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The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology
of the microscopic structure of a crystalline material. One of the consequences is that local variation of the
interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure
diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this
end, several different models with fast dynamics have been proposed. In this article we use the amplitude
expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two
simpler models with fast dynamics. We compare these different models analytically and numerically. The results
suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the
PFC amplitudes is required.
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I. INTRODUCTION

The time evolution of the microstructure of crystalline ma-
terials is mostly governed by diffusive slow phenomena. This
makes materials modeling at atomistic length and timescales
a demanding task. Traditional atomistic methods such as
molecular dynamics have to solve the time-evolution equations
at the timescale of atomistic vibrations, making it extremely
difficult to extend the simulation timescales to diffusive,
entropy-driven phenomena. One attempt to overcome this
limitation comes with the introduction of the field theoretical
framework of phase-field-crystal (PFC) models proposed by
Elder et al. [1,2].

The main idea behind the PFC approach is that the positions
of the atoms are given by an atomic number distribution
function that is phenomenologically connected to the canon-
ical distribution function of the microscopic structure. The
advantage of this approach is that the positions of the atoms
are taken to be thermally averaged and no need for solving
the fast, atomistic timescales remains. The PFC approach has
been hugely successful in describing a wide range of static and
dynamical material properties [3].

One of the advantages of the PFC model is the intrinsic
incorporation of elastic excitations. The PFC equations intro-
duce an interatomic length scale that can be varied locally,
giving rise to elastic excitations. This poses a challenge for
the dynamics since elastic excitations should create vibrations
of the lattice that cannot be described using diffusive first-
order dynamics. The first attempt to tackle this problem
was with the introduction of the modified PFC (MPFC)
model in which a second-order time derivative is added in
the time evolution equation of the system [4,5]. The MPFC
model is appealing due to its simplicity and is able to
introduce another timescale in the dynamics allowing for faster
relaxation of elastic excitations. However, the MPFC remains
hard to motivate physically and fails in describing phonon
modes [6,7].

*vili.heinonen@aalto.fi

In order to describe the lattice vibrations more realistically,
PFC equations have been coupled to the time evolution
equation of a hydrodynamical momentum density [8]. Two
main problems arise with this approach. First, the oscillating
nature of the PFC solid creates spurious flows at interatomic
length scale. Second, it is hard to come up with a realistic
way to incorporate dissipation in the momentum density
equation since macroscopic equations such as the Navier-
Stokes equation consider smooth fields and it is not clear
how to extend the dissipation to atomistic length scales. These
problems suggest the need for a coarse graining procedure for
the momentum density field.

In Ref. [9] the authors used special Fourier filters to coarse
grain the velocity and the density fields that are then coupled to
the microscopic density field. Another approach for smoothing
out the velocity field was introduced in Ref. [10]. The authors
consider a colloidal solution assuming an extreme viscosity
for the colloidal particles. This way the full hydrodynamical
equations are solved essentially only in the solution.

The most recent approach for coupling the momentum
density with the microscopic system described in Ref. [11]
uses the amplitude expansion framework of the PFC model
introduced by Goldenfeld et al. [12,13]. The amplitude
expansion of the PFC model takes advantage of the fact
that the solution for the PFC density is close to a one-mode
approximation of a given crystal symmetry. Instead of solving
the PFC density, the amplitude equations consider the envelope
of the periodically varying PFC density. This envelope is
slowly varying in space making it suitable for coupling to
a slowly varying velocity field.

In this article we study the difference of the amplitude
description of the MPFC model and the recently proposed
hydrodynamical amplitude expansion model. These are the
simplest PFC models with fast dynamics. The article is
organized as follows: Sec. II gives background on the PFC
model and modified PFC dynamics. Amplitude expansion of
the PFC model is briefly discussed and the different dynamical
schemes are introduced in Sec. III. Phonon spectrum and small
deformations are studied analytically in Sec. IV. The different
schemes are compared numerically in Sec. V and finally the
results are summarized and we conclude in Sec. VI.
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II. BACKGROUND

Here we motivate the simple fast dynamics by considering
linearized hydrodynamics. Let the free energy of the PFC
system FPFC[n] be defined through PFC density n. We can
write down a momentum density balance equation with the
help of continuity equation for n

∂tn = −∇ · (nv), (1)

as

n(∂tv + v · ∇v) = −n∇ δFPFC

δn
+ D(n)v. (2)

Here δF/δn is the chemical potential that acts as a source term
for the momentum density nv, and D is some operator that
defines dissipation. Assuming that velocity and its derivatives
are small we can expand this equation up to the first order in
v, giving

n∂tv = −n∇ δFPFC

δn
+ Dv. (3)

Taking time derivative of Eq. (1) gives

∂2
t n = −∇ · (v∂tn + n∂tv),

from which we get

∂2
t n = ∇ ·

[
v∇ · (nv) + n∇ δFPFC

δn
− Dv

]

≈ ∇ ·
[
n∇ δFPFC

δn
− Dv

]
,

with the help of Eqs. (1) and (3). Here we have discarded
nonlinear terms in v. To continue with the calculation we need
to define the dissipation term D. For Langevin dissipation we
have D = −αn, giving

∂2
t n = ∇ ·

(
n∇ δFPFC

δn

)
+ α∇ · (nv).

The latter part is given by Eq. (1) and finally the time evolution
can be written in terms of n as

∂2
t n + α∂tn = ∇ ·

(
n∇ δFPFC

δn

)
. (4)

Often we simplify the source term by replacing the right-hand
side of Eq. (4) by ∇2(δFPFC/δn), giving

∂2
t n + α∂tn = ∇2 δFPFC

δn
. (5)

A system with dynamics described by Eq. (5) is known as
the modified phase field crystal model (MPFC) [4]. Here the
dissipation is controlled through the α parameter. We get the
regular PFC model by taking the large α limit given by

∂tn = ∇2 δFPFC

δn
. (6)

We assumed here that the velocity field v and its derivatives
are small. This assumption is well justified in the long
wavelength regime of elastic vibrations but might break down
especially in the liquid phase when advection via v becomes
important. Furthermore, the assumptions leading to Eq. (5)
break the Galilean invariance of the system, which might be
problematic in some cases. In the case of a large velocity field
v a hydrodynamic treatment is needed. Full coupling of the
velocity field to other relevant variables will be discussed later
in the article.

III. AMPLITUDE EXPANSION

In this article we use the coarse-grained PFC amplitude
expansion framework [12,13]. The main idea of the amplitude
expansion framework is to describe the system in terms
of the envelope function of the periodic oscillations of the
PFC field n. The amplitudes of the PFC oscillations are
spatially uniform in the bulk liquid and solid phases relaxing
the stringent requirement of a fine numerical mesh set by
the spatial variation of the PFC field n. In addition to the
numerical advantages of coarse-graining the PFC system, the
amplitude expansion framework allows a coupling with a
smooth hydrodynamic velocity field avoiding some difficulties
faced when coupling fields that vary at an interatomic length
scale to a hydrodynamic velocity field [11]. We will use such
a coupling later in the article.

In the amplitude expansion framework the PFC density n

is approximated by its one-mode approximation,

n ≈ ρ +
∑

j

(ηje
iqj ·r + c.c.), (7)

where only the reciprocal lattice vectors qj of the first star are
taken into account. Here c.c. denotes the complex conjugate.
We choose a representation for a 2D hexagonal lattice as
qj as q1 = (−√

3/2, − 1/2), q2 = (0,1), and q3 = (
√

3/2, −
1/2). Note that |qj | = 1. For details of the coarse-graining
procedure, see Ref. [13].

The amplitudes ηj are taken to be complex to allow
for displacements. Consider a change of amplitudes ηj →
ηj exp [−iqj · u(r)] with some field u. The approximation for
the microscopic field changes as

n ≈ ρ +
∑

j

(ηje
−iqj ·ueiqj ·r + c.c.)

= ρ +
∑

j

(ηje
iqj ·(r−u) + c.c.).

This shows that the field u is a displacement field.
We will discuss five different models with the same free

energy,

F =
∫

dr

⎧⎨
⎩

B�

2
ρ2 − τ

3
ρ3 + ν

4
ρ4 + B̃x

2
|∇ρ|2 +

(

B

2
− τρ + 3ν

2
ρ2

)
A2 +

3∑
j=1

Bx |Gj ηj |2

+(6νρ − 2τ )

⎛
⎝ 3∏

j=1

ηj + c.c.

⎞
⎠ + 3ν

4
A4 − 3ν

2

3∑
j=1

|ηj |4
⎫⎬
⎭, (8)
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where P = B� − B̃x∇2, Gj = (∇2 + 2iqj · ∇), and A2 =
2
∑3

j=1 |ηj |2. These models will be described in detail in the
following sections.

A. MPFC amplitude expansion (MPFCA) model

The MPFCA model is the amplitude expansion of Eq. (5).
The dynamics are described by

∂2
t ηj + α∂tηj = − δF

δη∗
j

. (9)

Again the dissipation happens through the term with the
parameter α. The density in Eq. (8) is taken to be constant.

B. Augmented MPFC amplitude expansion (AMPFCA) model

For this model we choose a different type of dissipation
term. The dynamics are described by

∂2
t ηj − αQ2

j ∂tηj = − δF

δη∗
j

, (10)

where Q2
j = (∇ + iqj )2 = ∇2 + 2iqj · ∇ − 1.

This model can be derived from a PFC equation similar to
Eq. (4) where α has been replaced with −α∇2. The amplitude
representation of the Laplacian ∇2 is Q2

j .
This model can be examined through energetics. Let us

define a kinetic energy,

T [ηj ,η
∗
j ] =

∫
dr

⎡
⎣ 3∑

j=1

|∂tηj |2
⎤
⎦

=
∫

dr

⎡
⎣ 3∑

j=1

∂tηj ∂tη
∗
j

⎤
⎦. (11)

We define a total effective HamiltonianH = T + F . The time-
evolution of the total energy becomes

∂tH = ∂tT + ∂tF

=
∫

dr

⎡
⎣ 3∑

j=1

(∂tη
∗
j ∂

2
t ηj + c.c.)

⎤
⎦

+
∫

dr

⎡
⎣ 3∑

j=1

(
∂tη

∗
j

δF

δη∗
j

+ c.c.

)⎤⎦

=
∫

dr

⎡
⎣ 3∑

j=1

(
∂tη

∗
j ∂

2
t ηj + ∂tη

∗
j

δF

δη∗
j

)
+ c.c.

⎤
⎦

=
∫

dr

⎧⎨
⎩

3∑
j=1

[
∂tη

∗
j

(
∂2
t ηj + δF

δη∗
j

)]
+ c.c.

⎫⎬
⎭.

Inserting ∂2
t ηj + δF/δη∗

j using Eq. (10) gives

∂tH =
∫

dr

⎧⎨
⎩

3∑
j=1

[
∂tη

∗
j · αQ2

j ∂tηj

] + c.c.

⎫⎬
⎭

= −α

∫
dr

⎧⎨
⎩

3∑
j=1

[
(Q∗

j ∂tη
∗
j ) · (Qj ∂tηj )

] + c.c.

⎫⎬
⎭.

Here we have used integration by parts. Finally, we get

∂tH = −2α

∫
dr

⎧⎨
⎩

3∑
j=1

|Qj ∂tηj |2
⎫⎬
⎭ � 0. (12)

This shows how the parameter α controls dissipation. A
similar result can be obtained for the MPFCA model with
the substitution Q2

j → −1.

C. PFC amplitude expansion with hydrodynamics (HPFCA)

This model is described in depth in Ref. [11]. The dynamics
are given by

Dv
Dt

= −∇ δF

δρ
− 1

ρ

3∑
j=1

[
η∗

jQj

δF

δη∗
j

+ c.c.

]
+ μS

ρ
∇2v (13)

for the velocity field,

dρ

dt
= −∇ · (ρv) + μρ∇2 δF

δρ
+ 1

2
μρ∇2(|v|2) (14)

for the density field, and

dηj

dt
= −Qj · (ηj v) − μη

δF

δη∗
j

(15)

for the complex amplitudes. Here μS , μρ , and μη are
dissipation parameters.

D. Overdamped PFC amplitude expansion

This is the large α limit of Eq. (9). The time evolution
equation becomes

∂tηj = − δF

δη∗
j

. (16)

Analytically this can be realized by scaling the time as t → αt

in Eq. (9) and taking α → ∞.

E. Overdamped PFC amplitude expansion with mechanical
equilibrium

For this model the dynamics of the system are given by
Eq. (16) with a mechanical equilibrium constraint,

δF

δu
(t) = 0. (17)

Here u is the displacement field that is defined using a
decomposition ηj = φj exp (iθj ) as

u = 2

3

3∑
j=1

qj θj . (18)

The details for this model can be found in Ref. [14].
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IV. SMALL DISPLACEMENT LIMIT

In this section we study small long wavelength elastic
displacement fields. The assumptions that we make here
could be used for the full PFC description without the coarse
graining procedure leading to the same calculations. This
underlines another reason for using the amplitude expansion
framework instead of the full PFC description, namely that
the two descriptions become the same in the long-wavelength
limit.1

We assume a constant density ρ = ρ0 and complex ampli-
tudes,

ηj = φ0 exp [−iqj · u(r,t)], (19)

where u is a displacement field that is assumed to be small.
More specifically the displacement field is expanded up to
linear order in the dynamical equations and up to quadratic
order in the energy. We also assume that u is slowly varying
and take a long-wavelength limit discarding all the derivatives
higher than the second order. Expanding the energy up to
second order in u gives an elastic energy,

Fel =
∫

dr
(

1

2
σ : ε

)
, (20)

where

ε = 1

2
[∇u + (∇u)T ] (21)

is the linear strain tensor and

σ = 3Bxφ2
0[2ε + (∇ · u)I] (22)

is the linear elastic stress tensor. The elastic constants can be
extracted from a linear relationship σij = Cijklεkl and are those
of a 2D hexagonal crystal symmetry. See Appendix A for the
derivation of Eq. (20).

Some results are needed in order to continue with the
analysis:

δF

δuk

=
∑

j

(
∂η∗

j

∂uk

δF

δη∗
j

+ c.c.

)
=

∑
j

(
iqj,kη

∗
j

δF

δη∗
j

+ c.c.

)

= 2
∑

j

Re

(
iqj,kη

∗
j

δF

δη∗
j

)
= −2

∑
j

Im

(
qj,kη

∗
j

δF

δη∗
j

)
.

Here uk is the kth component of u and qj,k is the kth
component of qj . Using a different notation we write

δF

δu
= −2

∑
j

Im

(
qj η

∗
j

δF

δη∗
j

)
. (23)

We have for all the linear differential operators L without
a constant part a following identity:

L(φ0e
−iqj ·u) = −(iφ0qj · Lu)e−iqj ·u + O

(|u|2). (24)

1The similarity is based on an assumption of an one-mode
approximation for the PFC density n with a small displacement field.
This approximation should be accurate in the long-wavelength limit.

Another identity that we need is

3∑
j=1

qj ⊗ qj = 3

2
I, (25)

i.e., the sum of the dyadic of the reciprocal lattice vectors sums
up to a constant times identity.

It should also be pointed out that in the linear regime the
functional derivative of the free energy with respect to the
displacement field can be approximated as

δF

δu
≈ δFel

δu
= −3Bxφ2

0u�, (26)

where u� = ∇2u + 2∇∇ · u.

A. MPFCA

Inserting Eq. (19) in Eq. (9) gives

−iqj · (∂2
t u + α∂tu

)
φ0e

−iqj ·u = − δF

δη∗
j

in the linear displacement regime. Multiplying by qj η
∗
j on both

sides, taking the imaginary part and summing over j gives

−φ2
0

⎛
⎝ 3∑

j=1

qj ⊗ qj

⎞
⎠·(∂2

t u + α∂tu
) = −

3∑
j=1

qj Im

(
η∗

j

δF

δη∗
j

)
,

which becomes

∂2
t u + α∂tu = −1

3
φ−2

0

δF

δu
(27)

with the help of Eq. (25).
Using Eq. (26) we can write this as

∂2
t u + α∂tu = Bxu�. (28)

This can be solved with an ansatz u = u0 exp (−ωt + ik · r).
These plane-wave solutions can be decomposed into a parallel
part u‖ exp (−ω‖t + ik · r), where k · u‖ = ku‖ and into a
perpendicular part u⊥ exp (−ω⊥t + ik · r), where k · u⊥ = 0.
The general plane-wave solution to Eq. (28) is a superposition
of these to components with different values of k.

Let us solve for the perpendicular mode. Inserting the ansatz
into Eq. (28) gives

ω2
⊥ − αω⊥ = −Bxk2, (29)

which can be solved for ω⊥ as

ω⊥ = 1

2
α ± i

2

√
4Bxk2 − α2, (30)

when

k > kc = α

2
√

Bx
. (31)

Here kc is the critical k value. If this does not hold we get

ω⊥ = 1
2α ± 1

2

√
α2 − 4Bxk2. (32)

The calculation for the longitudinal modes gives

ω‖ = 1

2
α ± i

2

√
12Bxk2 − α2, (33)
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0 1 2 3 4 5 6
0

2

4

6

k̃

ω̃
o ⊥

dispersion

asymptotic

FIG. 1. The dispersion relation for the oscillating part ωo
⊥ =

Im (ω⊥) for the MPFCA model given by Eq. (30). The units are
rescaled as k̃ = 2

√
3Bxk/α and ω̃o

⊥ = 2ωo
⊥/α.

with a critical k value,

kc = α

2
√

3Bx
. (34)

The dispersion relation for the oscillating part is shown in
Fig. 1.

B. AMPFCA

Repeating the previous calculation we get

∂2
t u + α(−∇2 + 1)∂tu = Bxu�, (35)

resembling Eq. (28). Here the imaginary part gives a condition
∇ · u = 0, which is equivalent to the assumption that φj = φ0

are constant. For details see Appendix B.
From here on the only difference in the calculation is the

extra −α∇2. This contributes an extra k2 in the final result that
can be obtained by replacing α in the previous calculation with
α(1 + k2). This gives

ω⊥ = 1

2
α(1 + k2) ± i

2

√
4Bxk2 − (1 + k2)2α2 (36)

for the transversal modes subject to the condition

2Bx

α2
− 1 − 2

√
Bx

α

√
Bx

α2
− 1 < k2

<
2Bx

α2
− 1 + 2

√
Bx

α

√
Bx

α2
− 1. (37)

For the longitudinal modes we get

ω‖ = 1

2
α(1 + k2) ± i

2

√
12Bxk2 − (1 + k2)2α2, (38)

subject to the condition

6Bx

α2
− 1 − 2

√
3Bx

α

√
3Bx

α2
− 1 < k2

<
6Bx

α2
− 1 + 2

√
3Bx

α

√
3Bx

α2
− 1. (39)

The dispersion relation for the oscillating part is shown in
Fig. 2.

0 1 2 3 4
0

2

4

6

k

ω
o ⊥

α = 0.5
α = 0.6
α = 0.8

FIG. 2. The dispersion relation for the oscillating part ωo
⊥ =

Im (ω⊥) for the AMPFCA model with several different α given by
Eq. (36). Here Bx = 1.

C. HPFCA

Equation (15) can be written for the displacement field u
with the help of Eqs. (23) and (25) as

∂tu + v · ∇u ≈ ∂tu = v − 1

2
φ−2

0 μη

δFel

δu
= v + μηB

xu�.

(40)
The equation for the velocity field, Eq. (13), becomes

∂tv + v · ∇v︸ ︷︷ ︸
≈∂t v

= − 1

ρ0

3∑
j=1

[
η∗

jQj

δF

δη∗
j

+ c.c.

]
+ μS

ρ0
∇2v

≈ − 2

ρ0

3∑
j=1

Re

[
η∗

j iqj

δF

δη∗
j

]
+ μSρ

−1
0 ∇2v

= 2

ρ0

3∑
j=1

Im

[
η∗

j qj

δF

δη∗
j

]
+ μSρ

−1
0 ∇2v

≈ − 1

ρ0

δFel

δu
+ μSρ

−1
0 ∇2v

= 3Bxρ−1
0 φ2

0u� + μSρ
−1
0 ∇2v. (41)

Here we assume ∇(δF/δη∗
j ) ≈ 0, since it produces terms with

derivatives of the displacement field with a degree higher than
two.

Let ξ̂ be the Fourier transform of a vector field ξ subject
to the condition ξ = ∫

dk[exp (ik · r)ξ̂ (k)]. We can rewrite
Eq. (41) as

∂t v̂ = 3Bxρ−1
0 φ2

0 û
� − μSρ

−1
0 k2v̂, (42)

from which we can solve

∂t

(
v̂eμSρ−1

0 k2t
) = 3Bxρ−1

0 φ2
0 û

�. (43)

Now we can write Eq. (40) in Fourier space as

∂t û = v̂ + μηB
xû�. (44)

Multiplying both sides by exp (μSρ
−1
0 k2t) and taking the time

derivative gives

∂t

[
(∂t û)eμSρ−1

0 k2t
]

= ∂t (v̂eμSρ−1
0 k2t ) + μηB

x∂t

(
û�eμSρ−1

0 k2t
)
, (45)
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resulting in

∂2
t û + μSρ

−1
0 k2∂t û

= 3Bxρ−1
0 φ2

0 û
� + μηB

x(∂t û
� + μSρ

−1
0 k2û�), (46)

with the help of Eq. (43). The Fourier transform û� is given by

û� = −k2û − 2kk · û. (47)

Let us split û into two orthogonal parts subject to û =
û⊥ + û‖ and k · û⊥ = 0. For transversal modes û� = −k2û⊥,
giving

∂2
t û⊥ + (

μSρ
−1
0 + μηB

x
)
k2∂t û⊥

+ 3Bxk2
(
ρ−1

0 φ2
0 + 1

3μημSρ
−1
0 k2

)
û⊥ = 0. (48)

This can be solved with the ansatz û⊥ = exp (−ω⊥t), giving

ω2
⊥ − (

μSρ
−1
0 + μηB

x
)
k2ω⊥

+ 3Bxk2
(
ρ−1

0 φ2
0 + 1

3μημSρ
−1
0 k2

) = 0. (49)

We solve this for ω2
⊥ resulting in

ω⊥ = 1

2
k2(μSρ

−1
0 + μηB

x
)

± i
k

2

√
12Bxφ2

0ρ
−1
0 − (

μSρ
−1
0 − Bxμη

)2
k2, (50)

which we can divide into an oscillating part,

ωo
⊥ = k

2

√
12Bxφ2

0ρ
−1
0 − (

μSρ
−1
0 − Bxμη

)2
k2, (51)

and a damping part,

ωd
⊥ = 1

2k2
(
μSρ

−1
0 + μηB

x
)
, (52)

subject to the condition ω⊥ = ωd
⊥ + iωo

⊥. The existence of the
oscillating solutions is subject to the condition

k <

√
12Bxρ−1

0∣∣μSρ
−1
0 − Bxμη

∣∣φ0. (53)

Those modes for which this does not hold are damped with a
damping coefficient

ωd
⊥ = 1

2
k2

(
μSρ

−1
0 + μηB

x
)

± k

2

√(
μSρ

−1
0 − Bxμη

)2
k2 − 12Bxφ2

0ρ
−1
0 , (54)

where the sign is determined by the initial velocity. The
dispersion relation for the oscillating component is shown in
Fig. 3.

A similar calculation gives an oscillating solution

ω‖ = 1

2
k2

(
μSρ

−1
0 + 3μηB

x
)

± i
k

2

√
36Bxφ2

0ρ
−1
0 − (

μSρ
−1
0 − 3Bxμη

)2
k2, (55)

for the longitudinal modes.

0 0.2 0.4 0.6 0.8 1
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0.4
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ω̃
o ⊥

dispersion

small k limit

FIG. 3. The dispersion relation ω̃o
⊥(k̃) = k̃

√
1 − k̃2 for the os-

cillating component of the perpendicular wave in the linear
displacement limit for the HPFCA model. Here ω̃o

⊥ = |μS −
3
2 Bxμηρ0|ωo

⊥/(6Bxφ2
0 ) and k̃2 = (μS − 3

2 Bxρ0μη)2k2/(12Bxφ2
0ρ0).

V. NUMERICAL RESULTS

The numerical results for the AMPFCA model given by the
tests presented here were practically indistinguishable from
the MPFCA results. For this reason, the AMPFCA results are
not presented here separately. This will be discussed further in
Sec. VI.

A. Numerical study of small deformations

We studied the time evolution of longitudinal waves of the
form u(x) = a

∑128
m=1[sin (2πmx/Lx)/m2], where Lx is the

size of the periodic box in x dimension and a is the nearest-
neighbor distance 4π/

√
3.2 The calculations were performed

in a rectangular box with periodic boundary conditions. The
dimensions of the box were (Lx,Ly) = (8192,256). Note that
the displacement field varies only in one direction reducing
the system to one dimension. Here we use a parametrization
α = 0.05, μS = 0, μρ = 0.05, μη = 1, Bx = B̃x = 1, 
B =
0.097, τ = 0.885, ν = 1 and the average density ρ0 = 0.1.
For the numerical discretization we used 
x = 
y = 4 and
the time step 
t was varied from 0.0625 to 0.125. For more
on numerical details see Appendix C.

The results are presented in Figs. 4 and 5. For the MPFCA
model there is a critical wave vector kc below which no oscil-
lating solutions exists. It can also be seen that the oscillating
solutions above kc are damped at a rate that is independent
of k. The HPFCA model behaves very differently showing
oscillating solutions for all k and damping dependent on k.

B. Grain rotation

In order to compare the different dynamics, we solve the
time evolution of a circular grain embedded in a crystalline
matrix. This numerical test is simple but nontrivial and should
provide insight into the difference of the dynamical schemes
discussed in this article.

2Any waveform with a large number of modes would do since the
modes are not coupled in the linear regime.
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FIG. 4. The spectrum of the MPFCA model as a function of
time. The color shows the relative amplitude of the mth mode at
a given time. The amplitudes are scaled to unity at time zero. The
wave number m denotes the mth harmonic. The wave vectors can be
recovered as km = 2πm/Lx . The analytical cutoff for the oscillating
solutions is shown here at wave number mc.

The grain is tilted by an angle γ (t = 0) creating a mismatch
at the perimeter of the grain, which gives rise to a grain
boundary. The setting is shown in Fig. 6.

Assuming that the grain boundary motion is curvature
driven, i.e., v⊥ = ∂tR ∼ κ = R−1, we can solve for the time
evolution of the radius R(t) giving ∂t (R2) = constant. This
implies that the area of the grain decreases linearly. Note that
if the normal velocity of the grain boundary is proportional to
the curvature of the grain boundary, the time evolution of a
circular grain is self similar in the sense that the grain will be
circular also at later times.

At small angles the number of the dislocation cores nd at
the perimeter of the rotated grain is proportional to the rotation
angle and the length of the boundary. This can be written as
nd ∼ γ (t)R(t). Dislocation cores repel each other and annihi-
late in the very end of the calculation. For earlier times nd is
constant in time implying that γ (t) ∼ R−1. From this it follows
that angle γ increases as radius R decreases. The dynamics of
this type of rotated grain is discussed in depth in Ref. [15].

The results of the grain rotation calculations are shown in
Fig. 7. All the different realizations show linear time evolution
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FIG. 5. The spectrum of the HPFCA model as a function of time.
The color shows the relative amplitude of the mth mode at a given
time. The amplitudes are scaled to unity at zero. The wave number
m denotes the mth harmonic. The wave vectors can be recovered as
km = 2πm/Lx . The time difference between the peaks scales with
the wave number as m−2 since the dissipation rate is proportional
to k2.

γ

(a) (b)

FIG. 6. (a) Schematic of the grain rotation calculation: the grain
is rotated by an angle γ (the angle difference is shown in the inset). (b)
The magnitude of the gradient of the displacement field |∇u| from
a calculation showing the dislocation cores at the perimeter of the
grain. The uniform brighter color inside the grain is due to the angle
difference γ .

for the area of the rotated grain. The behavior of the MPFCA
model reduces to the overdamped amplitude model when
α = 1. More interestingly, the trajectory for the MPFCA model
converges to the one obtained with α = 0.1. Decreasing α

further did not make the dynamics faster. The HPFCA model
gives the same trajectory as the mechanically equilibrated
overdamped model as already discovered in Ref. [11].

The parameters used for these calculations were μS = 0,
μρ = 0.05, μη = 1, Bx = B̃x = 1, 
B = 0.097, τ = 0.885,
ν = 1 and the average density ρ0 = 0.1.

The calculations were performed in a box of a size Lx =
Ly = 1536 with a discretization 
x = 
dy = 2, 
t = 0.125.
For more details see Appendix C.

VI. SUMMARY AND CONCLUSION

We have analyzed three different schemes for the time
evolution of the PFC amplitude system analytically and
numerically. We have shown that no true phonons exist for

0 100 200 300 400 500 600

50

100

150

10−3 t

1
0
−

3
R

2

α = 1.00
α = 0.20
α = 0.10

HPFCA

Mech. eq.

Overdamp.

FIG. 7. The squared radii of the shrinking circular grain with
different models and parametrization. The overdamped model and
MPFCA with α = 1 give the slowest dynamics. MPFCA dynamics
becomes faster with decreasing α but cannot reach the fastest
trajectories given by the mechanically equilibrated model and the
HPFCA model.
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other models than the HPFCA model. The analytical results
for the small displacements are verified numerically showing
that the damping of the oscillating solutions for the MPFCA
model dissipate at the same rate regardless of the wavelength
and that there is a critical wavelength over which the waves
do not oscillate. All the different modes of the HPFCA model
oscillate and the dissipation is proportional to k2.

The grain rotation experiment shows that in case of the
MPFCA model, there is a critical value for the dissipation
parameter α below which the dynamics does not get faster.
Unlike for the HPFCA model, the limiting trajectory is not
that of the mechanically equilibrated system. Instead, slower
time evolution is seen. This behavior should not be caused
by the cutoff in the oscillating solutions since kc can be
controlled by decreasing α allowing all the modes in the
periodic box to oscillate. Instead, it is likely that this behavior
follows from the fact that the parameter α controls all the
dissipation in the system. Even if the oscillating modes are
damped less allowing for reducing the energy through the
displacement field, the overall dissipation is reduced hindering
the diffusional relaxation of the system. Taking μS to 0 for the
HPFCA model does not affect the diffusional dissipation that
happens through the parameter μη.

The AMPFCA results are not shown in the numerical
experiments since they are indistinguishable from the results
given by the MPFCA model. It seems that at large α both
models collapse into the overdamped case and at low α they
become the same. Studying the small displacement dispersion
relations of these two models can give some insight into why
this happens. Let us consider Eqs. (30) and (36). Expanding
the dispersion relation up to a quadratic order in both α and k

Eq. (36) becomes

ω⊥ = 1

2
α + O(αk2) ± i

2

√
4Bxk2 − α2 + O(α2k2)

≈ 1

2
α ± i

2

√
4Bxk2 − α2,

giving the dispersion relation for the MPFCA model, i.e.,
Eq. (30). The expansion in α is justified since α has to be
small in order to have high wavelength oscillating solutions.
The amplitude energy F penalises high k modes and they are
rarely seen in the calculations. Modes with k = 1 correspond
to oscillations at interatomic distance implying that it is a
relatively good approximation to state that for the large scale
displacements k � 1.

The reason for studying the simpler MPFCA and AMPFCA
models is that they are computationally more efficient than the
HPFCA model. First, unlike in the case of full hydrodynamic
description, it is possible to leave out the slow density field ρ

when the problem does not require local changes in the average
density. Second, discarding the velocity field v saves computer
memory and—more importantly—avoids numerical problems
associated with systems with advective transport. However, it
seems that the long wavelength properties of the MPFCA and
AMPFCA models are limited.

The results presented here suggest that while the MPFCA
model remains a good qualitative description of fast dynamics,
it is not suitable for separating the time scales of the lattice
vibrations and the diffusional phenomena. The relaxation

times of grain boundaries and slow phenomena are always
coupled through the parameter α to the relaxation of elastic
excitations. This should become more important when the
system size is increased. The reason for this is that in order to
include all the oscillating modes that fit in the spatial domain
of the calculation, the MPFCA dissipation parameter α needs
to be decreased. On the other hand, decreasing α reduces
the overall dissipation in the system slowing any dissipative
processes.
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APPENDIX A: DERIVATION OF EQ. (20)

Here we expand the free energy F to a quadratic order in
the displacement field u. We write the complex amplitudes as
ηj = φ0 exp (−iqj · u). We assume that the amplitudes of the
complex fields are constant. Looking at Eq. (8) we see that
only parts where the phase of the complex fields matter are
the parts with the operator Gj and the terms η1η2η3 and its
complex conjugate. The latter terms give

3∏
j=1

ηj = φ3
0e

−iu·∑3
j=1 qj = φ3

0 , (A1)

since
∑3

j=1 qj = 0.
The only remaining part is

fel := Bx

3∑
j=1

|Gjφ0e
−iqj ·u|2. (A2)

Using the identity given by Eq. (24) we get

fel = Bxφ2
0

3∑
j=1

| − iqj · Gj u + O(|u|2)|2

= Bxφ2
0

3∑
j=1

| − iqj · ∇2u + 2qj · (qj · ∇)u + O(|u|2)|2

= Bxφ2
0

3∑
j=1

{(qj · ∇2u)2 + 4[qj · (qj · ∇)u]2 + O(|u|3)}.

(A3)

We take the long-wavelength limit discarding higher-order
derivatives and the terms of order higher than two and get

fel ≈ 4Bxφ2
0

3∑
j=1

[qj · (qj · ∇)u]2. (A4)
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Here it is convenient to use the Einstein summation convention:
now

fel ≈ 4Bxφ2
0qj,i1qj,i2qj,i3qj,i4

(
∂i1ui2

)(
∂i3ui4

)
. (A5)

Here qj,i1 denotes the component i1 of the vector qj . It can be
shown that

qj,i1qj,i2qj,i3qj,i4 = 3
8

(
δi1,i2δi3,i4 + δi1,i3δi2,i4 + δi1,i4δi2,i3

)
(A6)

by using Eq. (25) and the fact that
∑

j qj = 0 (or in coordinates
with a lengthy calculation). Now

fel ≈ Bxφ2
0

3
2

[(
∂i1ui1

)(
∂i3ui3

)
+ (

∂i1ui2

)(
∂i1ui2

) + (
∂i1ui2

)(
∂i2ui1

)]
. (A7)

Using the definition εij = 1
2 (∂iuj + ∂jui), we can recast this

in a form

fel ≈ 3
2Bxφ2

0(∂kukδij + 2εij )εij , (A8)

from which we recover Eq. (20) using the definition σ : ε =
σij εij .

APPENDIX B: THE IMAGINARY PART OF THE SMALL
DISPLACEMENT EQUATION FOR THE AMPFCA MODEL

Let us assume at first that ηj (r,t) = φj (r,t) exp [iθj (r,t)].
Now

φj

δF

δφj

= φj

∂η∗
j

∂φj

δF

δη∗
j

+ c.c. = φje
−iθj

δF

δη∗
j

+ c.c.

= η∗
j

δF

δη∗
j

+ c.c. = 2 Re

(
η∗

j

δF

δη∗
j

)
. (B1)

Next we assume that the displacements are small and that
ηj = φ0 exp (−iqj · u). Inserting Eq. (19) in Eq. (10) gives

−iqj · (∂2
t u − αQ2

j ∂tu
)
φ0e

−iqj ·u = − δF

δηj

, (B2)

with the help of Eq. (24). Multiplying by qj η
∗
j , taking the

imaginary part and summing over j gives Eq. (35), but here
we look at the real part. Multiplying by η∗

j and taking the real
part gives

2φ2
0(qj ⊗ qj ) : ∇u = 1

2
φ0

δF

δφj

∣∣∣∣
φj =φ0

(B3)

using Eq. (B1).
Assuming that φj is constant implies that the chemical

potential δF/δφj = 0. Otherwise, φj would change in time.
This implies that the right-hand side of Eq. (B3) is 0. Summing
over j gives

I : ∇u = ∇ · u = 0. (B4)

The assumption that φj = φ0 implies that the system is
incompressible. Another way to see that δF/δφj = 0 is to
calculate
δF

δφ0
= δFel

δφ0
= 3Bxφ0[2ε : ε + (∇ · u)2] = O

(|∇u|2). (B5)

This gives 0 since in the dynamical equations we assume that
u is of linear order.

APPENDIX C: NUMERICAL METHODS

All the calculations were solved using a semi-implicit algo-
rithm [16–18], where the linear terms of the form L(∇)ψ(r)
are treated implicitly, while the nonlinear parts are treated
explicitly. All the spatial derivatives were computed in k space.
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[3] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth,
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Gránásy, J. Comput. Phys. 228, 1612 (2009).

[17] B. P. Vollmayr-Lee and A. D. Rutenberg, Phys. Rev. E 68,
066703 (2003).

[18] J. Zhu, L. Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E 60, 3564
(1999).

053003-9

http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1080/00018732.2012.737555
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevE.79.051110
http://dx.doi.org/10.1103/PhysRevE.79.051110
http://dx.doi.org/10.1103/PhysRevE.79.051110
http://dx.doi.org/10.1103/PhysRevE.79.051110
http://dx.doi.org/10.1103/PhysRevB.75.054301
http://dx.doi.org/10.1103/PhysRevB.75.054301
http://dx.doi.org/10.1103/PhysRevB.75.054301
http://dx.doi.org/10.1103/PhysRevB.75.054301
http://dx.doi.org/10.1140/epjb/e2008-00436-x
http://dx.doi.org/10.1140/epjb/e2008-00436-x
http://dx.doi.org/10.1140/epjb/e2008-00436-x
http://dx.doi.org/10.1140/epjb/e2008-00436-x
http://dx.doi.org/10.1063/1.4900499
http://dx.doi.org/10.1063/1.4900499
http://dx.doi.org/10.1063/1.4900499
http://dx.doi.org/10.1063/1.4900499
http://dx.doi.org/10.1088/0953-8984/26/5/055001
http://dx.doi.org/10.1088/0953-8984/26/5/055001
http://dx.doi.org/10.1088/0953-8984/26/5/055001
http://dx.doi.org/10.1088/0953-8984/26/5/055001
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1103/PhysRevLett.116.024303
http://dx.doi.org/10.1103/PhysRevLett.116.024303
http://dx.doi.org/10.1103/PhysRevLett.116.024303
http://dx.doi.org/10.1103/PhysRevLett.116.024303
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.72.020601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.74.011601
http://dx.doi.org/10.1103/PhysRevE.89.032411
http://dx.doi.org/10.1103/PhysRevE.89.032411
http://dx.doi.org/10.1103/PhysRevE.89.032411
http://dx.doi.org/10.1103/PhysRevE.89.032411
http://dx.doi.org/10.1103/PhysRevLett.110.265504
http://dx.doi.org/10.1103/PhysRevLett.110.265504
http://dx.doi.org/10.1103/PhysRevLett.110.265504
http://dx.doi.org/10.1103/PhysRevLett.110.265504
http://dx.doi.org/10.1016/j.jcp.2008.11.011
http://dx.doi.org/10.1016/j.jcp.2008.11.011
http://dx.doi.org/10.1016/j.jcp.2008.11.011
http://dx.doi.org/10.1016/j.jcp.2008.11.011
http://dx.doi.org/10.1103/PhysRevE.68.066703
http://dx.doi.org/10.1103/PhysRevE.68.066703
http://dx.doi.org/10.1103/PhysRevE.68.066703
http://dx.doi.org/10.1103/PhysRevE.68.066703
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564

