively. VI,CD and VI,VD are the input
vectors of voltages driving CD and VD coils, correspondingly.
ES,CD is the vector of induced voltages in the inductances used
in the primary loop of the LCC compensators in CD coils. LS
is the diagonal matrix of the LCC primary loop inductances
in the CD coils. ILS,CD is the vector of currents in the LCC
primary loop series inductors seen in CD coils. VP,CD and
IP,CD are the voltage and current vectors of the LCC parallel
capacitors in CD coils respectively. IS,CD, IS,VD, and IS,PS are
the current vectors of the series capacitor used in CD, VD, and

PS coils respectively. CS,CD, CS,VD, and CS,PS are the diagonal
matrices of the series capacitors used in CD, VD and PS coils
respectively. Note that the bold variables are used to define
matrices throughout this paper. From (1) to (4), the system
equation for the three-coil WPT system can be expressed as
in equations (5).

s


IL
ILS

VP,CD
VS

 =

L−1ΛLI
L−1

S ΛSI
O
O

 × VI

+


−L−1R O L−1ΛLP −L−1

O O −L−1
S O

−C−1
P ΛPL C−1

P O O
C−1

S O O O

 ×


IL
ILS

VP,CD
VS

 (5)

The standard MIMO equation of the three-coil prototype is an
8×8 matrix and it provides valuable system information. How-
ever, using the standard state-space equation, system properties
such as effective power flow path and reflected impedances are
not easily achievable, and they demand complex calculations.

B. Voltage Driven Coils

The combination of the input voltage source, the compen-
sator, and the WPT coil that keeps the voltage of the WPT
coil constant at its tuned frequency is termed as a voltage
driven coil. Usually, series compensators serve this function
and the simplest way for their modelling is to use the Thevenin
Equivalent of the input voltage source and compensator seen
from the coil terminals, as shown in Fig. 3. In Fig. 3, Lii and
RC,i are the self-inductance and the internal resistance of the
coil respectively, and VTH,i and ZTH,i are the Thevenin equiv-
alent voltage and impedance of the source-compensator seen
from the coil terminals respectively. Based on the Thevenin
equivalent circuit shown in Fig. 3, the governing equation of
this coil can be written as follows:

VTH,i =
(
Zi + ZTH,i

)︸         ︷︷         ︸
Zii

Ii + Ei ⇒

VTH,i = Zii Ii +
n∑
i,j

Li j sIj (6)
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Fig. 3: Thevenin equivalent of the source-compensator set to
drive a WPT coil.

INR,i
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Zrfl,ii

Z
N

R
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Fig. 4: Norton equivalent of the source-compensator set to
drive a WPT coil.

where Zii is the coil overall impedance, Ii is the coil current,
Ei is the induced voltage in the ith coil, n is the total number of
coils in an MSWPT system, and Li j is the mutual inductance
between coils i and j.

This model represents a realistic behavior of a VD coil.
Therefore, it can be used to model the dynamic behavior of
the system. To achieve ideal behavior of a voltage driven coil,
Ei must be equal to VTH,i , which means Zii → 0. However,
due to the presence of series equivalent resistor in the voltage
source, compensator, and the coil, this ideal behavior cannot
be fully realized. To obtain a near-ideal VD functionality, the
quality factor of the compensator should be kept high. Based
on this definition, repeaters can be considered as VD coils
with VTH equal to zero.

C. Current Driven Coils

Next, the current driven coils are described. This type of
coil is driven by a current source, which can be made by the
combination of a voltage source and an LCC compensator
[11], [12], [16]. To have a realistic representation, Norton
equivalent of a current source with the parallel impedance of
ZNR,i is employed to model the LCC compensated CD coil
as shown in Fig. 4. The governing equation of this system is
written as

Ii =
ZNR,i

ZNR,i + Zi
INR,i −

1
ZNR,i + Zi︸      ︷︷      ︸

Zii

Ei ⇒

Ii

Lii

Ei

Zi

Zrfl,ii

RC,i

Z
L,i

Fig. 5: Equivalent circuit diagram of a passive coil connected
to the load ZL,i .

Ii =
ZNR,i

Zii
INR,i −

1
Zii

n∑
i,j

Li j sIj (7)

where INR,i and ZNR,i are the Norton equivalent current and
impedance of the source-compensator combination seen from
the coil terminals respectively. For an ideal CD coil, INR,i is
equal to Ii; this occurs when ZNR,i → ∞. Unlike VD coils,
the ideal behavior of a CD coil is more easily attainable in
a practical implementation. It is worthy to mention that for
both CD and VD coils, Norton to Thevenin conversion (or
vice versa) can be done.

D. Passive Coils

PS coils are not driven by any power supply. They receive
energy from the other active coils through the couplings. The
topology of PS coil can be modelled as shown in Fig. 5. The
governing equation of a PS coil is as follows:

Ii =
Ei

ZL,i + Zi
⇒ Ii =

1
ZL,i + Zi︸    ︷︷    ︸

Zii

n∑
i,j

Li j sIj (8)

In this equation, ZL,i includes the impedance of the load and
the compensator seen from the coil terminals, the compensator
can be either series, parallel, or any other type [12], [31].
Worthy to mention that, repeaters can also be considered as PS
coils, but as ideally there is no energy consuming elements in
these coils, and they behave similar to VD coils (when VTH=0),
they are categorized in VD type.

Considering the equations governing these three types of
coils, there are some general rules upon which the power flow
paths in MCWPT systems can be analyzed. These rules can
be found by sorting the governing equations of the system
as explained in equations (6) to (8), and solving the resultant
equations based on the independent variables (INR,i and VTH,i)
and dependent coil electric variables (Ii and Ei).

III. MODELING MCWPT SYSTEMS WITH THE USE OF
GRAPH SETS METHOD (GSM)

In this section, the proposed GSM for an MCWPT system
is explained. To this end, the dependent variables (induced
voltage Ei and current Ii of each coil) are meant to be calcu-
lated based on the independent electric variables (the current
source INR,i and the voltage source VTH,i). Then the gains
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Fig. 6: Symbols used to represent three different coils in a
three-coil MCWPT system and to show graph sets, as lines,
sourcing coils (as red outward-arrowed symbols), and sinking
coils (as blue inward-arrowed symbols).

linking the dependent variables to the independent variables
are analyzed. All the gains have the same denominator but
different numerators. Some graph sets are formed depending
on how the sub-terms of denominator and numerator link
overall impedances (Zii) thorough the mutual inductances
(Li j). Each graph set describes a denominator or a numerator
in a linking gain, and each graph in a graph set defines a
sub-term in that denominator or numerator.

The graphs contain some nodes and lines. Nodes represent
the overall impedance of each coil (Zii), and based on the
coil type, different symbols are used to represent them, as
shown in Fig. 6. In addition, lines are used to describe the
mutual inductance between different coils involved in the flow
of power, as shown in Fig. 6.

To represent the system with the use of GSM, the system
is analyzed when one coil is activated at a time (termed as
sourcing coil as represented by outward arrows in Fig. 6),
and how it affects a set of coils, including itself, through
the couplings is investigated. The inward-arrowed symbols in
Fig. 6 (b) stand for a specific sinking coil which is under
consideration. Between each sourcing and sinking coil, there
can be different possible ways to transfer power through a set
of graphs as shown by the lines in Fig. 6, and all these graph
sets collectively characterize the complete WPT system. Paths
including two coils and starting from one coil and ending up
at the same coil is represented by a double-line.

To start the analysis, the detailed model (DM) of the
system is introduced first, and then, by converting the realistic
Norton equivalent of the CD coil to ideal, the first step
of approximation (AP1) is carried out. Then, in the second
stage of approximation (AP2), the ideal models of both CD
and VD coils are used to obtain the graph sets and their
corresponding gains. Finally, the effect of negligible mutual
inductances are omitted in the third stage of approximation
AP3. Comprehensive explanations on DM, AP1, AP2, and
AP3 are presented in the subsequent sections.

A. Detailed Model (DM) of an MCWPT

In general, for an MCWPT system consisting of m coils,
which are n1 CD coils, n2 VD coils, and n3 PS coils, the
matrix equation linking dependent to independent variables
can be written as follows:

[
E
I

]
︸︷︷︸

Dependent
Variables

=

[
ĜVV GIV
GVI ĜII

]
︸              ︷︷              ︸

Gains

×

[
VTH
INR

]
︸ ︷︷ ︸

Independent
Variables

(9)

where [INR]n1×1 is the vector of CD coil Norton currents,
[VTH]n2×1 is the vector of VD coil Thevenin voltages, [E]m×1
is the vector of induced voltages in the coils, and [I]m×1 is
the vector of induced currents in the coils, [ĜVV]m×n2 is the
dimensionless matrix of gains between E and VTH, [ĜIV]m×n1

is the matrix of gains between E and INR (in Ω), [ĜVI]m×n2

is the matrix of gains between I and VTH (in Ω−1), and
[ĜII]m×n2 is the dimensionless matrix of gains between I and
INR. Equation (9) can be used to model all the details of
MCWPT systems. Hence, it is termed as the Detailed Model
(DM). This matrix equation can be decoupled into two voltage
path and current path sets of equations as in (10) and (11)
respectively.

[E] =
[
ĜVV ĜIV

]
×

[
VTH

ZNRINR

]
=[

ĜVV ĜIV
]
×

[
VOC,VD
VOC,CD

]
(10)

[I] =
[
ĜVI ĜII

]
×

[
Z−1

VDVTH
Z−1

CDZNRINR

]
=[

ĜVI ĜII
]
×

[
INC,VD
INC,CD

]
(11)

where ZCD is the diagonal matrix of overall impedances
in CD coils, ZVD is the diagonal matrix of the VD
coils overall impedances, ZNR is the diagonal matrix of
the Norton impedances in CD coils, VOC,VD = VTH and
VOC,CD = ZNRINR are the vectors of open circuit voltages
in VD and CD coils respectively, and INC,VD = Z−1

CDVTH
and INC,CD = Z−1

CDZNRINC are the not-coupled currents of
the VD and CD coils respectively. The obtained GVV, GII,
and GIV = GVI form meaningful patterns between mutual
inductances and overall impedances amongst the coils. To
study these patterns, the three-coil MCWPT system, shown
in Fig. 1 is analyzed in this subsection.

Therefore, by rearranging (6) to (8) according to (9), the
following system of equations (which is sorted based on
the independent (known) and dependent (unknown) electric
variables) for the given three-coils system can be obtained.



E1
E2
E3
I1
I2
I3


=



−1 0 0 0 L12s L13s
0 −1 0 L12s 0 L23s
0 0 −1 L13s L23s 0
− 1
Z11

0 0 −1 0 0
0 − 1

Z22
0 0 −1 0

0 0 0 −
L13s
Z3

−
L23s
Z3

−1



−1

×



0 0
0 0
0 0

−
ZNR1
Z11

0
0 − 1

Z22
0 0


×

[
INR1
VTH2

]
(12)
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Fig. 7: Signal flow graph of the three-coil detailed model.

The signal flow graph representing (12) is shown in Fig. 7.
After solving (12), the induced voltages (Ei) and currents

(Ii) for coils i = 1, 2 and 3 are to be found through (13) and
(14) respectively.

[E1
E2
E3

]
=

1
∆

[NVP11 NVP21
NVP12 NVP22
NVP13 NVP23

]
︸                   ︷︷                   ︸

Numerator of Voltage Path
(NVP)

×


VTH1=VOC,1︷      ︸︸      ︷
ZNR1INR1

VTH2︸︷︷︸
VOC,2


(13)

[I1
I2
I3

]
=

1
∆

[NCP11 NCP21
NCP12 NCP22
NCP13 NCP23

]
︸                  ︷︷                  ︸

Numerator of Current Path
(NCP)

×



INC,1︷           ︸︸           ︷(
ZNR1
Z11

)
INR1(

1
Z22

)
VTH2︸         ︷︷         ︸

INC,2


(14)

NVPs and NCPs in (13) and (14), are the numerator of
voltage path and numerator of current path. Each of these
numerators together with the characteristic function ∆ form a
graph set. Each graph set consists of a set of graphs which
are represented by the sub-terms of NVPs, NCPs, and ∆. For
the given three-coil system, the sub-terms of NVP, NCP, and
∆ are given in Appendix A.
Moreover, VOC,i is the voltage across the ith coil source
terminals, when it is open-circuited, and it is equal to VTH,i .
Likewise, INC,i is the ith coil current when there is no coupling
in the system, and the induced voltage Ei is equal to zero.

The equations that link independent voltages and currents
(VTH,i , INR,i) to a dependent voltage (Ei) are called voltage
path equations (13). Likewise, the equations that link inde-
pendent voltages and currents (VTH,i , INR,i) to a dependent
current (Ii) are called current path equations (14). One can
observe some meaningful patterns in the numerator of voltage
path (NVP) equations, the numerator of current path (NCP)
equations, and denominator of current path and voltage path
equations. The denominator of all these transfer functions is
identical, and it is called characteristic function (∆). These

INR,1

VTH,2

I1

I2

I3

E1

E2

E3

1

Z22

1

Z22

1

Z33

SL 12

SL
13

SL
12

SL 23

SL
13

SL
23

Independent 
Variables

Dependent 
Variables

1

Fig. 8: Signal flow graph of the three-coil MCWPT system,
in which CD coils are approximated (AP1).

NVP, NCP, and ∆ terms are used as the basis of defining the
GSM for MCWPT systems. NVPi j(k) refers to the numerator
term corresponding to coils i and j for the k th path in its graph
set, NCPi j(k) represents the numerator term for the current
path between coils i and j for the k th path, and ∆(k) represents
the denominator term for the k th path. These terms, NVPi j(k),
NCPi j(k), and ∆(k), will be used extensively to characterize
the concept of GSM.

B. Approximation of CD Coils (AP1)

Using the similar approach as in DM and considering
CD coils to be ideal (ZNR = Z11 → ∞), the first step
of approximation is derived and called AP1. Therefore, the
obtained governing matrix equation can be simplified into:


E1
E2
I2
I3

 =

−1 0 L12s L13s
0 −1 0 L23s
0 − 1

Z22
−1 0

0 0 −
L23s
Z33

−1


−1

×


0 0

−L12s 1
0 − 1

Z22
L13s
Z33

0


×

[
INR1
VTH2

]
(15)

For clarity, E3 in (12) is removed in the process of simplifi-
cation of (15) as it can be easily obtained by E3 = −Z33I3.

This system yields the signal flow graph shown in Fig. 8.
As long as the system behaves as a CD coil in steady state
mode at its tuned frequency ω0 (s = jω0), (15) can be used to
represent all types of coils. For example, a system equipped
with an LCC compensator can only show the current source
features at its tuning frequency, whereas at other frequencies,
this behavior is not achievable.

C. Approximation of CD and VD Coils (AP2)

The next step of simplification belongs to both CD and VD
coils, and it is termed as AP2. In this stage, it is assumed
that both CD and VD coils are ideal, where ZNR,i → ∞.
Zii = ZTH,i + Zi = 0. Therefore, DM will be simplified to
(16), which is obtained from the three main equations of (17)
to (19).

For constant driving frequency of ω0, (16) can be used
to simplify all types of VD and CD coils as long as the
assumption of their ideal behavior is valid at ω0.
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E1
I2
I3

 =

−1 L12s L13s
0 0 L23s

0 −
L23s
Z33

−1


−1

×


0 0

−L12s 1
L13s
Z33

0

 ×
[
INR1
VTH2

]
(16)

E1 = L12sI2 + L13sI3 (17)

VTH2 = L12sINR1 + L23sI3 (18)

E3 = −Z33I3 = L13sINR1 + L23sI2 (19)

D. Approximation with the Omission of Negligible Couplings
(AP3)

The purpose of this approximation is to reduce the number
of graphs in each graph set and simplify the GSM analysis.
This stage of approximation is carried out with the omission
of negligible coupling terms for a given system. Therefore, the
MCWPT system will be modelled with the use of dominant
couplings in the graph sets. As an example, in the given system
shown in Fig. 1, the coupling term L13 is much weaker than
other couplings. Therefore, it can be neglected in AP3.

E. Categorization of Graph Sets

As it is shown in Figs. 7 and 8, the complexity of the
obtained signal flow graphs can be exponentially increased by
the increase in the number of coils. This is due to having
both current and voltage dependent variables in the same
graphical representation. Therefore, aiming for reduction of
this complexity, the graph sets are separately obtained for
each coil, and as a result, the graph sets are formed based
on only overall impedances and mutual inductances, which
helps finding the effective patterns amongst the coils to transfer
the power. These graph sets can be categorized into three
basic sets, namely loops, transferred graph sets, and reflected
graph sets. Loops (LPs) do not have sourcing and sinking
coils and they can be enclosed between different number of
coils. Transferred graph sets consist of a path starting from a
sourcing coil i and ending up at a sinking coil j.

Reflected graph sets have paths sourcing and sinking the
same coil. For reflected graph sets, there are two sub-categories
of attached and isolated sets. If the sourcing (and sinking)
coil contribute to the other coils, the sub-set is called attached

reflected graph set (Pii), and if sourcing (and sinking coil)
does not form any path amongst the rest of the coils, it is
called isolated reflected graph set (P̄ii). For both Pii and P̄ii,
the coils that do not contribute to the paths can form different
possible arrangements of loops. Using these graph sets and the
symbols shown in Fig. 6, this section shows how graph sets
can be derived from DM, AP1, AP2, and AP3 of an MCWPT
system. In the subsequent section, each of these graph sets are
elaborated.

Interestingly, all the possible graph sets can be found from
DM, which can be used to fully characterize the MCWPT. In
the process of approximating DM, the methods AP1, AP2,
and AP3 are used and some graphs are removed in each
approximation step. ∆, NCPs, and NVPs are shown in Tables I
to VIII. The first row of these Tables represents the graph set
index (k). (e.g. LP(k) is the loop graph of (k) for the k th term
in the denominators of (13) and (14), and P(k) stands for the
graphs of NCP(k) or NVP(k) for its respective k th term in the
numerator). In the second row, the graphical representation
of all graph sets obtained from (13) and (14) is shown. The
third, fourth, fifth, and sixth rows show the graph sets for
the DM, AP1, AP2, and AP3 respectively. These rows show
different simplifications of the system in each scenario. The
simplification steps are detailed in the foot notes (†, ‡, ∗, ∗∗,
and #).

IV. GENERAL RULES FOR REALISTIC GRAPH SETS

Based on the simplifications and the discussions in the
previous section, several rules for the graph sets are formu-
lated. The rules of an MCWPT system, consisting of multiple
active and passive coils can be summarized as in the following
subsections.

A. Characteristic Function of a MCWPT System ∆

According to what has been obtained from (13) and (14),
denominator of the graph set terms can be written as in (20).

∆ =

n∑
k=1
∆(k) (20)

where k is the index of the graph set loops, and n is the
maximum number of possible loops in the graph sets of the
system. For example, for the three-coil prototype, there are

TABLE I: Graph sets of characteristic function (∆) for DM, AP1, AP2, and AP3.
LP 1  for Δ 1  LP 2  for Δ 2 LP 3  for Δ 3 LP 4  for Δ 4 LP 5  for Δ 5  

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM 1 −
𝐿13
2 𝑠2

 𝒁𝟏𝟏 𝑍33
−

𝐿23
2 𝑠2

𝑍22𝑍33
−

𝐿12
2 𝑠2

 𝒁𝟏𝟏 𝑍22

2𝐿12𝐿13𝐿23𝑠
3

 𝒁𝟏𝟏 𝑍22𝑍33

AP1 1 0 (†) −
𝐿23
2 𝑠2

𝑍22𝑍33
0 (†) 0 (†) 

AP2 0 (*) 0 (*) −
𝐿23
2 𝑠2

 𝒁𝟐𝟐 𝑍33
0 (*) 0 (*) 

AP3 1 0 (**) −
𝐿23
2 𝑠2

𝑍22𝑍33
−

𝐿12
2 𝑠2

𝑍11𝑍22
0 (**) 
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TABLE II: Graph sets of NVP11 and NVP21 for DM, AP1, AP2, and AP3.
P11 1  for NVP11 1 P11 2  for NVP11 2 P11 3  for NVP11 3 P21 1  for NVP21 1 P21 2  for NVP21 2 

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM −
𝐿12
2 𝑠2

 𝒁𝟏𝟏 𝑍22
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1 −

𝐿13
2 𝑠2

 𝒁𝟏𝟏 𝑍33
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1

2𝐿12𝐿23𝐿13𝑠3

 𝒁𝟏𝟏 𝑍22𝑍33
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1

𝐿12𝑠

𝑍22
𝑉𝑇𝐻2 −

𝐿13𝐿23𝑠2

𝑍22𝑍33
𝑉𝑇𝐻2

AP1 −
𝐿12
2 𝑠2

𝑍22
𝐼𝑁𝑅1 (‡) −

𝐿13
2 𝑠2

𝑍33
𝐼𝑁𝑅1 (‡) 2𝐿12𝐿23𝐿13𝑠3

𝑍22𝑍33
𝐼𝑁𝑅1 (‡) 𝐿12𝑠

𝑍22
𝑉𝑇𝐻2 −

𝐿13𝐿23𝑠2

𝑍22𝑍33
𝑉𝑇𝐻2

AP2 −
𝐿12
2 𝑠2

 𝒁𝟐𝟐 
𝐼𝑁𝑅1 (‡) 0 (*) 2𝐿12𝐿23𝐿13𝑠3

 𝒁𝟐𝟐 𝑍33
𝐼𝑁𝑅1 (‡) 𝐿12𝑠

 𝒁𝟐𝟐 
𝑉𝑇𝐻2 −

𝐿13𝐿23𝑠2

 𝒁𝟐𝟐 𝑍33
𝑉𝑇𝐻2

AP3 −
𝐿12
2 𝑠2

𝑍11𝑍22
𝑍𝑁𝑅1𝐼𝑁𝑅1 0 (**) 0 (**) 

𝐿12𝑠

𝑍22
𝑉𝑇𝐻2 0 (**) 

TABLE III: Graph sets of NCP11 and NCP21 for DM, AP1, AP2, and AP3.
P 11 1  for NCP11 1 P 11 2  for NCP11 2 P21 1  for NCP21 1 P21 2  for NCP21 2  

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM 1
 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏  
𝐼𝑁𝑅1 −

𝐿23
2 𝑠2

𝑍22𝑍33

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏  
𝐼𝑁𝑅1 −

𝐿12𝑠

 𝒁𝟏𝟏 

𝑉𝑇𝐻 2

𝑍22

𝐿13𝐿23𝑠2

 𝒁𝟏𝟏 𝑍33

𝑉𝑇𝐻 2

𝑍22

AP1 1  𝐼𝑁𝑅1 (‡) −
𝐿23

2 𝑠2

𝑍22𝑍33
𝐼𝑁𝑅1 (‡) 0 (†) 0 (†) 

AP2 0 (*) −
𝐿23

2 𝑠2

 𝒁𝟐𝟐 𝑍33
𝐼𝑁𝑅1 (‡) 0 (*) 0 (*) 

AP3 𝑍𝑁𝑅 ,1

𝑍11  
𝐼𝑁𝑅1 −

𝐿23
2 𝑠2

𝑍22𝑍33

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏  
𝐼𝑁𝑅1 −

𝐿12𝑠

 𝒁𝟏𝟏 

𝑉𝑇𝐻 2

𝑍22
0 (**) 

TABLE IV: Graph sets of NVP22 and NVP12 for DM, AP1, AP2, and AP3.
P22 1  for NVP22 1 P22 2  for NVP22 2 P22 3  for NVP22 3 P12 1  for NVP12 1 P12 2  for NVP12 2 

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM −
𝐿12
2 𝑠2

 𝒁𝟏𝟏 𝑍22
𝑉𝑇𝐻2 −

𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻2

2𝐿12𝐿23𝐿13𝑠3

 𝒁𝟏𝟏 𝑍22𝑍33
𝑉𝑇𝐻2

𝐿12𝑠

 𝒁𝟏𝟏 
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1 −

𝐿13𝐿23𝑠2

 𝒁𝟏𝟏 𝑍33
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1

AP1 0 (†) −
𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻2 (‡) 0 (†) 𝐿12𝑠 𝐼𝑁𝑅1 (‡) −

𝐿13𝐿23𝑠2

𝑍33
𝐼𝑁𝑅1 (‡) 

AP2 0 (*) −
𝐿23
2 𝑠2

 𝒁𝟐𝟐 𝑍33
𝑉𝑇𝐻2 (‡) 0 (*) 0 (*) 0 (*) 

AP3 −
𝐿12
2 𝑠2

 𝒁𝟏𝟏 𝑍22
𝑉𝑇𝐻2 −

𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻2 0 (**) 

𝐿12𝑠

 𝒁𝟏𝟏 
𝑍𝑁𝑅1𝐼𝑁𝑅1 0 (**) 

TABLE V: Graph sets of NCP22 and NCP12 for DM, AP1, AP2, and AP3.
P 22 1  for NCP22 1 P 22 2  for NCP22 2 P12 1  for NCP12 1 P12 2  for NCP12 2 

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM 1
𝑉𝑇𝐻 2

𝑍22
−

𝐿13
2 𝑠2

 𝒁𝟏𝟏 𝑍33

𝑉𝑇𝐻 2

𝑍22

−
𝐿12𝑠

𝑍22

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏 
 𝐼𝑁𝑅1

𝐿13𝐿23𝑠2

𝑍22𝑍33

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏 
𝐼𝑁𝑅1

AP1 1
𝑉𝑇𝐻 2

𝑍22
0 (†) −

𝐿12𝑠

𝑍22
𝐼𝑁𝑅1 (‡) 𝐿13𝐿23𝑠2

𝑍22𝑍33
𝐼𝑁𝑅1 (‡) 

AP2 1
𝑉𝑇𝐻 2

 𝒁𝟐𝟐 
0 (*) −

𝐿12𝑠

 𝒁𝟐𝟐 
𝐼𝑁𝑅1 (‡) 𝐿13𝐿23𝑠2

 𝒁𝟐𝟐 𝑍33
𝐼𝑁𝑅1 (‡) 

AP3 1
𝑉𝑇𝐻 2

𝑍22
0 (**) −

𝐿12𝑠

𝑍22

𝑍𝑁𝑅 1

𝑍11
 𝐼𝑁𝑅1 0 (**) 
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TABLE VI: Graph sets of NVP13 and NVP23 for DM, AP1, AP2, and AP3.
P13 1  for NVP13 1 P13 2  for NVP13 2 P23 1  for NVP23 1 P23 2  for NVP23 2  

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM 𝐿13𝑠

 𝒁𝟏𝟏 
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1 −

𝐿12𝐿23𝑠2

 𝒁𝟏𝟏 𝑍22
 𝒁𝑵𝑹𝟏 𝐼𝑁𝑅1

𝐿23𝑠

𝑍22
𝑉𝑇𝐻2 −

𝐿12𝐿13𝑠2

 𝒁𝟏𝟏 𝑍22
𝑉𝑇𝐻2

AP1 𝐿13𝑠 𝐼𝑁𝑅1 −
𝐿12𝐿23𝑠2

𝑍22
𝐼𝑁𝑅1 (‡) 𝐿23𝑠

𝑍22
𝑉𝑇𝐻2 0 (†) 

AP2 0 (*) −
𝐿12𝐿23𝑠2

 𝒁𝟐𝟐 
𝐼𝑁𝑅1 (‡) 𝐿23𝑠

 𝒁𝟐𝟐 
𝑉𝑇𝐻2 0 (*) 

AP3 0 (**) −
𝐿12𝐿23𝑠

2

𝑍11𝑍22
 𝑍𝑁𝑅1𝐼𝑁𝑅1   

𝐿23𝑠

𝑍22
𝑉𝑇𝐻2 0 (**) 

TABLE VII: Graph sets of NCP13 and NCP23 for DM, AP1, AP2, and AP3.
P13 1  for NCP13 1 P13 2  for NCP13 2 P23 1  for NCP23 1 P23 2  for NCP23 2 

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM −
𝐿13𝑠

𝑍33

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏 
𝐼𝑁𝑅1

𝐿12𝐿23𝑠2

𝑍22𝑍33

 𝒁𝑵𝑹𝟏 

 𝒁𝟏𝟏 
𝐼𝑁𝑅1 −

𝐿23𝑠

𝑍33

1

𝑍22
𝑉𝑇𝐻2

𝐿12𝐿13𝑠2

 𝒁𝟏𝟏 𝑍33

1

𝑍22
𝑉𝑇𝐻2

AP1 −
𝐿13𝑠

𝑍33
𝐼𝑁𝑅1 (‡) 𝐿12𝐿23𝑠2

𝑍22𝑍33
𝐼𝑁𝑅1 (‡) −

𝐿23𝑠

𝑍33

1

𝑍22
𝑉𝑇𝐻2 0 (†) 

AP2 0 (*) 𝐿12𝐿23𝑠2

 𝒁𝟐𝟐 𝑍33
𝐼𝑁𝑅1 (‡) −

𝐿23𝑠

𝑍33

1

 𝒁𝟐𝟐 
𝑉𝑇𝐻2 0 (*) 

AP3 0 (**) 𝐿12𝐿23𝑠2

𝑍22𝑍33

𝑍𝑁𝑅 1

𝑍11
𝐼𝑁𝑅1 −

𝐿23𝑠

𝑍33

1

𝑍22
𝑉𝑇𝐻2 0 (**) 

TABLE VIII: Graph sets of NVP33 and NCP33 for DM, AP1, AP2, and AP3.#
P33 1  for NVP33 1 P33 2  for NVP33 2 P33 3  for NVP33 3 P 33 1  for NCP33 1 P 33 2  for NCP33 2  

GS 

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

AP1 AP2 AP3

1

3

2

DM

DM −
𝐿13
2 𝑠2

 𝒁𝟏𝟏 𝑍13
𝑉𝑇𝐻3

∗ −
𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻3

∗ 2𝐿12𝐿23𝐿13𝑠3

 𝒁𝟏𝟏 𝑍22𝑍33
𝑉𝑇𝐻3

∗ 1
1

𝑍33
𝑉𝑇𝐻3

∗ −
𝐿12
2 𝑠2

 𝒁𝟏𝟏 𝑍22

1

𝑍33
𝑉𝑇𝐻3

∗

AP1 0 (†) −
𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻3

∗ 0 (†) 1
1

𝑍33
𝑉𝑇𝐻3

∗ 0 (†) 

AP2 0 (*) −
𝐿23
2 𝑠2

 𝒁𝟐𝟐 𝑍33
𝑉𝑇𝐻3

∗ 0 (*) 1
1

𝑍33
𝑉𝑇𝐻3

∗ 0 (*) 

AP3 0 (**) −
𝐿23
2 𝑠2

𝑍22𝑍33
𝑉𝑇𝐻3

∗ 0 (**) 1
1

𝑍33
𝑉𝑇𝐻3

∗ 0 (**) 

† In AP1, for the ith ideal CD coil, ZNR,i → ∞ and Zii = ZNR,i + Zi → ∞. Therefore, the presence of Zii in the denominator of NVP, NCP,
and ∆ terms will make the respective terms approach zero and to be uninfluential in the graph sets. Consequently, the graphs associated with the
highlighted cells marked by (†) are canceled out for AP1.

‡ Referring to the same reason explained in (†) for AP1, when ZNR,i →∞, ZNR ,i
Zii

→ 1. Therefore, for the graphs that are marked by (‡), ZNR,i in
the numerator cancels out Zii in the denominator.

* In the second step of approximation AP2 for the ith ideal VD coil, Zii = ZTH,i +Zi → 0. Therefore, the terms containing Zii in their denominator
become significantly larger than the other terms and make the effect of other terms to be negligible. Worthy to mention that, as this term is presence
in NVP, NCP, and ∆, they will be cancelled out in the numerator and denominator of both voltage path equations and current path equations and
can be removed from the AP3 of the NVP, NCP, and graph sets. The terms that are overwhelmed by Zii -possessed terms are removed from the
graph sets, and they are highlighted and marked by (*).

** In the third step of approximation AP3, graphs contributing to the negligible mutual inductances are removed. These graphs are highlighted and
shown by (**). Worthy to mention that, AP3 is directly obtained from DM.

# V ∗TH3 is the virtual source voltage, which drives the passive coil 3. This voltage source is used to investigate how the reflected impedance seen from
passive coil is derived.
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four possible loops in its graph sets. In general, ∆(k) can be
obtained from (21).

∆(k) =

{
1; k = 1
2a × (−1)α × (jω)ρ × gδ(LP(k)); k , 1

(21)

where a is the number of loops enclosed by more than one
coil, α is the number of lines in the graph plus the number
of loops, and ρ is the number of lines in the graph. LP(k)
represents the graph of the k th loop, as shown in Table I.
gδ is the graph set equation of the characteristic function,
gδ(LP(k)) =

∏
Li j/

∏
Zmm, where

∏
Li j is the product of the

mutual inductances forming LP(k), and Zmm is the mth coil
overall impedance that is contributed to the LP(k) (if a node
(coil) is touched for many times by different lines (couplings),
its overall impedance must be written only one time in the
denominator). The resultant ∆(k) for different loops of the
three-coil system is shown in Table I. Table IX shows another
example of LP sets for a four-coil MCWPT system, consisting
of one CD coil (coil 1), two VD coils (coils 2 and 3) and one
PS coil (coil 4), and the removed graph sets for each step of
approximation is shaded in gray. ∆ terms of this system is
given in Appendix B.

TABLE IX: An example of LP(k) graph sets for ∆ in a four-
coul MCWPT system.

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3 3

1 2

4

DM AP1 AP2

LP(1) for Δ 1 LP(2) for Δ 2 LP(3) for Δ 3 LP(4) for Δ 4 

1 2

4

DM AP1 AP2

3 3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

LP(5) for Δ 5 LP(6) for Δ 6 LP(7) for Δ 7 LP(8) for Δ 8 

1 2

4

DM AP1 AP2

3 3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

LP(9) for Δ 9 LP(10) for Δ 10 LP(11) for Δ 11 LP(12) for Δ 12 

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

LP(13) for Δ 13 LP(14) for Δ 14 LP(15) for Δ 15 LP(16) for Δ 16 

1 2

4

DM AP1 AP2

3

LP(17) for Δ 17 
 As mentioned in the footnotes of the tables, ((†), (‡), and

(*)), ideal CD coils do not involve in any loop, and on
the contrary ideal VD coil must be included in all loops.
Therefore, the number of graphs for characteristic function

TABLE X: First example of P12(k) graph sets for NVP12 and
NCP12 linking coils 1 and 2 in a four-coil MCWPT system.

3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3 3

1 2

4

DM AP1 AP2

P12(1) for NVP12(1) 
& NCP12(1) 

P12(2) for NVP12(2) 
& NCP12(2) 

P12(3) for NVP12(3) 
& NCP12(3) 

P12(4) for NVP12(4) 
& NCP12(4) 

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

P12(5) for NVP12(5) 
& NCP12(5) 

P12(6) for NVP12(6) 
& NCP12(6) 

loops can be significantly decreased during the different stages
of approximation. This can be seen in Tables I and IX.

B. Transferred Voltage

Voltage across a particular coil consists of two differ-
ent components, which are termed as transferred voltage
(
(
NVPi j/∆

)
VOC,i) and reflected voltage ((NVPii/∆)VOC,i).

Transferred voltage appears across the concerned coil i due to
the induced voltage as a result of other neighboring source ex-
citations (INR, j or VTH, j). This can occur directly or indirectly
through the other coils. NVPi j for the transferred voltage from
active coil i and received by coil j can be written as follows:

NVPi j =

n∑
k=1

NVPi j(k) (22)

where n is the maximum possible number of NVPi j graphs,
and k is the graph set index. NVPi j(k) is

NVPi j(k) = 2a × (−1)α+1 × (jω)ρ × gv(Pi j(k)) (23)

where a, α, ρ, and gv are identical to what has been explained
in (21). Pi j(k) is the k th graph which forms a path linking
coil i to the coil j. Other coils that are not included in the
path between coils i and j can form different arrangments of
loops for each k index. Furthermore, for gv of NVPi j(k),
the overall impedance of the sinking coil j (Z j j) is not
included in the denominator. Tables II, IV, and VI show
different graph sets for NVP between two different coils.

For better understanding how graph sets are formed for a
transferred voltage between two coils, two different four-coil
MCWPT systems are provided as extra examples in Tables X
and XI. Table X shows P12(k) for the k th graph set between
coils 1 and 2 in an MCWPT system consisting of one CD coil
(coil 1), two VD coils (coils 2 and 3) and one PS coil (coil
4). Similarly, different graphs of P12 graph set are shown in
Tables XI for a four-coil WPT system, which comprises of
two CD coils (coils 2 and 4), one VD coil (coil 1), and one
PS coil (coil 3). NVP12 terms of these systems are identical,
and they are given in Appendix C.

According to (†) and (‡), for the ith ideal CD coil, Zii

tends to infinity, and therefore NVPi j terms having Zii in their
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TABLE XI: Second example of P12(k) graph sets for NVP12
and NCP12 linking coils 1 and 2 in a four-coil MCWPT
system.

43

DM AP1 AP2

21

3

DM AP1 AP2

4

21

43

DM AP1 AP2

21

3

DM AP1 AP2

4

21

P12(1) for NVP12(1) 
& NCP12(1) 

P12(2) for NVP12(2) 
& NCP12(2) 

P12(3) for NVP12(3) 
& NCP12(3) 

P12(4) for NVP12 4  
& NCP12(4) 

DM AP1 AP2

3 4

21

DM AP1 AP2

3 4

21

P12(5) for NVP12 5 
& NCP12(5) 

P12(6) for NVP12(6) 
& NCP12(6) 

denominator will approach zero and are removed from the
graph sets for AP1, as shown for shaded AP1 in Tables X
and XI. Referring to (*) for the ith ideal VD coils, Zii

approaches zero, and it makes the NVPi j terms having Zii in
their denominator to be dominant. Therefore, the influence of
other terms can be neglected as shaded AP2 shows in Tables X
and XI. Along with the use of similar indicators to distinguish
different steps of approximation for AP1 and AP2, another
indicator is assigned to AP3 to show the removed graphs as a
result of negligible couplings.

C. Reflected Voltage

The other component in voltage of a particular coil is
the reflected voltage (NVPii/∆)VOC,i . Reflected voltage is
generated due to the voltage induced in the neighboring coils
as a result of excitation in the concerned coil (INR,i or VTH,i).
This induced voltage in the neighboring coils creates a current,
and it will in turn induce a voltage in the coil under study,
which is termed as the reflected voltage.

For the sourcing coil and receiving coil i, NVPii can be
written as follows:

NVPii =

n∑
k=1

NVPii(k) (24)

where n is the maximum possible NVPii graphs when the ith

coil is sourcing and sinking at the same time, and k is the
graph set index. NVPii(k) is

NVPii(k) = 2a × (−1)α × (jω)ρ × gδ(Pii(k)) (25)

where a, α, ρ, and gδ are identical to what has been explained
in (21), except that the attached reflected path Pii(k) is treated
as a loop. Pii(k) is the graph of the k th attached reflected path.
When the ith coil forms its Pii graph set, other coils that are
not involved in its loop can take different loops in the graph
sets. The graph set of Pii for the given three-coil system is
shown in Tables II, IV, and VIII. For better understanding
how the NVPii graph set is formed, another example for a
four-coil system comprising of one CD coil (coil 1), two
VD coils (coils 2 and 3), and one passive coil (coil 4) is

TABLE XII: An example of P22(k) graph set for NVP22
linking coils 1 and 2 in a four-coil MCWPT system.

3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3 3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3

P22(1) for NVP22(1) P22(2) for NVP22(2) P22(3) for NVP22(3) P22(4) for NVP22(4)

3

1 2

4

DM AP1 AP2

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

P22(5) for NVP22(5) P22(6) for NVP22(6) P22(7) for NVP22(7) P22(8) for NVP22(8)

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

1 2

4

DM AP1 AP2

3

P22(9) for NVP22(9) P22(10) for NVP22(10) P22(11) for NVP22(11) P22(12) for NVP22(12) 

given in Table XII. NVP22 terms of this system are given
in Appendix D. As it can be seen in Table XII, the second
coil enclosing its path amongst different coils, and the other
uninvolved coils can form different loop arrangements. Based
on (†) and (‡), considering CD coil as an ideal coil in AP1,
the shaded AP1 graphs in Tables II, IV, VIII, and XII can
be removed. According to (*), having the assumption of ideal
CD and VD coils in AP2, the effect of shaded AP2 graphs in
these tables can be removed.

D. Transferred Current

Current in a particular coil consists of two different compo-
nents, which are termed as transferred current (NCPi j/∆)INC,i
and reflected current (NCPii/∆)INC,i . Transferred current is
flown in the concerned coil j due to the induced voltage
as a result of other neighboring source excitations (INR, j or
VTH, j). This can occur directly or indirectly through the other
coils. NCPi j for the transferred current from active coil i and
received by coil j can be written as follows:

NCPi j =

n∑
k=1

NCPi j(k) (26)

where n is the all possible NCPi j graphs, and k is the graph
set index. NCPi j(k) is

NCPi j(k) = 2a × (−1)α × (jω)ρ × gi(Pij(k)) (27)

where a, α, and ρ, are similar to what has been explained in
(21). Pi j(k) for the k th graph of NCPi j is identical to NVPi j ,
and it includes a path linking coils i to j, and all possible loops
between the coils that are not included in the path. Unlike
transferred voltage, in gi of NCPi j , the overall impedance
of the sourcing coil i is not included in the denominator
of the GSM equation gi . NCPi j between different coils of
the three-coil MCWPT system is shown in Tables III, V, VII,
X, and XI. The NCP12 terms associated with the MCWPT
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systems shown in Tables X and XI are identical and they are
given in Appendix E.

E. Reflected Current in Active Coils

The other current component of a particular coil is the
reflected current (NCPii/∆)INC,i . Reflected current is gener-
ated due to the voltage induced in the neighboring coils as
a result of excitation in the concerned coil (INR,i or VTH,i).
This induced voltage in the neighboring coils can create a
current in those coils, and it will in turn induce a voltage in
the coil i. The induced voltage in the under study coil (i) can
produce a current in the same coil, which is termed as the
reflected current. Therefore, the presence of other neighboring
coils influences the excited coil current. Forming graph sets
for NCPii is similar to what has been explained for the
characteristic function ∆. NCPii can be formulated as (28).

NCPii =

n∑
k=1

NCPii(k) (28)

where n is the maximum possible NCPi j graphs, and k is the
graph set index. NCPi j(k) is

NCPii(k) =

{
1; k = 1
2a × (−1)α × (jω)ρ × gδ(P̄ii(k)); k , 1

(29)

where a, α, ρ, and gδ are identical to what has been explained
in (21), except that all isolated reflected paths P̄ii(k) are treated
as loops. P̄ii(k) is the k th isolated loop in the graph sets,
when coil i overall impedance (Zii) is excluded. The resultant
NCPii(k) for different loops of the three-coil system is shown
in the third raw of Tables III, V, and VIII.

As for further examples, Tables XIII and XIV, show P̄ii(k)
graph sets for NCP of reflected current graph sets in coil
1 (NCP11) in the four-coil MCWPT systems proposed in
Tables XI and XII respectively. As previously mentioned, in
these graph sets, the sourcing coil does not participate in the
loops. Therefore, in a specific MCWPT system, the number
of loops for the reflected current graph sets is lower than its
characteristic function loops. Furthermore, similar to what has
been explained for the loops of ∆ in (†) and (‡), in the reflected
current loops, ideal CD coils are not included in the loops, and
according to (*) for ideal VD coils, they must contribute to the
loops. As a result, the removed graph sets for AP1 and AP2
are shaded in Tables III, V, VIII, XIII, and , XIV. NCP11
terms of the MCWPT systems shown in Tables XIII and XIII
are identical, and they are given in Appendix F.

V. GAIN PARAMETERS OF THE MCWPT SYSTEM

Once all the graph sets are formed, an MCWPT system can
be characterized by three different types of gains, namely gain
of voltage path between coils i and j (GVPi j), gain of current
path between coils i and j (GCPi j), and reflected impedance
(Zr f l,ii). As explained in (9) and (11), these gains can be
obtained as follows:

TABLE XIII: First example of P̄11(k) graph set for NCP11 in
a four-coil MCWPT system.

43

1 2

DM AP1 AP2

4

1 2

DM AP1 AP2

3 3

1 2

DM AP1 AP2

4

1 2

DM AP1 AP2

43

P 11 1 for NCP11(1) P 11 2 for NCP11(2) P 11 3 for NCP11(3) P 11 4 for NCP11(4) 

1 2

DM AP1 AP2

3 4

P 11 5  for NCP11(5) 

TABLE XIV: Second example of P̄11(k) graph set for NCP11
in a four-coil MCWPT system.

DM AP1 AP2

1

43

2

DM AP1 AP2

1

43

2

DM AP1 AP2

1

3

2

4

DM AP1 AP2

1

3

2

4

P 11 1 for NCP11(1) P 11 2 for NCP11(2) P 11 3 for NCP11(3) P 11 4 for NCP11(4) 

DM AP1 AP2

1

3

2

4

P 11 5  for NCP11(5) 

GVPi j =

{
ĝvv,i j =

NVPi j

∆
; j is VD

gvi,i j = ZNR, j ĝvi,i j = ZNR, j
NVPi j

∆
; j is CD

(30)

GCPi j =

giv,i j = Z−1

j j ĝiv,i j = Z−1
j j

NCPi j

∆
; j is VD

ZNR,i

Z j j
gii,i j =

ZNR,i

Z j j

NCPi j

∆
; j is CD

(31)

where ĝiv,i j and ĝii,i j , and ĝvv,i j are the dimensionless ele-
ments of ĜIV, ĜVV, and ĜVV matrices explained in (10) and
(11) respectively, and while sourcing coil j supplies sinking
coil i. Similarly, giv,i j and gvi,i j are the components of GIV

and GVI matrices.
Reflected impedance is the impedance of other surrounding

coils seen from the ith coil terminals. This impedance can be
obtained by dividing the gain of voltage path of the reflected
voltage, GVPii , by the gain of current path of the reflected
current, GCPii as follows:

Zr f l,ii =
GVPii

GCPii
= Zii

NVPii

NCPii
(32)

In this way, reflected impedance for the active coils can
be found as in (32). However, as there is no source in PS
coils, the reflected impedance from the active coils to a passive
coil i, can be obtained by replacing its load (RL) by a virtual
voltage or current source (Fig. 2(c)). For the given three-coil
WPT system, V∗TH3 functions as a virtual voltage source, and
its resultant graph sets are shown in Table VIII. The reflected
impedances for coils 1, 2 and 3, and for DM, AP1, AP2, and
AP3 are given in Appendix G.
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VI. SUMMARY OF THE PROPOSED GRAPH SETS METHOD

So far it has been seen that graph sets are obtained from the
Kirchhoff’s principles, and similar to Mason’s laws, GSM can
graphically represent the interaction between coil couplings
and overall impedances in an MCWPT system. Although the
standard model can yield some valuable information, such
as eigenvalues, eigenvectors, sensitivity, stability, controlla-
bility, and observability, the exact patterns of couplings and
overall impedances responsible for dominant behavior of the
system are not directly achievable. This can only be done
by parametrically solving the whole system and finding out
how the building blocks of the system (couplings and overall
impedances) interact with each other. For instance, which
combination of mutual inductances and overall impedances in
an MCWPT system are responsible for change of phase angle
between voltage and current in a sourcing coil i cannot be
easily answered without a parametric equation between coil
i voltage and current. Similarly, the advantageous and disad-
vantageous combinations of couplings and overall impedances
in a repeater MCWPT system can be identified and the WPT
process can be refined more effectively. The number of graphs
in an MCWPT system, however, can exponentially increase
with the increase in the number of coils, and as a result, in
case of manually deriving the graph sets, some patterns may
be overlooked. Hence, the approximation steps are proposed
to simplify the system and to scale it down to its dominant
patterns.

Therefore, similar to Mason’s theory, this method can
directly result in the dependent variables (outputs) to indepen-
dent variable (inputs) gains, and one does not need to do the
complex calculations to achieve the gains by parametrically
solving the whole standard model equations (similar to (1) to
(5)). Besides, establishing the GSM laws to form the graph
sets, the system gains can be obtained through a set of laws
which decreases the chance of missing some patterns.

The flowchart in Fig. 9 summarises the steps and the design
procedure of the proposed GSM. In order to analyze an
MCWPT system based on the proposed GSM, there are four
main steps of (a) identifying the system, (b) categorizing the
coils, (c) forming graph sets, and (d) analyzing and simpli-
fying. Therefore, the main goal of GSM is to characterize,
simplify, and analyze MCWPT systems to study their behavior.
In addition to its computational advantages, GSM can be used
to investigate the effect of couplings and impedances on the
flow of power and reflected impedances.

Here, the following steps are used to briefly explain the
GSM. In step (a), the system parameters, such as mutual
inductance profiles, compensating capacitors and inductors,
load, and ESRs need to be evaluated. In step (b), the coils
are categorized into three different types of VD, CD, and PS
coils based on their behavior. The compensator and its source
define the type of active coils. Based on the type of a coil, its
ZNR,i , ZTH,i , and Zii can be calculated in this step. According
to the general rules for GSM, step (c) forms graph sets for
∆, NVPs, and NCPs. The expressions for their GVPs and
GCPs can be obtained in the next step. In the final step of (d),
GVPs, GCPs, and ∆ can be simplified by either finding out

Simplifying the MCWPT 
System (AP1, AP2, AP3)

Mutual Inductance Profiles

Compensator Parameters

ESRs and Load

Voltage Driven Coil (6)

Current Driven Coil (7)

Passive Coil (8)

Delta Graph Sets (IV-A)

NVP Graph Sets (IV-B, IV-C)

NCP Graph Sets (IV-D, IV-E)

Obtaining GVPs and GCPs 
(31, 32)

Obtaining Reflected 
Impedances (33)

Analyzing the Behavior of the 
System

Step (a)
Identifying the 

System

Step (b)
Categorizing the 

Coils

Step (c)
Forming Graph 

Sets

Step (d)
Simplifications 
and Analysis

Fig. 9: GSM flowchart to analyze an MCWPT system.

the dominant sub-terms in NVPs, NCPs, and ∆ or CD and VD
approximations (or both) explained in Section III. Using these
simplifications, the behavior of the system, in terms of flow
of power, reflection of impedances, and its dynamic behavior
can be analyzed, which is detailed in Part II of this paper.

VII. CONCLUSION

A new approach, Graph Sets Method (GSM), for modeling
and analyzing MCWPT system is proposed in this article.
The method is inspired by Mason’s rule used in linear control
systems, and it can be used to formulate MCWPT systems in
a more knowledgeable way. For this purpose, WPT coils and
their driving systems are classified into three different types of
current driven, voltage driven, and passive coils. Then, with the
use of Norton and Thevenin equivalents, the detailed models
of the coils are formulated and used to reach the parametric
solution of the system. Graph sets can be formed by the
obtained solution, and some general rules can be obtained
to form the current and voltage transfer functions between
different coils. The proposed GSM can form the characteristic
function and the gains between electric variables of the system.
Moreover, the graph sets can be further simplified with the
assumption of ideal current driven and voltage driven coils and
removing the effect of negligible couplings. This approach can
also formulate the reflected impedances seen from different
coils. Therefore, in this paper, the principles of the graph
sets method to model, analyze, and simplify MCWPT system
are established. In the next part of this paper, to prove the
validity and capabilities of this approach, a three-coil system,
consisting of all three different type of CD, VD, and PS coils,
is numerically analyzed using the GSM approach, and the
obtained results are compared with the experimental results.
It will be shown that the obtained results are consistent with
the experimental results, and GSM can be used as an effective
approach to analyze WPT systems.
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APPENDIX A

NVP11 = −
L2

12s
2

Z11Z22︸     ︷︷     ︸
NVP11(1)

+−
L2

13s
2

Z11Z33︸     ︷︷     ︸
NVP11(2)

+
2L12L13L23s

3

Z11Z22Z33︸             ︷︷             ︸
NVP11(3)

;

NVP21 =
L12s

Z22︸︷︷︸
NVP21(1)

+−
L13L23s

2

Z22Z33︸         ︷︷         ︸
NVP21(2)

; NVP12 =
L12s

Z11︸︷︷︸
NVP12(1)

+−
L12L23s

2

Z11Z33︸         ︷︷         ︸
NVP12(2)

;

NVP22 = −
L12s

2

Z11Z22︸     ︷︷     ︸
NVP22(1)

+−
L2

23s
2

Z22Z33︸     ︷︷     ︸
NVP22(2)

+
2L12L23L13s

3

Z11Z22Z33︸             ︷︷             ︸
NVP22(3)

;

NVP13 =
L13s

Z11︸︷︷︸
NVP13(1)

+−
L12L23s

2

Z11Z22︸         ︷︷         ︸
NVP13(2)

; NVP23 =
L23s

Z22︸︷︷︸
NVP23(1)

+−
L12L13s

2

Z11Z22︸         ︷︷         ︸
NVP23(2)

;

NCP11 = 1︸︷︷︸
NCP11(1)

+−
L23s

2

Z22Z33︸     ︷︷     ︸
NCP11(2)

; NCP21 = −
L12s

Z11︸  ︷︷  ︸
NCP21(1)

+
L13L23s

3

Z11Z33︸      ︷︷      ︸
NCP21(2)

;

NCP12 = −
L12s

Z22︸  ︷︷  ︸
NCP12(1)

+
L13L23s

2

Z22Z33︸      ︷︷      ︸
NCP12(2)

; NCP22 = 1︸︷︷︸
NCP22(1)

+−
L2

13s
2

Z11Z33︸     ︷︷     ︸
NCP22(2)

;

NCP13 = −
L13s

Z33︸  ︷︷  ︸
NCP13(1)

+
L12L23s

2

Z22Z33︸      ︷︷      ︸
NCP13(2)

; NCP23 = −
L23s

Z33︸  ︷︷  ︸
NCP23(1)

+
L12L13s

2

Z11Z33︸      ︷︷      ︸
NCP23(2)

;

∆ = 1︸︷︷︸
∆(1)

+−
L2

13s
2

Z11Z33︸     ︷︷     ︸
∆(2)

+−
L2

23s
2

Z22Z33︸     ︷︷     ︸
∆(3)

+−
L2

12s
2

Z11Z22︸     ︷︷     ︸
∆(4)

+
2L12L23L13s

3

Z11Z22Z33︸             ︷︷             ︸
∆(5)

APPENDIX B

∆ = 1︸︷︷︸
∆(1)

−
L2

12s
2

Z11Z22︸     ︷︷     ︸
∆(2)

−
L2

13s
2

Z11Z33︸     ︷︷     ︸
∆(3)

−
L2

14s
2

Z11Z44︸     ︷︷     ︸
∆(4)

−
L2

23s
2

Z22Z33︸     ︷︷     ︸
∆(5)

−
L2

24s
2

Z22Z44︸     ︷︷     ︸
∆(6)

−
L2

34s
2

Z33Z44︸     ︷︷     ︸
∆(7)

+
2L23L34L24s

3

Z22Z33Z44︸                ︷︷                ︸
∆(8)

+
2L13L34L14s

3

Z11Z33Z44︸                ︷︷                ︸
∆(9)

+
2L12L24L14s

3

Z11Z22Z44︸                ︷︷                ︸
∆(10)

+
2L12L23L13s

3

Z11Z22Z33︸                ︷︷                ︸
∆(11)

+
L2

12L
2
34s

4

Z11Z22Z33Z44︸                ︷︷                ︸
∆(12)

+
L2

13L
2
24s

4

Z11Z22Z33Z44︸                ︷︷                ︸
∆(13)

+
L2

14L
2
23s

4

Z11Z22Z33Z44︸                ︷︷                ︸
∆(14)

+
2L12L24L34L13s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
∆(15)

+
2L12L23L34L14s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
∆(16)

+
2L13L23L24L14s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
∆(17)
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NVP12 =
L12s

Z11︸︷︷︸
NVP12(1)

−
L12L

2
34s

3

Z11Z33Z44︸           ︷︷           ︸
NVP12(2)

−
L13L23s

2

Z11Z33︸         ︷︷         ︸
NVP12(3)

−
L14L24s

2

Z11Z44︸         ︷︷         ︸
NVP12(4)

+
L13L34L24s

3

Z11Z33Z44︸              ︷︷              ︸
NVP12(5)

+
L14L23L34s

3

Z11Z33Z44︸              ︷︷              ︸
NVP12(6)
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NVP22 = −
L2

12s
2

Z11Z22︸     ︷︷     ︸
NVP22(1)

−
L2

23s
2

Z22Z33︸     ︷︷     ︸
NVP22(2)

−
L2

24s
2

Z22Z44︸     ︷︷     ︸
NVP22(3)

+
L23L34L24s

3

Z22Z33Z44︸              ︷︷              ︸
NVP22(4)

+
L12L24L14s

3

Z11Z22Z44︸              ︷︷              ︸
NVP22(5)

+
L12L23L13s

3

Z11Z22Z33︸              ︷︷              ︸
NVP22(6)

+
L2

12L
2
34s

4

Z11Z22Z33Z44︸                ︷︷                ︸
NVP22(7)

+
L2

14L
2
23s

4

Z11Z22Z33Z44︸                ︷︷                ︸
NVP22(8)

+
L2

13L
2
24s

4

Z11Z22Z33Z44︸                ︷︷                ︸
NVP22(9)

−
2L12L24L34L13s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
NVP22(10)

−
2L12L23L34L14s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
NVP22(11)

−
2L14L24L23L13s

4

Z11Z22Z33Z44︸                     ︷︷                     ︸
NVP22(12)
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NCP12 = −
L12s

Z22︸  ︷︷  ︸
NCP12(1)

+
L12L

2
34s

3

Z22Z33Z44︸           ︷︷           ︸
NCP12(2)

+
L13L23s

2

Z22Z33︸         ︷︷         ︸
NCP12(3)

+
L14L24s

2

Z22Z44︸         ︷︷         ︸
NCP12(4)

−
L13L34L24s

3

Z22Z33Z44︸              ︷︷              ︸
NCP12(5)

−
L14L23L34s

3

Z22Z33Z44︸              ︷︷              ︸
NCP12(6)

APPENDIX F

NCP11 = 1︸︷︷︸
NCP11(1)

−
L2

23s
2

Z22Z33︸     ︷︷     ︸
NCP11(2)

−
L2

24s
2

Z22Z44︸     ︷︷     ︸
NCP11(3)

−
L2

34s
2

Z33Z44︸     ︷︷     ︸
NCP11(4)

+
2L23L34L24s

3

Z22Z33Z44︸                ︷︷                ︸
NCP11(5)

APPENDIX G

Zr f l ,11(DM,AP1) =
−L2

12s
2Z33 − L2

13s
2Z22 + 2L12L23L13s

3

Z22Z33 − L2
23s

2
;

Zr f l ,11(AP2) →
(
L12
L23

)2
Z33 −

2L12L13
L23

s; Zr f l ,11(AP3) →
(
L12
L23

)2
Z33;

Zr f l ,22(DM) =
−L2

12s
2Z33 − L2

23s
2Z11 + 2L12L23L13s

3

Z11Z33 − L2
13s

2
;

Zr f l ,22(AP1,AP2) → −
L2

23s
2

Z33
; Zr f l ,22(AP3) = −

L2
23s

2

Z33
−

L2
12s

2

Z11
;

Zr f l ,33(DM) =
−L2

13s
2Z22 − L2

23s
2Z11 + 2L12L23L13s

3

Z11Z22 − L2
12s

2
;

Zr f l ,33(AP1,AP3) → −
L2

23s
2

Z22
; Zr f l ,33(AP2) → ∞;
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