
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Zhao, Zheng; Särkkä, Simo; Rad, Ali Bahrami
Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial
Fibrillation Detection

Published in:
Journal of Signal Processing Systems

DOI:
10.1007/s11265-020-01531-4

Published: 01/07/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Zhao, Z., Särkkä, S., & Rad, A. B. (2020). Kalman-based Spectro-Temporal ECG Analysis using Deep
Convolutional Networks for Atrial Fibrillation Detection. Journal of Signal Processing Systems, 92, 621-636.
https://doi.org/10.1007/s11265-020-01531-4

https://doi.org/10.1007/s11265-020-01531-4
https://doi.org/10.1007/s11265-020-01531-4


Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-020-01531-4

Kalman-based Spectro-Temporal ECG Analysis using Deep
Convolutional Networks for Atrial Fibrillation Detection

Zheng Zhao1 · Simo Särkkä1 · Ali Bahrami Rad1
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Abstract
In this article, we propose a novel ECG classification framework for atrial fibrillation (AF) detection using spectro-temporal
representation (i.e., time varying spectrum) and deep convolutional networks. In the first step we use a Bayesian spectro-
temporal representation based on the estimation of time-varying coefficients of Fourier series using Kalman filter and
smoother. Next, we derive an alternative model based on a stochastic oscillator differential equation to accelerate the
estimation of the spectro-temporal representation in lengthy signals. Finally, after comparative evaluations of different
convolutional architectures, we propose an efficient deep convolutional neural network to classify the 2D spectro-temporal
ECG data. The ECG spectro-temporal data are classified into four different classes: AF, non-AF normal rhythm (Normal),
non-AF abnormal rhythm (Other), and noisy segments (Noisy). The performance of the proposed methods is evaluated and
scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experimental results show that the proposed
method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms.

Keywords ECG analysis · Atrial fibrillation · Deep learning · Kalman filter · Spectrogram estimation

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia, and its prevalence is around 1–2% worldwide [7]. It is
also estimated that by 2030 only in European Union 14–17
million patients suffer from AF [56]. AF is associated with
an increased risk of having stroke (5-fold), blood clots, heart
failure, coronary artery disease, or death (2-fold; death rates
are doubled by AF) [7]. Therefore, developing automatic
algorithms for early detection of AF is crucial.

During AF atrial muscle fibers have chaotic electrical
activity which may emit impulses with 500 bpm rate
to atrioventricular (AV) node, from which impulses pass
randomly. This results to an irregular ventricular response
which is one of the main characteristics of AF [49].
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In addition, AF has the following characteristics on
electrocardiogram (ECG): 1) “absolutely” irregular RR
intervals; 2) the absence of P waves; and 3) variable atrial
cycle length (when visible).

The analysis of ECG is the most common approach to AF
detection, and during the past ten years, various algorithms
have been developed for automatic AF detection [2–4, 6,
11, 15, 28, 52, 53]. Most of the existing algorithms follow a
pipeline of preprocessing, feature extraction/selection, and
classification. For example, automatic methods based on
the standard classifiers such as support vector machine
and random forest with carefully designed features have
been successfully used for AF detection by achieving state-
of-the-art performance [28, 53]. However, those methods
require manual feature extraction, which often needs
extensive human effort and domain knowledge/expertise.
This issue can be bypassed by using the end-to-end deep
learning (DL) techniques [25]. Deep neural networks can
learn the inherent features directly from the input signal by
providing a sufficient amount of training data [13]. A typical
example is a deep convolutional neural network, where the
feature extraction is done and learned automatically in the
convolutional layers. The application of deep learning for
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AF detection have just started (see, e.g., [1, 27, 31, 35, 37,
39, 43, 50]).

For ECG signals, one can directly adopt 1D con-
volutional or recurrent network models for the classifi-
cation task. However, transforming signals into spectral
domain (spectro-temporal features) is a promising alterna-
tive approach knowing that the current state-of-the-art deep
convolutional neural networks (CNNs) structures are typi-
cally designed for 2D images. Deep CNNs such as AlexNet
[24], Inception-v4 [45], and DenseNet [20] have proved
their superiority in image classification.

Within the previous studies, only a few have resorted
to the use of time-varying spectrum for AF detection. The
reasons might be the following. First, it is not easy to
select hand-crafted features from 2D data using traditional
classifiers. Second, the temporal features of spectrogram are
usually hard to capture even in DL setting. Several studies
[50, 55] have endeavoured DL for AF detection in spectral
domain, but the use of traditional spectral estimation
methods such as short-time Fourier transform (STFT) or
continuous wavelet transform (CWT) may drop momentous
information during the transformation, and produce less
informative input data. Thus, to unravel these problems, it
is beneficial to consider new spectro-temporal estimation
methods that retain the temporal features better.

The contributions of this paper are: 1) We propose
two extended models for spectro-temporal estimation using
Kalman filter and smoother. We then combine them with
deep convolutional networks for AF detection. 2) We test
and compare the performance of proposed approaches
for spectro-temporal estimation on simulated data and
AF detection with other popular estimation methods and
different classifiers. 3) For AF detection, we evaluate the
proposals using PhysioNet/CinC 2017 dataset [8], which
is considered to be a challenging dataset that resembles
practical applications, and our results are in line with the
state-of-the-art.

It is worth mentioning that, most of the deep learning
algorithms for ECG analysis have been developed on
the MIT-BIH arrhythmia ECG database [1, 27, 29, 39].
However, in this work, we use the PhysioNet/CinC 2017
dataset which is more appropriate for AF detection,
and it is the most challenging and recent publicly
available ECG dataset. This dataset was collected using
AliveCor wireless hand-held devices which are used for
personal recording and outpatient monitoring. This dataset
is collected particularly for AF detection in a real-
world scenario. The best performance (averaged F1 score)
currently on this dataset is only 0.83 [9, 16, 19, 48, 53].

This paper is an extended version based of our previous
conference paper “Spectro-temporal ECG Analysis for
Atrial Fibrillation Detection” [54] presented at 2018 IEEE
28th International Workshop on Machine Learning for

Signal Processing. In addition to the original contributions
in the conference article, in this article, we use a new
stochastic oscillator model and show that the spectro-
temporal estimation can also be implemented with a steady
state (stationary) Kalman filter and smoother, which leads
to a significant reduction in time consumption without
losing estimation accuracy. We demonstrate this in both
simulated data and AF data classification. In addition to
the experiments in the conference paper, where we only
showed a few comparisons among estimation methods and
classifiers, we expand them to a wide range of both standard
and modern (e.g., Random Forests, CNNs, and DenseNet)
classifiers for a better and more solid illustration of the
classification performance.

The paper is structured as follows: In Section 2, we
propose spectro-temporal methods for ECG signal analysis.
In Section 3, we apply the proposed estimation method to
AF detection using an averaging procedure. In Section 4, we
compare and discuss experimental results both in simulated
data and ECG dataset, followed by conclusion in Section 5.

2 Spectro-Temporal EstimationMethods

Spectro-temporal signal analysis is an effective and
powerful approach that is used in many fields ranging from
biosignal analysis [34] and audio processing [33] to weather
forecasting [10] and stock market prediction [21]. In ECG
analysis, the temporal evolution of spectral information can
be captured in spectro-temporal data representation, which
can convey important information about the underlying
biological process of the heart.

In this section, we develop new methods for spectro-
temporal estimation. We first introduce a Fourier series
model based upon the Bayesian spectrum estimation
method of Qi et al. [32], and put Gaussian process priors
on the Fourier coefficients. Then, by adopting the ideas
presented in [42], we convert the Fourier series into a
more flexible stochastic oscillator model and use a fast
stationary Kalman filter/smoother for its estimation. Finally,
we demonstrate the estimation performance on simulated
data.

2.1 Kalman-based Fourier Series Model for
Spectro-Temporal Estimation

Apart from traditional STFT and CWT methods, the
spectro-temporal analysis can also be done by modeling the
signal as a stochastic state-space model and resorting to the
Bayesian procedure (i.e., Kalman filter and smoother) for
its estimation [32, 40]. The key advantages of this kind of
approaches over other spectro-temporal methods are that
we can apply them to both evenly and unevenly sampled
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signals [32] and they require no stationarity guarantees nor
windowing. Furthermore, as we show here, they can also be
combined with state-space methods for Gaussian processes
[17, 41].

Recall that any periodic signal with fundamental
frequency f0 can be expanded into a Fourier series

z(t) = a0 +
M∑

j=1

[
aj cos(2π j f0t) + bj sin(2π j f0 t)

]
, (1)

where the exact representation is obtained with M →
∞, but for sampled (and thus bandlimited) signals it is
sufficient to consider finite series. This stationary model is
the underlying model in the STFT approach. STFT applies a
window to each signal segment and finds a least squares fit
(via discrete Fourier transform) to the coefficients {aj , bj :
j = 1, . . . , M}.

In our approach, we start by assuming that the
coefficients depend on time, and we put Gaussian process
priors on them:

aj (t) ∼ GP(0, ka
j (t, t ′)),

bj (t) ∼ GP(0, kb
j (t, t ′)). (2)

As shown in [17, 41], provided that the covariance functions
are stationary, we can express the Gaussian processes as
solutions to linear stochastic differential equations (SDEs).
We choose the covariance functions to have the form

ka
j (t, t ′) = (sa

j )2 exp(−λa
j |t − t ′|),

ka
j (t, t ′) = (sb

j )2 exp(−λb
j |t − t ′|), (3)

where sa
j , sb

j > 0 are scale parameters and λa
j , λ

b
j > 0

are the inverses of the time constants (length scales) of the
processes.

The state-space representations (which are scalar in this
case) are then given as

daj = −λa
j aj dt + dWa

j ,

dbj = −λb
j bj dt + dWb

j ,
(4)

where Wa
j , Wb

j are Brownian motions with suitable

diffusion coefficients qa
j , qb

j . We can also solve the
equations at discrete time steps (see, e.g., [14]) as

aj (tk) = ψa
jk aj (tk−1) + wa

jk, wa
jk ∼ N (0, �a

jk),

bj (tk) = ψb
jk bj (tk−1) + wb

jk, wb
jk ∼ N (0, �b

jk),
(5)

where

ψa
jk = exp(−λa

j (tk − tk−1)),

ψb
jk = exp(−λb

j (tk − tk−1)),

�a
jk = qa

j (1 − exp(−2λa
j (tk − tk−1))),

�b
jk = qb

j (1 − exp(−2λb
j (tk − tk−1))).

(6)

Let us now assume that we obtain noisy measure-
ments of the Fourier series (1) at times t1, t2, . . .. What
we can now do is to define a state vector x =

[a0, a1, ..., aM, b1, b2, . . . , bM ]� which stacks all the coef-
ficients aj and bj . In this way, we can write Hk =
[1, cos(2πf0tk), . . . , cos(2πM f0 tk), sin(2πf0tk), . . . ,

sin(2πMf0tk)], which leads to

z(tk) = a0 + ∑M
j=1

[
aj cos(2π j f0tk) + bj sin(2π j f0 tk)

]
= Hk xk .

(7)

We can also rewrite the dynamic model (5) as

xk = �k xk−1 + qk, (8)

where �k contains the terms ψa
jk and ψb

jk on the diagonal
and qk ∼ N (0, �k) where �k contains the terms �a

jk and

�b
jk on the diagonal.
If we assume that we actually measure (7) with additive

Gaussian measurement noise rk ∼ N (0, R), then we can
express the measurement model as

yk = Hk xk + rk . (9)

Equations 8 and 9 define a linear state-space model where
we can perform exact Bayesian estimation using Kalman
filter and smoother [40]. In the original paper [32], the
state vectors x1, ..., xN are assumed to perform random
walk, but here the key insight is to use a more general
Gaussian process which introduces a finite time constant to
the problem. Although here we have chosen to use quite
simple Gaussian process model for this purpose, it would
also be possible to use more general Gaussian process priors
for the coefficients such as state-space representations of
Matérn or squared exponential covariance functions [17,
41].

The Kalman filter for this problem then consists of the
following forward recursion (for k = 1, . . . , N):

m−
k = �k mk−1,

P−
k = �k Pk−1 ��

k + �k,

Sk = Hk P
−
k H�

k + R,

Kk = P−
k H�

k /Sk,

mk = m−
k + Kk

(
yk − Hk m

−
k

)
,

Pk = P−
k − Kk Sk K�

k ,

(10)

and the RTS smoother the following backward recursion
(for k = N − 1, . . . , 1):

Gk = Pk ��
k+1 [P−

k+1]−1,

ms
k = mk + Gk [ms

k+1 − m−
k+1],

Ps
k = Pk + Gk [Ps

k+1 − P−
k+1]G�

k .
(11)

The final posterior distributions are then given as:

p(xk | y1:N) = N (xk | ms
k,P

s
k), k = 1, . . . , N . (12)

The magnitude of the sinusoidal with frequency fj = j f0

at time step k can then be computed by extracting the
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elements corresponding to âj (tk) and b̂j (tk) from the mean
vector ms

k:

[S]j,k =
√

â2
j (tk) + b̂2

j (tk). (13)

From now on, matrix S is called spectro-temporal data
matrix.

2.2 Oscillator Model for Spectro-Temporal
Estimation

In practice, the computational cost of Kalman filter and
smoother can be extensive when the length of the signal
is very long. However, instead of the Fourier series state
space model in previous section, one can also derive
an alternative representation using stochastic oscillator
differential equations. In this way, the dynamic and
measurement models become linear time-invariant (LTI) so
that we can leverage a stationary Kalman filter to reduce the
time consumption. This kind of stochastic oscillator models
were also considered in [42] and the link to period Gaussian
process models was investigated in [44].

A single quasi-period stochastic oscillator can be
described with the following stochastic differential equation
model [44]:

dxj =
[ −λj −2πfj

2πfj −λj

]
xj dt +

[
1 0
0 1

]
dWj ,

= Fj xj dt + L dWj .
(14)

where xj = [
aj bj

]�
and the Brownian motion Wj =[

Wa
j Wb

j

]�
has a suitably chosen diffusion matrix ζ j =

qj I [44]. By solving the SDE in discrete time steps, we have

xj
k = Aj xj

k−1 + qj , qj ∼ N (0,Qj ), (15)

where Aj and Qj are given by:

Aj = exp(Fj �t),

Qj = ∫ �t

0 exp(Fj (�t − s))L ζ j L�
× exp(Fj (�t − s))� ds,

(16)

where �t = tk − tk−1.
A general quasi-periodic signal can be modeled using

a superposition of stochastic oscillators of the above form

[44]. If we construct xk = [
(x0

k)
�(x1

k)
� · · · (xM

k )�
]�

, then
the resulting time-invariant model can be written as:

xk = Axk−1 + qk, qk ∼ N (0,Q),

yk = Hxk + rk, rk ∼ N (0, R), (17)

where A, Q and H are defined as:

A =

⎡
⎢⎢⎢⎣

1
A1

. . .
AM

⎤
⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎣

qb �t

Q1

. . .
QM

⎤
⎥⎥⎥⎦ , (18)

H =
[
1H1 · · ·HM

]
= [1 1 0 1 0 · · · 1 0] . (19)

In this model, the first component of the state is a slowly
drifting Brownian motion with diffusion coefficient qb

modeling the possible non-zero mean of the signal.
The estimation problem can be solved with a Kalman

filter and smoother. However, because the model is LTI, the
Kalman filter is known to converge to a steady-state Kalman
filter [22]. The steady-state Kalman filter can be obtained
by solving the following discrete algebraic Riccati equation
(DARE) for the limit covariance P−

k → P−∞:

P−∞ = AP−∞ A� + Q
−AP−∞ H� (HP−∞ H� + R)−1 HP−∞ A�.

(20)

A positive-semi-definite solution to the equation is known
to exists provided that the pair [A,H] is detectable [22].

Thus we can obtain P−∞ by solving DARE in Eq. 20,
and the stationary Kalman filter for the forward mean
propagation is:

mk = Amk−1 + K (yk − HAmk−1), (21)

where the stationary gain is

K = P−∞ H� (HP−∞ H� + R)−1. (22)

The corresponding smoother then turns out to converge to
its steady state as well, and the backward propagation for
the resulting steady-state smoother is:

ms
k = mk + G (ms

k+1 − Amk). (23)

where the gain is computed as

G = P∞ A� [P−∞]−1,

P∞ = P−∞ − P−∞ H� (HP−∞ H� + R)−1 HP−∞.
(24)

In this way, the calculation of the filter and covariances
at every time step is not needed, which reduces the
computational cost significantly. The disadvantage is that
we need to solve the DARE in order to construct the
stationary filter and smoother, which also adds to the
computational cost.

After computing the estimates ms
k for each time step, we

can extract the estimates of âj (tk) and b̂j (tk) and use Eq. 13
to compute the spectro-temporal data matrix.

2.3 Estimation Trials on Simulated Data

A quantitative evaluation of the proposed spectro-temporal
methods for ECG classification is discussed in Sections 4
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and 5.2. However, in this section we visually inspect the
proposed spectro-temporal representations on the simulated
data and compare them with other standard time-frequency
approaches such as STFT, CWT, and BurgAR. To avoid
confusion in terminology, from now on, we refer the
proposals in Sections 2.1 and 2.2 as FourierKS and OscKS,
respectively.

We simulated a noise-observed multi-sinusoidal signal
y(t) as shown in Eq. 25 and Fig. 1 with time step �t = 0.1
and εk ∼ N(0, 0.12).

y(tk) = εk

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(2π 0.01 tk) + sin(2π 0.3 tk), 1 ≤ tk < 150
sin(2π 0.2 tk) + sin(2π 0.3 tk), 150 ≤ tk < 250

sin(2π 0.13 tk) + sin(2π 0.2 tk), 250 ≤ tk < 300
sin(2π 0.2 tk) + sin(2π 0.43 tk), 300 ≤ tk < 400
sin(2π 0.1 tk) + sin(2π 0.43 tk), 400 ≤ tk < 500

.

(25)

In Fig. 2, we plot the time-varying spectrum results using
FourierKS, OscKS, STFT, CWT, and BurgAR. The settings
for estimation we use here are described in the figure
captions.

Although all methods can approximate the simulated
data to a good extent, FourierKS and OscKS have
higher frequency resolution with less noisy representation
which can help us to extract more robust features from
spectro-temporal representation. Morover, the results from
FourierKS and OscKS methods are almost the same
although they have different state-space models.

The computational complexities of FourierKS and
OscKS are O(N), where N is the number of samples. This
is because the Kalman filter and smoother that we use here

scale linearly with respect to N [40]. To numerically verify
the computational efficiency of the stationary proposal in
Section 2.2, we run each of the estimation methods 20 times
and record the mean values of their CPU time. We test with
�t = 0.1 and �t = 0.01 to control the length of the signal.
The results in Table 1 clearly show that the time reduction
from FourierKS (3.39 s, 9.18 s) to OscKS (0.18 s, 0.95 s) is
significant. For OscKS method, the time for solving DARE
is 0.09 s which accounts for almost half of the total time
(0.18 s). To reduce the time usage further, one can resort
to better DARE solvers or lower resolution in frequency
axis. For a longer signal (i.e. �t = 0.01), OscKS (0.95 s)
method becomes faster than CWT (1.32 s), which indicates
a competent efficiency for long signals.

3Materials andMethods for ECG
Classification

3.1 ECG Dataset

In the AF experiments, we used the ECG dataset provided
by PhysioNet/CinC Challenge 2017 [8]. In total 8528
short single lead ECG recordings were collected using
AliveCor hand-held devices. The recordings were uploaded
automatically through an application on the user’s mobile
phone. In addition, the data were sampled at 300 Hz and
band-pass filtered by the AliveCor devices. The duration of
ECG recordings were between 9 s to 61 s with 30 s median.
The distribution of ECG recordings among different classes
is as follows: Normal (5076 recordings), AF (758), Other
(2415), and Noisy (279).

Figure 1 Simulated sinusoidal
data.
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Figure 2 Spectro-temporal estimation on simulated data. The red dashed lines represent ground truth frequency bands.
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Table 1 CPU time cost of each spectro-temporal estimation methods.
The times are recorded in a MacBook laptop with Core i5 CPU and
Matlab 2017b.

FourierKS OscKS CWT STFT BurgAR

�t = 0.1 3.39 0.18 0.08 0.07 0.36

�t = 0.01 9.18 0.95 1.32 0.30 2.58

3.2 ECG Spectro-Temporal Feature Engineering

Our aim is now to find the spectro-temporal features of ECG
signals such that it can be classified by deep convolutional
neural networks (CNNs). In Fig. 3 we show the overall
proposed scheme from input (ECG) to output (predicted
label).

The first step is QRS detection and ECG segmentation
in which the raw ECG signal is divided into fixed-length
segments aligned by their central R peaks. Next, the spectro-
temporal data matrix for each segment is calculated using
Eq. 13. The data matrices are then averaged and normalized
to generate a fixed-length spectro-temporal feature matrix.
In the final step, the 2D feature matrix (spectro-temporal
image) is fed into a deep CNN for classification.

The logic behind the segmentation and averaging steps
in the feature engineering procedure (dashed area in Fig. 3)
is threefold. First, it can handle the problem of ECG
recordings with different length, and generate fixed-length
spectro-temporal feature matrices. Second, it can capture
enough information from ECG recording to be classified
by CNNs. For example, since the central R peaks in each
segments are aligned, after averaging we expect sharp
edges corresponding to QRS complexes in feature matrices
(spectro-temporal image) for Normal rhythms. However,
for AF rhythms we expect the blurred area in spectro-
temporal images due to the variable R-R intervals. For,
noisy segments we do not expect any clear area for QRS
complexes, and for Other classes based on the underlying
arrhythmia one can expect different patterns in spectro-

temporal images (see Fig. 4). Finally, the third reason to
use the segmentation and averaging steps is to decrease
the effect of noise in ECG recordings. In the following we
discuss different steps of feature engineering in detail.

In this work, for QRS detection, we use a modified
version of Pan-Tompkins algorithm. The original Pan-
Tompkins algorithm [30] is sensitive to burst noise, and
it easily misinterprets noise with R peak. To address this
limitation at least partially, we slightly modify the original
algorithm such that it iteratively checks the number of
detected R peaks and if that number is smaller than
a threshold, it ignores the detected R peaks and their
neighbourhood samples in the ECG signal, and again
applies the Pan-Tompkins algorithm on the rest of the signal.
In this way, if there are few instances with high-amplitude
burst noise, our algorithms can handle those. One example
which illustrate this modification is shown in Fig. 5.

The next step is segmentation in which the fixed-length
ECG segments are extracted from the original signal such
that each segment potentially covers three QRS complexes.
The segmentation process is described as follows: if y =
[y1 y2 · · · yN ]� ∈ R

N is the original ECG signal and
p̄i ∈ {1, 2, · · · , N} is the position of ith R peak in y, then
p̄ = [p̄1 p̄2 · · · p̄D]� holds the positions of all R peaks,
and D is the total number of R peaks in y. Now, to extract
D−2 ECG segments we associate each p̄i , i ∈ {2, · · · , D−
1}, to a segment of y such that it potentially covers three
adjacent QRS complexes. To do so, we collect β samples
before and after each p̄i . Following this procedure, the ECG
segment associated to ith R peak can be extracted from y
as y(i) = [

yp̄i−β · · · yp̄i
· · · yp̄i+β

]�, and using Eq. 13,
the spectro-temporal data matrix corresponding to this ECG
segment is S(i) ∈ R

M×(2β+1) where M and 2β + 1 are
frequency and time steps, respectively. It is worth noticing
that these two parameters (i.e., M and 2β + 1) determine
the size of the matrix S in Eq. 13. The choice of parameter
β is important, as it regulates the length of output and how
much takes into average. Usually, β should cover at least
three QRS complexes for good evidence of R-R intervals.

Figure 3 Generalized overall processing scheme for ECG analysis.
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Figure 4 Results of
representation averaging (right
side) on four types of ECG
signals (left side), using
proposed spectro-temporal
method. Red circles indicate
detected R peaks.



J Sign Process Syst

The spectro-temporal feature matrix S‡ is obtained
by averaging over all spectro-temporal data matrices and
multiplying with their maximum mask:

S‡ =
∑D−1

i=2 S(i)

D − 2
◦ max

2≤i≤D−1
S(i). (26)

The reason for adding a max operation in Eq. 26 is that
it could, at least in certain extent, help preserving intricate
details of spectro-temporal data that were potentially
lost during averaging across every segments, and also
normalizing the data.

Examples of ECG spectro-temporal feature matrices
(images) four different classes of ECG signals are shown
in Fig. 4, where we used the proposed spectro-temporal
estimation method in Section 2.2.

3.3 Classification

In the recent ten years, deep learning techniques, especially
convolutional neural networks, have achieved great success
in detection and classification tasks. Comparing to 1D
CNNs models, the progress of CNNs for 2D image
applications is more prosperous. The aim here is to leverage
advanced CNNs for AF classification using the time-
varying spectrum (which is an image).

However, one flaw in most of the current network
models is that the information during training, principally
the gradient, may disappear if the network is exceedingly
deep (with many layers), which is usually called “vanishing
gradient” [12]. In general way, this root problem can be
alleviated by several basic ways, for instance, with pre-
training, residual connection, or with properly selected
activation functions (e.g., one should not attach ReLu before
batch normalization).

Densely connected convolutional networks (DenseNet)
[20], which won the 2017 best paper award of CVPR,
provide state-of-the-art performance without degradation
or over-fitting even when stacked by hundred of layers.
DenseNets can be seen as refined versions of deep residual
networks (ResNets) [18], where the former one introduces
explicit connection on every two and preceding layers in
a dense block rather than only adjacent layers, as shown
in Fig. 6. Another additional advantage of DenseNet, as
mentioned in [20], is the feature reuse.

Considering an L layers network, and image input U0,
the output of l-th layer is:

Ul = HRes
l (Ul−1) + Ul−1, (27)

Ul = HDen
l (

[
U0 U1 · · · Ul−1

]
). (28)

Figure 5 Improvement in QRS detection.
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Figure 6 Dense block: each of
of the convolutional layer takes
all of their preceding outputs as
input.

where HRes
l and HDen

l are layer operations (e.g., convo-
lution, batch-normalization, or activation) of ResNet and
DenseNet respectively, and Ul is the output of lth layer.

The DenseNet we implement here, which we refer as
Dense18+, is slightly different from the original proposal
[20], where we employ and concatenate both max and
average global pooling on last layer before fully connected
layer, as shown in Table 2. The motivation of this is to try
to alleviate the information loss problem caused by pooling
operation [38]. In our application, because of the size of
input, we remove the initial down-sampling max pooling

layer. Each dense block contains four 3 × 3 convolutional
layers, with growth rate of 48 and reduction rate 0.5.

3.4 Model Assessment and Evaluation Criteria

To evaluate the performance of the proposed methods, we
have conducted experiments on the ECG dataset described
in Section 3.1. The classification performance of different
methods was assessed by using the scoring mechanism
recommended by PhysioNet/Computing in Cardiology
(CinC) Challenge 2017 [8] over the whole dataset in 10-fold

Table 2 Structure of Dense18+
in this paper. The use of
eighteen layers in this
application is enough, as the
input dimensionality is not
significantly large and the
training of deeper network is
more challenging [26]. The use
of 18 layers is also the best
result from our
hyper-parameter tuning stage.

Layer Name Structure Output Size

Input Input (50, 50, 1)

Convolution 7 × 7 conv

stride 1 (50, 50, 64)

Dense Block 1

[
1 × 1 conv

3 × 3 conv

]
× 4 (50, 50, 256)

Transition 1 1 × 1 conv

2 × 2 ave pool (25, 25, 128)

Dense Block 2

[
1 × 1 conv

3 × 3 conv

]
× 4 (25, 25, 320)

Transition 2 1 × 1 conv

2 × 2 ave pool (12, 12, 160)

Dense Block 3

[
1 × 1 conv

3 × 3 conv

]
× 4 (12, 12, 352)

Transition 3 1 × 1 conv

2 × 2 ave pool (6, 6, 176)

Dense Block 4

[
1 × 1 conv

3 × 3 conv

]
× 4 (6, 6, 368)

Pooling

Concatenate

[
global ave

global max

]
concat (736)

Fully Connected

(Softmax) 4 classes (4)
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cross-validation scheme. The data were partitioned such that
the same proportions of each class are available in each fold
(stratified cross-validation). Moreover, the F1 score,

F1 = 2 · Precision · Recall

Precision + Recall
(29)

for each class is calculated to summarize the performance
of that specific class: Normal (F1N ), AF (F1A), Others
(F1O ), and Noisy (F1∼). Then, as recommended by
PhysioNet/CinC 2017 the overall evaluation metric is used
as follows:

F1overall = 1

3
(F1N + F1A + F1O). (30)

Finally, the detailed performance is shown by a 4-class
confusion matrix whose the diagonal entries are the correct
classifications and the off-diagonal entries are the incorrect
classifications. This confusion matrix is the result of
stacking 10 confusion matrices of the test data in the 10-fold
cross-validation.

4 Experiments

In principle, any time-frequency analysis method can be
used for ECG classification. So, in order to show the benefit
of using the proposed spectro-temporal method in Section 2
over other standard time-frequency analysis methods, we
have conducted experiments on the ECG dataset. We
have compared the results of the proposed method with
short-time Fourier transform (STFT), continuous wavelet
transform (CWT), and classical power spectral density
estimation method. To do so, we used magnitude of STFT,
magnitude of CWT, and square root of non-logarithmic
power spectral density using Burg autoregressive model
(BurgAR) [23] of ECG signal to construct the feature
matrices. The settings for spectro-temporal estimation are
the same as in Section 5.1. All spectro-temporal feature

matrices (images) are then unifiedly resized (down-sample
by local averaging) to 50 × 50 for classifiers.

For the random forest we use 500 decision trees and
random selection of 50 features (out of 2500) at each node.
In addition, at each node the random forest minimizes the
cross-entropy impurity measure.

Different convolutional architectures are examined, and
their results are compared to the standard RF classifier.
Here we take the original implementations of InceptionV3,
ResNet18, ResNet34, and DenseNet from papers [18, 20,
46] without modifications, except that we removed the
initial sub-sampling layer. We also construct a plain 18-layer
CNN (CNN18) which has the same structure as Dense18+
but without the dense connections. As to the DenseNet,
we only show the results of using 18 layers, because we
previously failed to get better results with deeper structures
in a hyper-parameter tuning stage. The deep CNNs in
Table 3 are all equally trained using Adam optimizer with
learning rate 1e-3, weight decay 1e-3, and 60 epochs. The
batch normalization is also enabled with batch size 128. In
addition, we also performed a hyper-parameter engineering,
for example, for the training parameters and the number of
layers.

With seven classifiers and five different time-frequency
analysis methods, in total we have 35 different combinations
whose performance are reported in Table 3. As can be
seen from this table the best results (overall scores)
belong to our proposed spectro-temporal representation
methods (i.e., FourierKS and OscKS) with Dense18+
classifier. Moreover, Table 4 shows the performance for
each ECG classes for Dense18+ classifier with different
time-frequency representation.

The detailed performance of all five methods (i.e.,
FourierKS, OscKS, CWT, STFT, and BurgAR) with
Dense18+ classifier are reported in five confusion matrices
in Fig. 7. Each confusion matrix is row-wise normalized.
The diagonal entries show the Recall of each rhythm and
off-diagonal entries show the misclassification rates. For

Table 3 10-fold cross-validation F1 Score of spectro-temporal estimation methods using different classifiers for classification. Best score for each
column and row are rendered bold and italic respectively. The number of parameters of InceptionV3, ResNet18, ResNet34, DenseNet18, and
Dense18+ are 21.81M, 5.08M, 9.59M, 1.58M, and 1.58M, respectively.

F1overall Random Forest[5] CNN18 InceptionV3[46] ResNet18[18] ResNet34[18] DenseNet18[20] Dense18+

STFT 73.47 72.65 75.66 76.17 76.26 77.39 77.67

CWT 74.91 73.96 76.41 78.57 78.70 78.82 79.63

BurgAR 73.22 71.78 76.45 76.41 76.30 77.58 77.76

FourierKS 75.99 72.74 77.48 78.05 77.99 79.50 80.24

OscKS 76.12 73.07 76.91 77.85 78.19 79.67 80.18
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Table 4 10-fold cross-validation results of overall and four labels using different spectro-temporal estimation methods on Dense18+ classifier.
Best score for each column are rendered bold.

Method F1N F1A F1O F1∼ F1overall StdF1

(1) STFT + Dense18+ 88.67 74.49 69.84 53.28 77.67 1.78

(2) CWT + Dense18+ 89.30 77.76 71.82 51.95 79.63 1.76

(3) BurgAR + Dense18+ 88.35 75.17 69.74 56.49 77.76 1.62

(4) Kalman + Dense18+ 89.29 79.18 72.25 52.50 80.24 1.52

(5) OSC + Dense18+ 89.09 79.78 71.68 55.86 80.18 1.55

(6) Martin [55] 88.8 76.4 72.6 64.5 79.2 N/A

(6) Zhaohan [51] 87 80 68 N/A 78 N/A

example, the first row of the first confusion matrix shows
92.1% of normal rhythms are correctly classified as normal,
but 0.6%, 6.3%, and 1.0% are incorrectly classified as AF,
Other, and Noisy.

5 Discussion

5.1 ECG Time-Frequency Analysis Methods

We first examine how different spectro-temporal estimation
methods perform on an ECG signal through a visual
inspection. We take the 3223th recording (Rec. 3223) from
CinC 2017 dataset as example, which is labelled as AF. It is
shown in Fig. 8a. For the FourierKS and OscKS method, we
choose different frequency range (M) and smoothing option
as shown in Fig. 8b, c and d. We set the length scale λ to

a constant 10, and use 1 for variance of measurement noise
R, and identity for covariance of process noise q. In theory,
λ could be different for each frequency, which could be
used to improve the performance. Figure 8e presents results
by the original method in [32], which adopts Brownian
motion model for the coefficients. For STFT and BurgAR,
we apply apply 11 length 10 overlapping Hann windows for
estimation, as shown in Figs. 8f and h. For CWT (Fig. 8g),
we use the default Morse wavelet implemented in Matlab.

First, we observe that the estimation results of FourierKS
(Fig.8c) and OscKS (Fig.8d) are nearly the same except
that the base frequency a0 coefficient estimates are very
sensitive to qb in the OscKS method. If we compare
FourierKS method to STFT, BurgAR, and CWT, which are
shown in Fig. 8c, f, h, and g respectively, we can initially
conclude several advantages: the result from FourierKS
is more smooth and it has higher and more unified

Figure 7 Normalized confusion matrix on different methods.
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Figure 8 Comparison of different spectrogram estimation methods on Rec. 3223.

resolution on both time and frequency. For STFT and
BurgAR, the resolution is confined by window selection,
length, and overlap. CWT untangles this problem by
scaling and translation of wavelet basis function, but due
to uncertainty principle of wavelet signal processing [36],
the required resolution in time and frequency can not be
met simultaneously (see Fig.8g). Our approaches model the
time-varying Fourier series coefficients of signal in state-
space, which are free from usage of windows or wavelets.

Another advantage of the proposed OscKS estimation
method is that it can be very computationally efficient for
implementation when we need to perform estimation many
times and the system is fixed (i.e., A, Q remain unchanged).
For example, if one takes the averaging strategy, the
spectrum estimation has to be done for every segment and
recording. For OscKS method, we merely need to solve
P∞ in Eq. 20 once. As we stated in Section 2.2, the
computational cost of OscKS method is substantial reduced
by deriving a stable covariance.

5.2 ECG Classification for AF Detection

As it is mentioned before, Table 3 shows that the
best results belong to our proposed spectro-temporal
representation methods (i.e., FourierKS and OscKS) with
Dense18+ classifier. Table 3 also shows that independent
of spectro-temporal representation method, Dense18+ has
the highest performance among all classifiers. In contrast,
the plain CNN (CNN18) has the lowest scores. In

addition, RF is generally worse than convolutional networks
classifiers (except CNN18) probably because in contrary
to convolutional networks, RF has not benefited from the
existing structure in spectro-temporal representation.

Regarding the different spectro-temporal representations
STFT and BurgAR have the worst results, and FourierKS,
and OscKS have the best performance. In addition, for some
classifiers CWT provides the results which are as good as or
even better than FourierKS, and OscKS. However, the best
results of FourierKS, and OscKS are higher than the best
result of CWT.

Table 4 shows that the the proposed ECG classification
methods have the best result for Normal rhythm and the
worst result for Noisy. The performance of AF and Other are
between these two, but typically AF has better performance
that Other, probably because Other is an umberella term that
covers many abnormal non-AF rhythms, and we do not have
enough samples for each abnormalities to properly train our
classifiers.

To examine how different spectro-temporal features
act in AF ECG analysis, one elementary-level way is
to investigate the feature map and activation of the first
convolutional layer. However, this voxel-based “probing”
only produces limited explanation [47], and can not fully
give the insights. The visualization is shown in Fig. 9. We
can see that the feature-map of FourierKS and CWT are
more diverse and active than STFT and BurgAR, and they
have larger activation on “peaks” and background details.
In comparison to FourierKS and CWT, the lower-frequency
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Figure 9 Feature-map (Left 16 columns) and activation (right 16
columns) visualization of first convolutional layer on Rec. 1005 (AF).
From top to bottom, every 4 rows are FourierKS, CWT, BurgAR and

STFT respectively. OscKS is not shown here for simplicity, because it
has a very similar result to FourierKS.

area are better preserved and exploited for FourierKS
method.

5.3 Limitations

Typically for AF detection we need at least 30 s ECG
data [7]. However, many ECG recordings in the dataset have
less than 30 s duration (see Section 3.1) which limits the
medical significance of the current study. In addition, the
averaging step in feature engineering is robust only when
there are enough spectro-temporal segments, which is not
the case for very short ECG recordings (see Section 3.2).

6 Conclusion

In this paper, we proposed a spectro-temporal representation
of ECG signals, based on state-space models, for application
in deep network based atrial fibrillation detection. We
empirically showed that if we put Gaussian process priors
on the Fourier series coeffients, then by estimating the state
of the corresponding linear state-space model using Kalman
filter/smoother we can outperform other time-frequency
analysis methods such as short-time Fourier transform,
continuous wavelet transform, and autoregressive spectral
estimation for ECG classification.

We also accelerated the estimation of the spectro-
temporal representation of signals by using a stochastic

oscillator differential equation model and stationary Kalman
filter/smoother. This representation is useful to improve the
scalability of the proposed spectro-temporal representation
for long ECG recordings. Finally, we have found an
efficient convolutional architecture (i.e., Dense18+) for
AF detection using the spectro-temporal features by
comparative evaluation of multiple convolutional neural
networks models.
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