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Abstract: Aquifer thermal energy storage (ATES) combined with ground-source heat pumps (GSHP)
offer an attractive technology to match supply and demand by efficiently recycling heating and
cooling loads. This study analyses the integration of the ATES-GSHP system in both district heating
and cooling networks of an urban district in southwestern Finland, in terms of technoeconomic
feasibility, efficiency, and impact on the aquifer area. A novel mathematical modeling for GSHP
operation and energy system management is proposed and demonstrated, using hourly data for
heating and cooling demand. Hydrogeological and geographic data from different Finnish data
sources is retrieved in order to calibrate and validate a groundwater model. Two different scenarios
for ATES operation are investigated, limited by the maximum pumping flow rate of the groundwater
area. The additional precooling exchanger in the second scenario resulted in an important advantage,
since it increased the heating and cooling demand covered by ATES by 13% and 15%, respectively,
and decreased the energy production cost by 5.2%. It is concluded that dispatching heating and
cooling loads in a single operation, with annually balanced ATES management in terms of energy
and pumping flows resulted in a low long-term environmental impact and is economically feasible
(energy production cost below 30 €/ MWh).

Keywords: aquifer thermal energy storage (ATES); ground-source heat pump (GSHP); district heating
and cooling; ATES integration; mathematical and groundwater modeling; MODFLOW

1. Introduction

According to Eurostat, in 2018, the share of renewable energy sources (RES) used for heating
and cooling in EU was 21% and several countries, like Sweden (65%), Latvia (56%), Finland (55%)
and Estonia (54%), covered more than half of their heating and cooling consumption with renewable
sources [1]. The variability of renewable generation between heating and cooling seasons, as well as the
low coincidence between supply and demand are important challenges for RES penetration, therefore
short- and long-term energy storage is needed for maximizing the usage of RES. Aquifer thermal
energy storage (ATES) is an attractive technological option suitable for large buildings and utilities
as well as capable to enable important storage capacities [2,3]. Moreover, the utilization of GSHP
operating within the urban subsurface space, is an efficient and resilient alternative for sustainable
generation of heating and cooling energy in a district level [4].

The potential of ATES integration as a part of sustainable heating and cooling in combination with
a ground-source heat pump (GSHP) for energy recovery from the subsurface has been acknowledged
worldwide. Fleuchaus et al. [3] presented a complete overview of global ATES development and
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application: nowadays some 3000 ATES systems are operated worldwide. The Netherlands with 85%
of all ATES realizations, followed by Sweden, Denmark and Belgium, are the undisputed frontrunners.
Schmidt et al. [5] revealed that there are some 100 large-scale utility ATES systems utilized in district
heating (DH) and cooling (DC) networks.

Normally, the long-term impact of ATES utilization is a combination of thermal, hydrological,
microbiological and chemical impact on the affected aquifer and should be thoroughly investigated [6].
The regulation of shallow geothermal plants (depth below 400 m) varies significantly among
countries [7]. Countries like Denmark, the Netherlands and Austria limit the lower and higher storage
temperatures, whereas France and Switzerland establish a maximum fluctuation of groundwater
temperature. Finland has no explicit legislative references to groundwater utilization for thermal
storage, thus the findings of the present work can contribute for developing a specific normative
framework in the future.

In the same line, the ground-source heat pump (GSHP) is a key technology for decarbonization
of existing heating and cooling, which are nowadays mostly based on the use of fossil fuels [8-10].
The work of Paiho et al. [8] revealed the importance of large-scale heat pumps for increasing the
flexibility of Finnish energy systems. Within the same research, different examples are presented for
heat pump integration in Finnish DH-DC networks—including the Kakola plant in Turku utilizing
heat from sewage wastewater, and the Katri Vala plant in Helsinki generating heating and cooling in a
single operation.

Fleuchaus et al. [11] evaluated the performance of ATES based on different criteria and concluded
that ATES integration into heating and cooling systems was rarely addressed. In order to fill this
gap, the integration of GSHP in tandem with ATES within the existing DH-DC networks of a Finnish
urban district is presented and developed in the current case study. The main objective of this work
is to propose a mathematical modeling of the whole ATES-GSHP-DH-DC energy chain in order to
improve the system’s energy management, as well as to study its technical and economic feasibility
and the long-term environmental impact. Finnish public data sources are available, like the Finnish
Environmental Institute (SYKE) regarding the hydrological resources, the Geological Survey of Finland
(GTK) on hydrogeological conditions, and the National Land Survey of Finland (NLSF) for geographical
data. The present research also introduces a methodology for fetching data from the aforementioned
sources in order to calibrate and validate a groundwater model of the studied area, which in turn is an
indispensable tool for studying the ATES-GSHP impact in the long-term.

2. Materials and Methods

The modeling procedure of the combined ATES-GSHP-DH-DC system, depicted in Figure 1, is
based on the following steps, namely, (i) input data of the target DH-DC networks and the nearby
groundwater areas, (ii) perform mathematical modeling of combined ATES-GSHP operation, (iii)
undertake technoeconomic and sensitivity analysis, and iv) study the impact of ATES operation on
aquifer areas, by developing and calibrating a specific groundwater model. A groundwater model
based on the finite difference method code MODFLOW (Harbaugh et al. [12]) has been adopted and
developed in the present case study. The model is calibrated against long-term data (hydraulic heads
of the observation wells). The particular case study is introduced in Section 2.1, while a detailed
explanation and demonstration of the modeling procedure is presented in Sections 2.2 and 2.4.



Energies 2020, 13, 2478 30f 19

Energies 2020, 13, x FOR PEER REVIEW 30f19
if) Mathematical iii) Techno-economic
modeling of ATES-GSHP analysis of ATES
operation: operation:
Analytical solution for HP Annual DH / DC demand
condenser recirculation covered by GSHP-ATES
flow ri:;il?a:lz: upply Annual electricit_y demand for
pumping
COP calculation ™ Investment cost considering
. L GSHP, exchangers, pumping
Algorithm for estimation of wells and piping
ATES pumping flow rate
Annualized cost based on
Calculation of pumping investment, O&M and
power demand from HP to electricity
DH/DC networks Cost per MWh of produced

4 heating/cooling energy

i) Input data for DH and Sz;:;z:r::qs’ g::lrﬁiljn‘)f
DC annual demand
(hourly-based) l
i) Input data from public iv) Impact of ATES
Finnishdatasources |  , operation on aquifer area
SYKE, NLSF, GTK (groundwater model)

%Erecfré%%le%‘f%8&%1?”?%%5%8%% SR RIS ORI RS R SRR AR YLD
grouaA fce heapumps (G5 p&rgﬁ%fﬁsﬁfﬁflﬁgsﬁr&e5&%%1%51%5C d%ﬁs&rlcecoohng (DC).
2.1. Input Data for GSHP-ATES Integration

2.1. Input Data for GSHP-ATES Integration

2.1.1. Input Data of the DH and DC Networks
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The target district heating and cooling networks are located in the central district of Kupittaa in
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the most relevant parameters of both DH and DC networks are summarized in Table 1 and Figure 2.
Table 1. Relevant DH-DC network parameters of Kupittaa district in Turku.

Relevant Network Parameters DH Network DC Network
Kewvm %sgxggakmﬁmeters szoF Network D Network

;004
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MaMﬁ&mﬁmmeumrmmrmrtﬂmpﬂ@ture °C 51.4/22.751.4/22.7 14.8A8010.0
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Reinholdt et al. [18], the maximum theoretical COP of a heat pump can be estimated by calculating
Lorentz COP, defined as follows:

Tim,H Thrc,s = THPCR | Thpe,0 = THrE1

mlL = ———F————— 3)
In Thpcs Lo In ThpEO
Thpc,r THPE,1

In Equation (3), Ty, i and Ty, 1. are, respectively, the logarithmic mean temperature of the sink and

COPy, = , Where Tlm,H =

Tlm,H - Tlm,L

source, where notations HPC and HPE stand for heat pump’s condenser and evaporator temperatures,
while notations J/O stand for inlet/outlet temperatures of the evaporator and S/R stand for supply/return
temperatures of the condenser (all values expressed in Kelvin). Based on the best industrial refrigeration
systems, Reinholdt et al. [18] suggested values for Lorentz efficiency between 50% and 60% of the
maximum Lorenz COP calculated with Equation (3). In our case study, a more conservative value of
45% was adopted.

2.3.3. GSHP Utilization for District Cooling

As mentioned previously, part of DC demand can be produced by free cooling in a first stage
cooling exchanger located at the beginning of ATES pumping flow. After that, GSHP is utilized in the
second place for simultaneously cooling the ATES flow in the evaporator as well as supplying heat to
DH network in the condenser (see Figure 3). Finally, second stage cooling is applied, and groundwater
is injected into the aquifer.

For each hour of operation, it is crucial to determine the exact aquifer pumping flow rate Q [m?/s]
since there is constraint for daily pumping of 2500 m?/day. Due to this limitation, the maximum heat
output of the GSHP condenser is limited to 1.4 and 1.6 MW in scenario 1 and 2 respectively, and
pumping flow rate is calculated according to the iterative algorithm developed below.

2.3.4. Computation of ATES Hourly Pumping Rate

Since there are several exchangers (two and three, respectively, for scenario 1 and 2) in the ATES
flow path, the minimum needed pumping flow rate is proposed to be estimated iteratively. If @p.y
and @, , are, respectively, heating and cooling demand to be covered in hour 7, as the first estimation
of the pumping flow can be taken the maximum flow needed either for heating or cooling (notations
according to Figure 3):

1_L)®heatn %]

Step 1: = max ( COPy 4 . cool,n

p Qn SVC,ZUIlt (THPE'L”_THPE,O,W) 4 sVC,wﬂf(THPE,I;"_TAQVABS,W+TAQ,IN],71_THPE,O,”)
THPE,I,n = TAQ,ABS,n (il’l SC. 1) ; THPE,I,n = max{TAQ’ABS,n; TDC,R,n - ATmin} (SC. 2)

TAQ,IN],n,max = TDC,R,n — AT in }THPE,O,n,min = 2GC; SVC,wat =4.19 M]/mSK

where AT, = 2 °C is the minimum pinch point difference in cooling exchangers and ATxpE, 0,1 min =
2 °C is the minimum temperature after the GSHP evaporator. COP;, is calculated with Equation (3),
assuming average values for Typg o = 10 °C (12 °C for scenario 2), Typg o = 2 °C (3 °C for scenario 2).
Once the first estimation for Q, is known, it is possible to calculate separately all exchangers within the
ATES flow path, in both scenarios 1 and 2, as follows.

Scenario 1: Recalculation of temperature after HP evaporator:

(1 - ﬁpn)gheat,n'gn

S VC,wat

Step2: Thpe,om = THPEIn —
Scenario 2: Recalculation of first and second stage cooling demands:

Step 21 Deool-1stagen = QnSVC,wut(THPE,I,n - TAQ,ABS,n)
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(1 - %pn)gheut,n'Qn

SVC,wut

Tupe,0,n = THPE 11 —

gcool—Zstage,n = mi”{QnSVC,wat(THPE,I,n - TAQ,IN],n)r' Dooln — gcool—lstage,n}
Dol = Qcool—lstage,n + gcool—Zstage,n

The ATES flow is recalculated again in Step 1, and if the new value deviates more than a predefined
threshold from the previous one (in this case a 5% threshold is adopted), then the whole loop (Step
1/Step 2) is repeated.

2.3.5. Calculation of ATES Pumping Power Demand

The required pumping power [kW] for ATES operation can be calculated on an hourly basis,
assuming overall pressure drop in the line Ap = 600 kPa and standard pumping efficiency = 0.55 [19],
as follows:

QnAp

(4)

Patesy =

2.3.6. Calculation of Pumping Power Demand to DH-DC Network

Similarly, pumping power [kW] to provide DH-DC through the GSHP condenser/evaporator
respectively can be calculated hourly, assuming overall pressure drop between supply and return lines
Appy = Appc = 250 kPa [20] and standard pumping efficiency n = 0.55 [21], as follows:

QupcnApPDH QupEAPDC
Pupc—to-DHu = +; PHPE_to-DCn = + 5)

where
g supplied—heat,n Dcool-1sta ge,n + Deool-2sta ge,n
; QHPEn =

(6)

Qupcn =

Svc,wat(Tapc,sn — ToH,R 1) Svcwat(Toc,rn — Toc,sn)

The volumetric heat capacity of water Syc ;s used was 4.19 and 4.1 MJ/m3K, respectively, for
cooling and heating operation.

2.3.7. Numerical Model and Its Calibration for Steady State

The groundwater model is set up utilizing the finite difference code MODFLOW [12] with
ModelMuse environment [22]. In ModelMuse, the aquifer is discretized with a 100 x 100 m square
cell grid, covering a physical extension of about 20 km?, delimited between the Aura River to the
northwest and the Baltic Sea to the southwest. Southeast and northeast borders are assumed as no-flow
boundaries (see Figure 4).

Groundwater model calibration for steady state was carried out taking into account the long-term
statistical data for 15 observation wells in the Kupittaa area and eight observation wells in Kaarninko.
Calibration was done according to the procedure developed by Todorov et al. [23], by using root mean
squared error (RMSE) [24] and mean absolute error (MAE) [25] for the close field (Kupittaa) and far
field (Kaarninko). As seen in Figure 5, the results of Kaarninko (far-field area) were more dispersed
(calculated RMSE = 1.32 m/MAE = 1.07 m), since our model is intended to present better correlation
between measured and simulated values (RMSE = 0.54 m/MAE = 0.29 m) within the close-field
calibration. In most of Kupittaa’s observation wells, this difference was within the margins of the
measured long-term standard deviation. A typical horizontal hydraulic conductivity for sand/gravel
aquifer was selected: K =5 X 10~° m/s (Luoma [26]), and during model calibration was adjusted to
5 x 10~* m/s for the area containing the observation wells (small black rhombs in Figure 4 delimited by
circles). The value of vertical hydraulic conductivity was chosen as K, = 0.1K. Typical values were also
utilized for storativity (S = 1 X 10~°), porosity (n = 0.25) and recharge rate of R = 1.3 X 1078 m/s [26].
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Based on hourly calculaticns, different technical variables are computed, like the annual energy
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Table 2. Technical variables of ATES.
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GSHP and pumping (given electricity price of 100 €/ MWHh, including taxes, transfer and distribution
fees [30]). The economic evaluation was developed according to Todorov et al. [23], including the
calculation of the following variables listed in Table 3.

Table 3. Variables for economic evaluation.

Variables Units Comments
Overall investment cost € Geological survey, cost of GSHP, exchangers, drilling and piping
Annuity factor - Computed for 20 years lifetime and 5% interest rate
Investment cost (annuity) € Calculated as overall investment cost times annuity factor
Fixed annual O&M costs € 1% of overall investment cost
Electricity annual cost € Electricity cost of GSHP and pumping
Overall annual cost € Annuity + O&M costs + electricity cost
Specific energy cost €/MWh Overall annual cost per total thermal energy generation

3. Results and Discussion

3.1. Technoeconomic Analysis

The main technical parameters of ATES operation for both studied scenarios are shown in Table 4.
It can be acknowledged that even with 5%—6% of peak heat power for scenario 1 and 2, the GSHP
coverage ratio is 18%-20% of the annual heating demand. Moreover, an important advantage of
scenario 2 is shown when comparing a cooling demand covered by ATES. The scheme with two cooling
exchangers in scenario 2 allows 78% coverage of DC demand annually (compared to 67% in scenario
1), from which the first stage cooling represents roughly one sixth.

Table 4. ATES system technical parameters.

Relevant Parameters of ATES Operation Annually Summer Winter
Annual/seasonal results for scenarios 1/2 Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2
ATES period duration, weeks 52 52 26 26 26 26
Pre-cooling/heating/cooling power, MW -/1.43/1  0.3/1.63/1.3 - - - -
Average water flow, ma/day 2492 2496 2452 2559 2531 2434
Average abstraction temperature, °C 10.0 10.0 10.0 10.0 10.0 10.0
Average injection temperature, °C 10.0 10.0 10.4 11.0 9.5 8.9
Average temperature before GSHP, °C 10.0 115 10.0 115 10.0 11.6
Average temperature after GSHP, °C 2.1 2.5 2.2 3.0 2.0 2.0
Average GSHP supply temperature, °C 65.4 66.5 68.1 69.3 62.6 63.8
Average DH return temperature, °C 40.9 40.9 40.5 40.5 41.4 41.4
Average GSHP COP (heating mode) 3.14 3.21 3.08 3.14 3.20 3.27
Heating demand, MWh 67,971 16,761 51,210
Heat demand covered by GSHP, MWh 12,315 13,882 6034 6723 6281 7159
Heating demand covered by GSHP, % 18% 20% 36% 40% 12% 14%
Cooling demand, MWh 12,382 7944 4439
First stage cooling covered, MWh - 1605 - 780 - 825
Second stage cooling covered, MWh 8331 8006 4279 4454 4052 3551
Total cooling demand covered, MWh 8331 9611 4279 5234 4052 4377
Total cooling demand covered, % 67% 78% 54% 66% 91% 99%
Electricity demand (GSHP), MWh 3934.2 43345 1964.4 21389 1969.8 2195.6
Electricity demand (ATES pump.), MWh 275.6 276.1 135.2 141.1 140.4 134.9
Electricity demand (HP-DH pump.), MWh 57.7 62.1 24.8 26.5 33.0 35.7
Electricity demand (HP-DC pump.), MWh 130.7 150.5 66.6 81.3 64.1 69.3
Total electricity demand, MWh 4398.2 48232 2191.0 2387.7 2207.2 2435.5
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The estimation of economic feasibility parameters and the production cost of thermal energy
are shown in Tables 5 and 6 respectively. The resulting thermal energy production cost in scenario
2 is slightly below 30 €/ MWh. Overall investment cost is around 2.3 million €: 26% corresponds to
GSHP/exchangers and 73% is related to the underground components (connection pipes and wells),
figures close to similar ATES realization in Germany (Schiippler et al. [31]). The specific investment
cost per installed heat pump capacity is 1.6/1.4 €/W for scenario 1 and 2 respectively, values comparable
to the 1.8 €/W reported for a similar ATES system in a Belgian hospital (Vanhoudt et al. [32]).

Table 5. Economic parameters of GSHP-ATES.

Investment Cost. Price Sc. 1 (Units) Sc. 2 (Units) Total Scenario 1 Total Scenario 2
Subsurface study, geological 30,000 1 1 30,000 30,000
report and pumping tests, €/u
Ground-source heat pump, €/kW 300 1.43 1.63 429,000 489,000
Heat exchangers, €/kW 35 2.43 3.23 85,050 113,050
Pumping well (including 170,000 8 8 1,360,000 1,360,000
equipment and pump), €/u
Connection pipes, €/m 250 1300 1300 325,000 325,000
Overall investment cost, € 2,229,050 2,317,050

Table 6. Energy production cost.

Annuity Method Scenario 1 Scenario 2
Annuity factor (interest rate 5%, 20 years lifetime) 0.0802
Investment cost (annuity), € 178,865 € 185,786 €
Fixed annual O&M cost, € 22,291 € 23,153 €
Electricity annual cost, € 439,820 € 482,324 €
Overall annual cost, € 640,976 € 691,263 €
Specific energy cost, €/ MWh 31.05 €/MWh 29.43 €/ MWh

Additionally, scenario 2 is investigated with more details, as follows. GSHP COP is 3.2 on average,
slightly improving to 3.3 during the winter due to lower GSHP supply temperature (64 °C on average),
while, during the summer, GSHP covers a higher heat fraction and the average supply temperature
increases to 69 °C (see Figure 6).

ATES operation is based on energy conversion using electricity to cogenerate heating and cooling
in a single operation. GSHP is the principal electricity consumer accounting for 90% of the annual
demand, followed by ATES pumping (6%) as well as pumping needed to inject HP supply energy to
DH-DC networks—respectively 1% and 3%. This is important to acknowledge since total electricity
demand (4.8 GWhy/a) has a significant impact on the annual cost, and, consequently, on the specific
cost of generated heating and cooling energy, as seen in Table 6. The ATES system is well balanced,
as seen from the average injection and abstraction temperatures that are both equal to the aquifer’s
undisturbed temperature of 10 °C. Moreover, the system is balanced in terms of energy, as shown in
Table 4, since the annual heat demand covered is equal to cooling demand covered plus GSHP power
demand (13.9 GWh). Figure 7 depicts the annual variation of all temperatures along the ATES flow
path: abstraction, after first stage cooling, after GSHP evaporator, and finally injection.
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when working at lower power fractions (e.g., during the winter period) since HlI° supply temperature
is not so high as DH supply. The drawback is that, after HP junction, DH supply temperature Toxs
can also present an important temperature drop AToxus (e.g., red dashed curve, for p = 0.2). It is also
interesting to explore what is the maximum ATpx s for each p within the interval [0;1]. Let’s define the
iolouingdynetion f(k), as the ratio between ATous and ATbx, according to Equation (2): 13 0f 19
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Figure 8. Temperature difference (dT) fraction ATypc/ATpy and temperature drop fraction after HP
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As seen from Figure'8, in the interval [0;1], f(k) has one maximum, which can be found where the

funcgﬁﬁifa@fﬁf ﬂ?giﬁggs‘iﬁlié t5ticulate the average value of f(k) within [0;1] as:
14

1 P 1 1
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Similarly, it is possible to calculate the average value of f(k) within [0;1] as:

1 1 11
f“”g_fof(k)_f(;kp_k_m_i )

The results for f,x and f,wg calculated respectively with Equations (8) and (9) are presented in
Figure 9.
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As previously noticed, and also presented in Figures 8 and 9, for low values of p, the temperature
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Table 7. Sensitivity analysis based on four cases (case 3 is the base case).

Relevant ATES Parameters. Cl:p=0.2 C2:p=04 C3:p=0.6 Ca:p=
E eFetes 2‘!}29 13 D 'DE‘E"D DE‘”E“A? 1 l: C 19

Peak pre- coolmg/heatmg/coohng power, MW 0.3/1.57/1.3 0.3/1.6/1.3 0.3/1.63/1.3 0.3/1.7/1. 34
e e 13418
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Figure 10. Sensitivity analysis: GSHP efficiency (COP) and energy production cost.
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Overall, ATES-GSHP systems prove to be a sustainable and efficient alternative to traditional
thermal energy generation based primarily on fossil fuels, due to their ability to recycle heating and
cooling loads using the subsurface as practically unlimited thermal storage. By dispatching annually
balanced heating and cooling loads within integrated urban energy networks, major economic and
technical improvements can be accomplished.
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Nomenclature

D [W] Heating/cooling loads

H [m] Hydraulic head

K [m/s] Hydpraulic conductivity

KI[-] Power fraction between covered and demanded DH load
P [W] Power demand (pumping)

P[] Exponent parameter

Q [m3/s] ATES pumping flow rate

R [m/s] Aquifer recharge

S- Aquifer storativity

SVC wat [J/m3K] Water volumetric heat capacity

Tpn,s [°C] District heating supply temperature

Tpur [°C] District heating return temperature

Tpc,s [°C] District cooling supply temperature

Tpcr [°C] District cooling return temperature

Trapc,s [°Cl Heat pump condenser supply temperature

Thpcr [°C] Heat pump condenser return temperature

Thupe, [°C] Heat pump evaporator inlet temperature

Tupe,0 [°Cl Heat pump evaporator outlet temperature

T [°Cl Logarithmic mean temperature of sink

Ty, [°C] Logarithmic mean temperature of source

ATpy [°C] Temperature difference between DH supply and return
ATypc [°C] Temperature difference in HP condenser

ATpp s [°C] Temperature drop in DH supply after HP junction
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