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Time-limited states characterize many dynamical processes on networks: disease-infected individuals recover
after some time, people forget news spreading on social networks, or passengers may not wait forever for
a connection. These dynamics can be described as limited-waiting-time processes, and they are particularly
important for systems modeled as temporal networks. These processes have been studied via simulations,
which is equivalent to repeatedly finding all limited-waiting-time temporal paths from a source node and
time. We propose a method yielding an orders-of-magnitude more efficient way of tracking the reachability
of such temporal paths. Our method gives simultaneous estimates of the in- or out-reachability (with any chosen
waiting-time limit) from every possible starting point and time. It works on very large temporal networks with
hundreds of millions of events on current commodity computing hardware. This opens up the possibility to
analyze reachability and dynamics of spreading processes on large temporal networks in completely new ways.
For example, one can now compute centralities based on global reachability for all events or can find with high
probability the infected node and time, which would lead to the largest epidemic outbreak.

DOI: 10.1103/PhysRevE.101.052303

I. INTRODUCTION

The topology of networks laying behind complex systems
is crucial for any dynamical processes taking place on them
[1]. This realization provided new perspectives in understand-
ing various phenomena, such as spreading of disease [2] and
social dynamics [3]. In addition to the topology, it has later
become evident that the time-varying nature of these connec-
tions also has a large effect on the unfolding of spreading
processes [4] and many other dynamical phenomena [5]. This
was one of the main realizations leading to the emergence
of the field of temporal networks, which studies structures
where links are not static but active only at some specific
times [6,7]. The timing of connections has both uncovered
interesting phenomena never seen before and created new
types of computational problems to the analysis of network
data and models.

In static networks, the possible routes for any dynamics
to evolve are determined by topological paths. Paths can also
be defined for temporal networks, but there are two main
fundamental differences. First, the paths need to be time
respecting such that the consecutive links are activated in
the correct order [8]. Second, the time between activations
is often limited. This is because many of the processes are
characterized by time-limited states and finite memory, e.g., in
case of spreading processes where they appear as the limited
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lifetime of a spreading agent. The maximum acceptable trans-
fer time in a transportation network [9,10] or in a gossip
protocol [11], as well as the finite infectious period of an
individual in case of disease spreading [12], are all good
examples of such dynamics. These processes can only spread
through time-respecting paths where consecutive connections
take place within some limited time δt .

The detection of temporal paths and the connectivity they
provide is fundamental to understanding dynamics on and
characteristics of the networks, but it cannot directly rely
on the methodologies developed for static structures. Instead,
new methods need to be developed, and this work is still at
its infancy compared to static networks. For example, tem-
poral connectivity and related measures are routinely being
computed using breadth-first search types of algorithms. This
is similar to the approach of finding connected components in
static graphs in the early studies on percolation phenomena on
lattices [13]. Major improvements to these early algorithms,
such as the Newman-Ziff algorithm [14], made it possible to
analyze large network structures in an unprecedented way and
opened a path to the understanding of network connectivity
we have today.

An elegant way to overcome difficulties in temporal net-
works is to transform the temporal problems into static prob-
lems, which we know how to solve efficiently. To do so, we
need a representation, which maps temporal networks to a
static structure on which we can then apply static network
methods. Weighted temporal event graphs have been recently
suggested as one such solution [15,16]. They provide a rep-
resentation of temporal networks as static directed acyclic
graphs (DAGs), which contains all the information on the tem-
poral paths. They can be interpreted as temporal line graphs,
where events are nodes and if they are adjacent, they are
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connected by a link directed according to the arrow of time.
Such links can form a longer δt-constrained path, representing
the ways a limited-waiting-time process can spread in the
structure. This representation allows us to design efficient
algorithms to measure temporal centrality or connectivity in
time-varying networks while exploiting tools and theories
developed for static graphs and directed acyclic graphs.

A particular way of using the weighted event graphs is to
use the Newman-Ziff algorithm [14] to measure the size of the
weakly connected component when increasing the δt value
[15]. This allows extremely fast sweeps of δt values where
the size of the weakly connected components can be measured
for each value. However, weakly connected components give
only an upper estimate for the outcome of any potential global
phenomena. On the other hand, more precise indicators of
connectivity and influence, like in- and out-components, are
difficult to measure with current conventional techniques.

Here we take a complementary approach to the Newman-
Ziff algorithm and develop a method to make accurate esti-
mates of the sizes of source and influence set of every single
event in a temporal network, given an arbitrary δt . We rely on
the DAG character of the event graph representation, which
allows us to convert our temporal reachability problem to a
DAG reachability problem, a.k.a., the graph-theoretical chal-
lenge to estimate transitive closure sizes [17]. Relying on al-
ready developed probabilistic counting methods [18], we can
devise an algorithm which estimates the global reachability
for each event even in extremely large temporal networks with
hundreds of millions of events. Further, using this approach,
we can effectively identify with high probability events with
the largest out- (and in-) components in massive temporal
networks.

To introduce and demonstrate our method, first in Sec. II A
we define the basic formal concepts of event graphs. In
Sec. II B we describe our algorithmic solutions and use them
in Secs. III A and III B to estimate out-component sizes of
events in random and real-world networks. Analyzed net-
works include large-scale temporal structures such as mobile
phone communication and transportation networks. Note that
the implementation of the algorithms described in Sec. II and
the Appendixes are publicly available [19].

II. METHODS

A. Definitions and measures

1. Temporal networks, adjacency, temporal paths, and reachability

Temporal networks can be formally defined in various
ways [6]. They build up from time-varying interaction events,
which can be directed or undirected, appear with duration or
delay, and can be between two or more nodes. In turn, events
induce temporal paths whose structure critically depends on
the event characteristics. To capture all of this complexity,
we introduce methods using a slightly more general definition
of temporal networks than usual, which can be easily made
more specific depending on the features of the actual temporal
network.

We define a temporal network as a tuple G = (VG, EG, T )
of a finite set of nodes VG, a finite set of events EG, and
an observation window T . An event e ∈ EG is defined as

e = (u, v, t, τ ), where u, v ⊆ VG are the source and target
node sets of the event, t is the time at which the event starts,
and τ is its delay or duration.1 Here we assume that the source
and target event sets are relatively small with a constant size,
not depending on the length of the temporal data, which is
usually the case in real temporal networks.

To capture possible information flow [20], potential causal
relationships [21], and mesoscopic motifs in temporal net-
works [22] we can define the adjacency relation between pairs
of events. We say that two events ei, e j ∈ EG are adjacent,
ei → e j , if they have at least one node in common in their
target and source sets, vi ∩ u j �= ∅, and they are consecutive:
the second event e j , at t j > ti, cannot start before the first event
ei ends; thus the time difference between the two events must
be �t (ei, e j ) = t j − ti − τi > 0. In addition, we can constrain

events to be δt adjacent, ei
δt−→ e j , thus being related only if

they happen within a time distance δt , i.e., �t (ei, e j ) � δt .
Unlike in static networks, in temporal structures informa-

tion can pass between nodes only at the time and direction
of interactions. Thus to study any dynamical process on
temporal networks, we first need to define how information
can be propagated through a sequence of events. We define
a temporal path (also called a time-respecting path) as an
alternating sequence,

P = [v1, e1, v2, e2, . . . , en, vn+1] , (1)

of vi ∈ VG nodes, ei ∈ EG events, which must be adjacent if
they are consecutive in the sequence. In contrary to static
paths, a temporal path is not permanent but depends on the
time and the source node of the first interaction. Moreover,
in a temporal path consecutive events need to be adjacent:
they need to happen in correct temporal order while taking
account of their duration and direction as well. In addition,
we can constrain consecutive events to be δt adjacent, to
capture processes with a maximum allowed transfer time.
Taking these possible restrictions, we can already code some
characters of the dynamical process in the representation of
the underlying temporal network. In the following, we often
use as an example a simplification of this general description
by assuming instantaneous, undirected, and dyadic interac-
tions with only two interacting nodes [21]. This gives us a
network G′ with an event set EG′ ⊂ V × V × [0, T ] and an
event defined as (u, v, t ) ∈ EG′ 2.

Temporal paths code reachability in a temporal network,
i.e., whether a node at a given time can or cannot influence
another node in an upcoming time step. Considering all outgo-
ing (or incoming) temporal paths starting from (resp. ending
at) a given node at a given time, one can obtain its influence

1Note that nodes here formally appear as a set of nodes u, v ⊆ VG to
compile with possible hyper events in the representation; however, in
case we assume that only a pair of nodes can participate in an event,
the event definition relaxes to the usual case where e = (u, v, t, τ ),
where u and v are single nodes from VG.

2Note that in case of undirected dyadic events we can store an event
in a more general form as ({u, v}, {u, v}, t, 0), but in practice in our
algorithms there is no reason to explicitly store both source and target
sets and zeros for the delays.
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FIG. 1. An undirected temporal network and its corresponding
static event graph. Two events ei and e j on a temporal network are
adjacent if they share at least one node and �t (ei, e j ) � δt , where
in this instance we have chosen a value of δt = 3 for the purpose
of illustration. One valid temporal path is highlighted red on the
temporal network and on the event graph.

(resp. source) set. This out-component (resp. in-component)
can be computed as the union of the nodes in the time-
respecting paths starting from (ending at) a given node. The
out-component determines the possible routes information,
epidemics, rumor, or influence can travel after initiating from
a given node at a given time. This may give us the potentially
infected set of patients in an epidemic, or the influenced set
of people of a political campaign. However, the solution of
the reachability problem is computationally expensive even
for small structures [8]. For larger temporal networks the only
feasible solution has been to sample initial source node-time
pairs and compute their influence sets using a breadth-first
search algorithm [8,23]. This approach, although very expen-
sive, has already provided some insight about the average
reachability of temporal networks and its relation to various
network features [5,21].

2. Weighted temporal event graphs

A recently introduced higher-order representation of tem-
poral networks, called temporal event graphs, provides ef-
fective solutions to many computational problems related to
temporal network connectivity [15] and other purposes [16]
(see Fig. 1). Given a temporal network G = (VG, EG, T ), the
temporal event graph representation is formally defined as a
weighted graph D = (EG, AE ,�t ). The nodes of D are the
events of G, and edges are drawn between adjacent events.
The direction of every edge is in the arrow of the time, and
the weight is defined as the time difference of the two events
incident to the edge, �t (ei, e j ). Going forward in time, the
direct successors of event e ∈ EG are the set of events con-
nected by outgoing edges from e. Going backwards in time,
direct predecessors of an event e are the set of all events where
there is a directed edge from that event to e. Event graphs can
be regarded as a temporal line graph representation, capturing
higher-order relationships between events.

Since adjacency is defined between nonsimultaneous
events and directed by time, temporal event graphs appear as
weighted directed acyclic graphs. They are static representa-

tions of temporal networks, which can be analyzed by the full
spectrum of tools and methods developed for static graphs.
Further, they allow one to use concepts of static centrality and
similarity measures to develop similar concepts in temporal
networks. As their most important feature, they appear as
a static superposition of all temporal paths present in the
original temporal network. In other words, PG

e = PD
v , where

PG
e is the set of event sequences in all temporal paths in

G, and PD
v is the set of node sequences in all the paths in

D. While every temporal path in G corresponds to a unique
path in D, there can be redundancy in the other direction:
multiple temporal paths in G could correspond to a single
event path in D. This is due to the multiple temporal paths
using the same sequence of events but a different sequence of
nodes. It is easy to construct such sets of paths with events
that have multiple source and target nodes. In the case of
dyadic interactions, such redundancies are very minor (or
nonexistent). In any case, these multiplicities do not have any
effect on the reachability.

3. Component definitions

Components can be defined in various ways in an event
graph. As it is a directed graph, one can identify in- and out-
components and also weakly connected components. Since
event graphs are directed acyclic graphs, strongly connected
components larger than one node do not exist.

More precisely, the out-component of an event (also called
the root event) in a static event graph is defined as the
maximum set of other future events that can be reached by
any temporal path starting from the root event. In case of
an epidemic spreading with an initial infection taking place
at the root event, this is the set of temporal contacts (and
nodes) which potentially propagate the disease. We define the
maximum out-component of an event graph as its largest out-
component, giving us the largest possible effect/outbreak ever
observable in the network. Equivalently, the in-component of
an event is formed by the incoming temporal paths, and it
is defined as the set of earlier events (and nodes) which can
influence the actual pair of interacting nodes up to the actual
time. The definition of weakly connected components is less
restrictive, as they include any events which are connected via
temporal paths irrespective of the direction of their adjacency.

Among all these component types, in the following we
are mostly going to focus on the precise identification of
out-components, and we will explain how our methodology
can be generalized to identify in-components as well. The end
goal for our algorithm is to rapidly determine the sizes of these
components.

Temporal graphs provide further ways to define connec-
tivity [15]. Beyond connected events in the components of
D, one can look for the set of original network nodes from
VG involved in such components. Since a network node can
appear multiple times in an event graph component, this
is an alternative way to measure the influence of an event
by counting the total number of network nodes involved in
the corresponding event graph out-component. Event graph
components have also temporal dimensions; thus their con-
nectivity can be also measured in terms of the time span
between their first and last events. This compared to the T
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total observation time tells whether a component has only
a local temporal effect or it percolates in time and bridges
information over a longer course of observation.

B. Scalable algorithms for in- and out-component
size estimation

The out-component of an event ei ∈ EG (which is a node in
D) can be calculated in several ways. As we have mentioned,
one potential solution is to start a breath-first search process
from one of the nodes involved in ei by using the upcoming
events in G. Another solution would be to compute the direct
successor set recursively using the algorithm explained in
Appendix B. However, calculating the sizes of out-
components even for a small fraction of all events is not
feasible with any of these solutions for large temporal net-
works, as their complexity scales badly with the number of
events |EG|. Here we propose an alternative solution based
on a probabilistic approach to estimate the size of the largest
out-component to arbitrary precision and to identify its root
event in any temporal network, even with extremely large
sizes.

1. Probabilistic method for estimating out-component sizes

Our main goal is to obtain the out-component size for each
node in D. But for a more concise presentation, first we define
an algorithm which exactly provides out-components (i.e., the
reachable sets) for each node in D. Our out-component size
estimation algorithm is subsequently defined by changing the
data structure containing these sets to a probabilistic counting
data structure [17,18,24].

Our solution is similar to the commonly used algorithm for
computing all subtree sizes, where starting from leaf nodes,
the size of each subtree is given by the sum of its subtree sizes
plus one. We tailor this idea specifically for DAG structures.
This algorithm reuses the already computed out-components
for direct successors to calculate the out-component of each
node in a directed acyclic graph. To explain the algorithm
we consider separately the nodes with zero and nonzero out-
degrees kout: The out-component of any leaf node i (i.e., node
with kout = 0) is trivial as it contains only itself Ci = {i}. For
the other nodes (kout > 0) the out-component can be built as
Ci = {i} ∪ ⋃

(i, j)∈AG
Cj , where AG is the set of edges in the

event graph D. We compute the out-components Ci by going
through the nodes of D (events of the temporal network) in
reverse topological order, for example, reverse temporal order
starting from the event with the largest time stamp backwards.
This ensures that we already know the out-components of
direct successors of each event we encounter. The algorithm
is illustrated in Fig. 2 and described in detail in Algorithm 1.

This algorithm goes through each event only once and per-
forms number of union operations equal to the number of links
in the event graph, |AG|. However, the average out-component
size can be directly proportional to the number of events in
well-connected networks. That is, the out-components can
grow rapidly when the network size grows. This makes the
algorithm to scale badly both in memory and computational
time due to the cost of union operations on increasingly large
sets.

FIG. 2. Static event graph representation of a temporal network.
Weakly connected components are {e1, e3} and {e2, e4, e5, e6, e7, e8}.
Out-component set of the event e2 is {e2, e4, e6, e7, e8}. Note that
event e5 is in the same weakly connected component as e2, but it
is not a member of its out-component set. The algorithm finds the
out-component by going backwards through a topological ordering
of events (i.e., reverse time order); at each step, the out-component
of each event is calculated by getting the union of the out-component
sets of all events from the set of events in its out-edges plus the event
itself. Since the ordering is reverse topological order, all the events in
the out-edge set will already have their out-components calculated.

The root of the performance problem is that we store the
actual reachability sets when we need only their sizes. The
solution to this problem is to find a data structure to replace
the sets Ci with another data structure Ĉi, which has a constant
size and constant time union operator Ĉi ∪ Ĉ j and can return
an estimate for the set size |Ĉi| (again in constant time).
With this data structure, the scaling of the algorithm becomes
O(|EG|log(|EG|) + |AG|), which is much preferable to the
breadth-first search approach with O(|EG||AG|) complexity.
Probabilistic counting methods described next give access to
exactly this type of data structure.

The method described above works equally well if we want
to measure the sizes of the components in terms of nodes of
the temporal network G. In this case, the reachable sets would
be populated with the nodes of the events instead of the events
themselves. If the sizes are measured in lifetimes, i.e., the
time between the first and the last event in the component the
algorithm can be made even more simple. In this case, instead
of saving the full reachable set of nodes, it is enough to save
the largest time stamp of all of the event. That is, the set Ci is
replaced with a time stamp Ti, which is initially set to ti for any
event ei appearing as a leaf node in D, and the union operator
is replaced with the maximum operator.

Note that although here we discuss the computation of the
out-component sizes, in-components can be calculated with
the same algorithm by reversing the direction of the links in D
and the order at which the nodes in D are traversed. In practice
the reversion of the link direction can be obtained by replacing
calls to Successors(e) function with Predecessors(e) and vice
versa in Algorithms 1 and 3.
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2. Probabilistic cardinality estimator

For Algorithm 1 to run on large real-world networks we
need to ensure that the time complexity of the union and
the cardinality operators and also the space complexity of
the set implementation do not grow linearly as a function of
the cardinality of the set. This is not the case for implemen-
tations which exactly keep track of the out-component sets,
for example, using sorted vectors or hash maps. However, in
order to estimate out-component sizes it is not necessary to
query the sets for their members but only to insert, merge,
and query the size of each set. We use a data structure
implementing a variation of the HyperLogLog probabilistic
cardinality estimator algorithm [24], which is computationally
efficient for the three required operations. HyperLogLog was
conceived as a method of estimating the cardinality of massive
multisets, usually in the form of streams, given a constant
amount of memory.

The basic idea of the algorithm is to use randomization,
in the form of passing the input through a hash function, and
only save the maximum number of leading zeros in the binary
representation of the hashed values of the multiset. A cardinal-
ity estimation is then made by counting the number of leading
zeros. Due to the uniform distribution of the output of hash
functions suited for this algorithm, if the maximum number
of observed leading zeros is � − 1 then a good estimation
of the cardinality would be 2�. Alone, the above-described
estimators are extremely crude, but the algorithm works by
combining many such estimators via a process of stochastic
averaging. Based on the hash value, the algorithm splits the
input stream into m substreams while keeping track of the
maximum number of leading zeros in each substream. Sub-
sequently, it averages the observables using their harmonic
mean, which ensures that variability of the estimation is kept
in check [24].

We made several choices in our implementation of the
algorithm, with some described in more detail in the definition
of HyperLogLog++ algorithm [18]. In particular, the follow-
ing modifications were borrowed from HyperLogLog++: (a)
We used a 64-bit hash function, as opposed to original 32 bit,
to compensate for the collision of hash values for multisets
with large cardinalities. (b) Empirical bias correction was
performed as introduced in [18]. (c) To improve performance
characteristics and simplify error analysis, we did not use a
separate sparse representation. Figure 3 shows the relative
accuracy and bias values for the HyperLogLog cardinality
estimator. The difference in the scale of bias and accuracy
indicates that the bias estimation reduced the bias and stopped
its growth as the cardinality grows, to a degree where it plays
an insignificant role in the total inaccuracy of the estimator.

The relative error in the size estimates can be made
arbitrarily small by increasing the number of registers m.
Estimations of cardinality of a multiset S is expected to have a
Gaussian distribution, due to averaging and the central limit
theorem, with a mean of |S| and a standard deviation of
1.04|S|√

m
(for m > 128) [24]. HyperLogLog needs at most six

bits [log2(64)] per register to store the number of leading zeros
in the output of the 64-bit hash function, but for ease of use,
we elected to assign a full eight-bit byte for each register. A
HyperLogLog counter has been reported to be able to estimate

Data: topo: reverse topologically sorted list of events
Result: outsize: associative array of each event to

its out component size
begin

indegree ← {}
out ← {}
outsize ← {}
for each event from topo do

out[event] ← {event}
indegree[event] ← |predecessors(event)|
for other ∈ successors(event) do

out[event] ← out[event] ∪ out[other]
indegree[other] ← indegree[other] − 1
if indegree[other] is 0 then

outsize[other] ← |out[other]|
delete(out[other])
delete(indegree[other])

end
end
if indegree[event] is 0 then

/* events with no in-degree */
outsize[event] ← |out[event]|
delete(out[event])
delete(indegree[event])

end
end

end

ALG. 1. Calculating out-component sizes of events from the
static event graph representation described in Appendix A.
Successor(e) (and Predecessor(e)) return set of direct successors
(and predecessors) of event e as described in Appendix A and Algo-
rithm 2. Associative array out is used to keep the memory-intensive
set representation of out-components of events in memory up until
the moment when there would be no references to the out-component
of that event, when they are deleted from out and the cardinality of
their out-component set is added to outsize.

cardinalities well beyond 1 billion, limited by raising collision
probability as approaching the limits of a 64-bit hash function
[18]. As an example, a counter with m = 210 registers would
have a constant size of one kibibyte and a relative accuracy
(corresponding to standard deviation of the distribution of
estimates as a fraction of actual cardinality) of 0.0325. While
inserting an item in the HyperLogLog estimator requires a
constant number of operations with respect to cardinality or
number of registers, the estimation operation requires linear
operations with respect to the number of registers.

For a specific relative error rate, the memory and time-
scaling of the probabilistic counter are constant and do not
depend on the input network size. In practice, the constants
involved are relatively large. For this reason, we only keep
track of the cardinality estimator data structures for nodes
that do still have unprocessed predecessors. This significantly
reduces the memory requirements when running the algorithm
on real data (see Sec. III B).
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FIG. 3. (a) Estimates of mean relative bias values, (b) relative
standard error of our implementation of HyperLogLog cardinality
estimation algorithm with m = 210 registers and random multisets.
Relative standard error is calculated by dividing standard deviation
of estimated cardinality over a set of 1000 estimators with different
seeds divided by true values of cardinalities. Relative bias is mea-
sured as the difference of the estimated cardinalities from the true
cardinality divided by true cardinality averaged over 1000 estimators.
Panel (c) displays mean (blue dashed line) and the standard error
of the mean (orange band) of 1000 independent estimations of out-
component size estimations on a realization of a 1024-node random
temporal network. The markers ∗, +, and × denote the estimation
errors for a subset of individual out-component sizes for three
estimators out of the total 1000. Panel (d) shows relative standard
error of estimation, similar to (b), but based on 1000 independent
out-component size estimation on the same network as (c). Solid
lines in panels (b), (c), and (d) indicate the theoretical accuracy of
the HyperLogLog algorithm with 210 registers, which is 1.04/

√
m =

1.04/
√

210 = 0.0325 relative to true cardinality [24]. For a more
in-depth study of different variations of HyperLogLog and the role
and reasoning about bias estimation, see Ref. [18].

3. Finding the event with largest out-component

The above-described algorithm finds accurate estimates for
the out-component sizes of nodes in a DAG. However, it
can be further developed to design a probabilistic estimation
method to find the event with the maximum out-component
size with a highly adjustable probability. This is possible
by complementing the estimates with breadth-first search.
That is, starting from the event with largest estimated out-
component size, we perform consecutive breadth-first search
operations, finding exact out-component size by either iden-
tifying it as the largest out-component size or ruling it out
as such. This is repeated until the probability that any of the
estimated (nonexact) out-component sizes being larger than
the largest exact out-component size is smaller than some
predefined probability threshold.

Let us assume that the out-component size estimation
process provides an ŝe out-component size for the event e.
We can calculate the probability distribution of the actual
out-component size of that event se based on the extended

form of Bayes’ theorem,

P(se|ŝe) = P(ŝe|se)P(se)∑∞
i=1 P(ŝe|i)P(i)

, (2)

where P(se|ŝe) is the probability of the actual size being se

when the estimate ŝe is observed, P(ŝe|se) is the probability
to estimate the size of a multiset with cardinality se as ŝe,
and P(se) is the probability that any multiset would have a
cardinality of se. The term P(ŝe|se) can be approximated by
a probability density function of a Gaussian distribution with
a mean of se and standard deviation of se

1.04√
m

for m > 128,
where m is the number of registers of the probabilistic counter
[24]. Assuming a uniform prior3 for cardinality of multisets,
Eq. (2) simplifies to

P(se|ŝe) = P(ŝe|se)∑∞
i=1 P(ŝe|i) . (3)

Assume we have estimated in- or out-component sizes of
all the events as {ŝ1, ŝ2, . . .}. Without loss of generality, we
take that ŝ1 is the largest estimate (i.e., ∀e∈EG ŝ1 � ŝe). If the
actual in- or out-component size corresponding to event 1 is
measured using the exact algorithm described in Appendix C
as s1, the probability that s1 would be the largest in- or out-
component size of the whole network can be expressed as

P(∀e∈EG s1 � se|ŝ1) =
∏

e∈EG\{1}
P(s1 � se|ŝe) , (4)

where given Eq. (3), P(x � se|ŝe) can be written as

P(x � se|ŝe) =
∑∞

i=x P(ŝe|i)∑∞
i=1 P(ŝe|i) . (5)

Along with a large enough number of registers, this can
increase the probability of finding the absolute largest in- or
out-component at any desirable level by removing estimates
one by one through calculating exact in- or out-component
sizes with the breadth-first search algorithm. It is also possible
to use this technique for finding the largest out-component
size to a specific number of significant figures.

III. APPLICATIONS

To demonstrate the use of our method, we first apply
it on simulated (Sec. III A) and subsequently on empirical
temporal networks (Sec. III B). As it comes, we focus on
the computation of out-components, but in-components could
also be obtained with the same method.

A. Random networks

For the demonstration of our methodology, we use one
of the simplest temporal network models, which assumes

3The actual distributions of the component sizes will be biased
towards small components, especially for the regions of δt which
are of most interest. A prior with more probability mass on the large
values will mean that our estimate on the number of breadth-first
search operations we need to perform to achieve the desired accuracy
gets larger. That is, the uniform prior is likely to be an overly cautious
option as a prior for the component sizes.
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that both the structure and the link dynamics are completely
random and uncorrelated [15]. More specifically, our model
network is built on a static structure generated as an Erdös-
Rényi random graph with n nodes and k average degree. Each
link has an interaction dynamics modeled as a Poisson process
with a rate parameter α = 1 for an observation window T .
Thus, events on links follow each other with exponentially
distributed interevent times.

It has been shown earlier [15] that by varying the k average
degree and the δt event adjacency parameter the event graph
goes through a percolation phase transition between a discon-
nected and a connected phase. If δt is small or the underlying
network is disconnected (kout < 1), only short temporal paths
can evolve between small components of connected nodes,
and thus the potential sizes of DAG components are very
limited. However, on a connected structure (kout > 1), by
increasing δt , more and more events become δt adjacent, this
way forming longer paths and potentially larger event graph
components. At a critical δt the event graph goes through a
directed-percolation-like phase transition, with an emerging
giant connected component, which connects the majority
of events via valid δt-connected time-respecting paths. This
transition has been observed earlier [15] via the measurement
of the largest weakly connected component of the temporal
event graph, as it is demonstrated in Fig. 4(a). The critical
point can be approximated via a simple analytic function
δtc = 1/[α(2k − 1)] [solid line in Fig. 4(a)] or via the scaling
of different thermodynamic properties of the system [15].
Although the analytic and simulated critical points match each
other relatively well [see Fig. 4(a)], discrepancies between
them are due to (i) the analytic solution being an approxima-
tion only, underestimating the critical point, and (ii) weakly
connected components providing only an upper limit for the
actual largest out-component sizes. However, by comparing
the analytic curve to the estimated largest out-component sizes
we find a significantly better match, as shown in Fig. 4(b).

Just like in the case of the weakly connected components
in [15], the out-component sizes can be measured in three
different ways: in terms of the number of events, the number
of temporal network nodes, and in terms of the time between
the first and last event in the component (i.e., the lifetime).
As discussed in Sec. II B 1, the algorithm presented here is
easily adaptable to calculating the sizes of components in the
temporal network nodes, and an even simpler algorithm can
be used for the lifetimes. The results of these calculations
for a single average degree value are shown in Fig. 4(c).
Further, the algorithm produces the out-component sizes for
all events in the network, which allows us to study their
size distribution. These distributions are shown in Fig. 4(d)
for three δt values around the value at which the largest
component size becomes comparable to the system size. If
these distributions would have been produced by sampling
events and performing breadth-first search operations, the
three distributions with different δt values would have looked
almost identical, with 104 breadth-first search operations,
and differences in the tails would only become visible with
an expected number of around 105–106 breadth-first search
operations, which would have been comparable in terms of
runtime to performing breadth-first search operations from all
events.

FIG. 4. Component sizes for a random temporal network model
with an Erdös-Rényi static base and events created on each link
with a Poisson process. Maximum (a) weakly connected and (b) out-
component sizes measured in events as a function of average degree
and δt . Solid line indicates the analytically estimated critical point for
percolation of out-components [15]. (c) The growth of the maximum
out-component for a fixed average degree k = 9 for component sizes
measured in events (ρo,e), temporal network nodes (ρo,g), and the
lifetime of the component (ρo,lt ). (d) Distributions of out-component
sizes measured in events for networks with average degree k = 9
at three different values of δt . These δt values are marked with
vertical lines in panel (c). Networks have |V | = 1024 nodes evolving
for T = 512 for heat maps (a and b) and T = 128 time units for
panel (c). Events were generated through a Poisson process with an
expected interevent time of α = 1 time units. Each point is averaged
over 10 realizations for heat maps (a and b) and 50 realizations for
panel (c) with 214 registers for each HyperLogLog counter, implying
a relative standard error of 8.1 × 10−3.

B. Real networks

To benchmark the performance of the algorithm we mea-
sured reachability values of a set of real-world networks: (a)
a mobile call network [21] of 325 million events of over
5 million customers over a period of 120 days; (b) 258 million
Twitter interactions [25] of over 12 million users over a period
of more than 200 days; (c) the air transport network of the
United States [26] with 180 112 flights between 279 airports;
and (d) the public transportation network of Helsinki [27] with
664 138 trips (defined as a vehicle moving between two con-
secutive stops) between 6 858 bus, metro, and ferry stops. The
mobile call and Twitter interaction datasets were processed as
an undirected temporal network. Public transportation and air
transportation datasets were processed as directed networks
with delays (duration of time between departure and arrival)
taken into account.

HyperLogLog estimators for mobile and Twitter networks
use m = 210 registers. For other datasets m = 214 registers
were used. Largest out-component sizes were measured with
a maximum probability of misidentifying of at most 0.01.

Table I provides information on median runtime (as
measured by CPU clock time) of the out-component size
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TABLE I. Running times for real-world networks when calcu-
lating the reachability (number of unique reachable events, nodes,
and lifetime) from all events in the network. The δt∗ corresponds
to a waiting time around the time at which there is a jump in the
largest out-component size. (See the text for details; this corresponds
to the vertical line in Fig. 5.) As the δt values around δt∗ are of
interest for a wide range of studies, the runtime for δt = δt∗ would be
representative of the running times for a typical study. The values for
δt∗ are 271 s for air and public transport networks, 100 min for the
Twitter network, and 6.5 h for the mobile network. Baseline running
times are measured by calculating out-component size on a sample of
500 events based on Algorithm 4 (see Appendix C) and extrapolating
to estimate running time of exact measurement of out-component
size from every event. Error column refers to relative standard error
for each reachability estimate based on the number of registers m
used in HyperLogLog estimator. The times are presented in seconds
(s), minutes (m), hours (h), and years (y). All runtimes are measured
using CPU clock time on a mixture of Intel Xeon E5 2680 v2-4 CPUs
(2.40–2.80 GHz) and Gold 6148 (2.40 GHz).

Runtime Baseline

Name Events Error δt = ∞ δt = δt∗ δt = ∞ δt = δt∗

Mobile 325M 3.3% 106 m 85 m 1695 y 21 y
Twitter 258M 3.3% 90 m 77 m 2409 y 243 y
Public transp. 664K 0.81% 59 m 60 s 19 h 13 m
Air transp. 180K 0.81% 235 m 17 s 138 m 60 s

estimation portion of the implementation. The running time
is shown for a δt = δt∗ threshold close to a jump in the largest
component size, which is likely to be around the interesting
region. We also report the largest possible threshold δt = ∞
leading to largest running times. For undirected temporal
networks (mobile and Twitter) taking δt to infinity does not
result in a substantial increase in the running time, as most
of the increase in the number of event graph links are never
considered due to the optimizing for redundant links (see
Appendix B). This, however, is not the case for directed

temporal networks, as the optimization method described in
Appendix B does not apply to directed events. Assuming a
homogeneous distribution of events across time, the runtime
for event graphs constructed from directed events grows by
O(δt log δt ) and reaches a maximum at δt = T , where T is
the maximum δt between any two events in the network. For
the case of instantaneous (nondelayed) events, T is equal to
the measurement window of the dataset.

Table I also gives estimates of running times for a breadth-
first search type of algorithm for comparison. In these exam-
ples, the smallest network with less than 200k events takes
around the same order of magnitude of time to process with
both algorithms. However, even for the second-largest net-
work with around 600k events, there is an order of magnitude
of difference in the running times. For the larger networks
with hundreds of millions of events, the run time jumps down
from thousands of years with breadth-first search to order
of hours with the new algorithm. This means that large data
sets that were previously practically impossible to analyze
this way are now accessible even with minimal computational
resources.

Figure 5 shows a more systematic analysis of the running
times for the real data, where we vary the δt parameter. As
previously described in Sec. III A, as δt is increased, larger
and larger connected structures begin to form in the event
graph. The increase in size is also visible from the largest
out-component size curves for the same dataset in Fig. 5.
This transition period usually marks the most interesting area
for further studies. Running times of the breadth-first type of
algorithms are in practice dependent on the component sizes
and can thus see a dramatic increase in the running times
during and after the transition period. Running time plots
(Fig. 5) show that as expected our algorithm is not sensitive to
these transitions. They show that while for the case of directed
networks (air and public transportation) runtime grows almost
linearly as a function of δt , it grows sublinearly for undirected
networks because of the wider range of applied optimization
described in Appendix B.

FIG. 5. Top row displays maximum out-component sizes based on number of events (ρo,e), number of unique nodes (ρo,g), and lifetime
of the out-component (ρo,lt ), and bottom row shows the median runtime of the algorithm for the estimation of out-component sizes (number
of unique events, nodes and lifetime) for different δt values for (a) air transportation, (b) public transportation, (c) Twitter, and (d) mobile
datasets. The vertical lines corresponds to the δt∗ values in Table I.
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Data: δt: Maximum allowed waiting time
Data: e = (u,b, t, τ): an event
Data: in[n]: List of all incoming events for node n

(i.e. n is a target node) sorted by effect time
of the events t + τ

Result: pred: set of all direct predecessors of e
begin

pred ← {}
for n ∈ v do

idx ← BinarySearchend(e, in[n])
for each e′ in in[n] from idx − 1 to beginning
do

if DTAdjacent(e′, e, δt) then
pred ← pred ∪ {e′}

else
break

end
end

end
end
Data: out[n]: List of all outgoing events for node n

(i.e. n is a source node) sorted by start time of
the events t

Result: succ: set of all direct successors of e
begin

succ ← {}
for n ∈ u do

idx ← BinarySearchstart(e, out[n])
for each e′ in out[n] from idx to end do

if DTAdjacent(e, e′, δt) then
succ ← succ ∪ {e′}

else
break

end
end

end
end

ALG. 2. Calculating direct predecessors and successors of an
event. BinarySearchstart(e, vec) finds the index of the first event,
e′ = (u′, v′, t ′, τ ′), in vec with start time t ′ larger or equal to that of
the input event e. BinarySearchend(e, vec) similarly finds first event
in vec where its ending time t + τ is not less than that of e. Both
functions rely on vec being already sorted in ascending order of t
or t + τ , respectively. DTAdjacent (e1, e2, �t ) checks whether e2 is
δt adjacent to e1.

IV. DISCUSSION

We have presented a method for computing component
sizes starting from multiple sources (or reaching multiple
destinations) in temporal networks which scales well with
the increasing data size. Using simulated networks and real
network data, we show that the method is efficient enough
for us to accurately estimate the δt reachability for each
of the events in networks with hundreds of millions of
events. As a further demonstration of the capabilities of

Data: root: an arbitrary event
Result: out: set of events in the out-component of

root
begin

Q ← Queue({root})
out ← {root}
while Q not empty do

e ← Q.pop()
for e′ ∈ Successors(e) do

if e′ �∈ out then
Q.push(e′)
out ← out ∪ {e′}

end
end

end
end

ALG. 3. Calculating exact out-component of an event from the
static event graph representation described in Appendix A.

the algorithm, we repeated several results from a previous
study [15] using accurate estimates for the component sizes
instead of using weakly connected components as upper
bounds.

Previously temporal network studies have focused on sam-
pling starting points for reachability or simulated spreading
processes and exactly calculating statistics based on that
sample [7,8]. The sampling approach usually works well for
calculating mean values or estimating the parts of distributions
where most of the values lie. However, it is not suitable
for analyzing tails of distributions or extreme values in the
networks. Perhaps more importantly, sampling is ill-suited
for microscopic analysis of properties of individual nodes or
events, which require calculating the reachability from each
of them separately. The algorithm presented here is suitable
for these types of studies and opens up possibilities for many
new kinds of analysis of large data sets.

When presenting the algorithm, we aimed to work at a
general level in taking into account various use cases. The
definition of a temporal network we used is rather inclusive,
although other kinds of hypergraph-type structures could have
been considered. Despite these efforts, there are use cases that
we did not still consider. Consider, for example, a situation
where the edges are available for the paths with some uncer-
tainty such that events e1 and e2 are adjacent with probability
P(e1, e2, δt ). In this case the algorithm could be easily used by
simulating many instances of the event graph, each result of a
deterministic random process, to measure expected values of
in- and out-component sizes. This is important for processes
with a stochastic component, such as infection spreading
models. Further, we did not discuss multiple sources or targets
for the paths. However, as far as we have considered various
scenarios such as the above-mentioned multiple sources and
targets, the algorithms proposed here would have required
only minor adjustments.

Here we have mainly focused on the algorithmic im-
provements and used our method to demonstrate its ability
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Data: events: list of all events sorted by time t
Data: root: an arbitrary event
Data: δt: Maximum allowed waiting time
Result: out: set of all events in out-component of

root
begin

out ← {}
infected ← {}
transit ← MinPriorityQueue()
transit.push(root, priority = t + τ)
last ← t + τ
idx ← BinarySearchstart(root, events)
while idx < length(events) do

(u,v, t, τ) ← events[idx]
if t > last + δt then

break
end
while transit is not empty do

(u′,v′, t′, τ ′) ← transit.top()
if t′ + τ ′ > t then

break
end
for n ∈ v′ do

infected[n] ← t′ + τ ′

end
out ← out ∪ {transit.top()}
transit.pop()

end
infectious ← false
for n ∈ u do

if infected[n] exists and
t − infected[n] < δt then

infectious ← true
end

end
if infectious is true then

transit.push(events[idx],
priority = t + τ)

last ← t + τ
end
idx ← idx + 1

end
while transit is not empty do

out ← out ∪ {transit.top()}
transit.pop()

end
end

ALG. 4. Calculating exact out-component of a events without
explicitly forming an event graph. Contrary to Algorithm 3, the
complexity of this algorithm does not depend on representation of
static event graph and therefore requires only one scan through the
list of events. For the case of delayed connections, it also needs to
track all the events that have been initiated but are not concluded in
a minimum priority queue data structure.

to handle multiple types of networks with sizes varying all
the way to hundreds of millions of events. We have barely
scratched the surface in the type of analysis, which our method
enables. For example, microscopic network statistics such as
centrality measures for nodes could now be defined based
on the δt-reachability counts. Further, theoretical studies of
directed temporal percolation in networks are now in our
grasp as we can efficiently compute the relevant statistics.
Our theoretical and algorithmic contributions allow us to
study effectively directed percolation phenomena in temporal
networks, contrary to earlier works, which are either based on
ordered lattices [28] or otherwise unsuitable assumptions for
temporal networks. We expect our work on the computational
methods to open doors for many future branches of research
in data analysis and theory for temporal networks.
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APPENDIX A: IMPLICIT CONSTRUCTION OF
WEIGHTED TEMPORAL EVENT GRAPHS

To estimate out-component sizes of nodes in event graphs,
there is no need to calculate and store the complete static
event graph of a temporal network, but it is enough to simply
provide fast functions to compute the direct predecessors and
successors of any node in D. This is accomplished by creating
a hash table with each temporal network node in G as the key
and a list of all the incident events sorted by time and by the
other node of the event as value.

With this setup, to find the direct successors of an event e,
for each node incident to that event we look up the list of all
incident events from the hash table, find the event e by a binary
search, and move forward through the list until events have
a larger time difference than the maximum allowed waiting
time δt . A union of the two sets of events, extracted for
the two ending nodes, would give a complete set of direct
successors without precalculating the whole event graph. A
predecessor’s function is similarly defined but moving back-
wards in time in the list of sorted events. Algorithm 2 demon-
strates the direct successor and predecessor functions for this
representation.

APPENDIX B: LOCALLY REDUCED WEIGHTED
EVENT GRAPHS

The definition of temporal event graphs allows for certain
redundancies by repeating paths between nondirectly adjacent
events but which are connected via a time-respecting path any-
way. By removing these redundancies [16], we can accelerate
the computation of direct predecessors and successors events
while calculating out-components. As an example, let’s take
an (undirected) event e0 = v0, u0, t0 and assume that events
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e1, e2, e3 . . . at times t1, t2, t3 . . . are the direct successors of
e0 through node v0 (i.e., they all share node v0 and t0 < t1 <

t2 < t3 < · · · ). However, to represent the connectivity of these
events with e0, there is no need to assign e2, e3 . . . as direct
successors of e0. If we only return e1 as a direct successor of
e0 through v0, then e2 will be returned as a direct successor
of e1 through v0, etc., and the obtained out-component would
be the same as for the redundant representation. Only if the
network allows simultaneous events of the same node (e.g., if
t1 = t2), then we should pay special attention to these cases
and assign both e1 and e2 as direct successors of e0 through
v0.

APPENDIX C: MEASURING OUT-COMPONENT SET
OF A SINGLE EVENT

It is trivial to measure the out-component size of a node
given the event graph by applying a variant of the breadth-first

search algorithm, as demonstrated in Algorithm 3. This, how-
ever, in combination with implicit construction of the event
graph as it is described in Appendix A), might not result in
the most optimal way to measure out-component size. This is
because iterating over direct successors (and predecessors) of
a node in the event graph is no longer of linear computational
complexity relative to the number of direct successors (or
predecessors) of that node.

Algorithm 4 describes a method for calculating out-
component size by scanning through the list of events once.
For the case of nondelayed events, regardless of directedness,
it is possible to dispense with priority queue and provide a
much simpler implementation and a computational complex-
ity of O(|E |), where |E | denotes the number of events. For the
case of delayed events, however, computational complexity
will depend on the number of simultaneous in transit events
and the selected implementation of the priority queue.
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