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Abstract—This paper presents a mixed-integer linear stochastic 
model for optimal expansion planning of electricity distribution 
networks and distributed generation (DG) units. In the proposed 
framework, autonomous DG units are aggregated and modeled us-
ing the well-known energy hub concept. In this model, uncertain-
ties of heat and electricity demand as well as renewable generation 
are represented using various scenarios. Although this is a stand-
ard technique to capture the uncertainties, it drastically increases 
the dimensions of this optimization problem and makes it practi-
cally intractable. In order to address this issue, a novel iterative 
method is developed in this paper to enhance the efficiency of the 
optimization model. The proposed framework is further utilized 
to assess the benefits of the collaborative distribution network and 
autonomous DG planning through various case studies performed 
on the 24-node distribution test grid. With 5.93% cost reduction, 
the obtained results indicate the importance of such collaborations 
in reaching an efficient network expansion solution. Moreover, to-
tal planning cost for the stochastic model is 1.23% lower than the 
deterministic case. Various sensitivity analyses are also carried out 
to investigate the impacts of parameters of the proposed model on 
the optimal planning solution. Scalability of the model is also as-
sessed by its implementation on the 54-node distribution test net-
work.  

Index Terms— Collaborative planning, distributed generation, 
electricity distribution system planning, energy hub, stochastic 
programming. 

NOMENCLATURE 
Sets 
CAco Candidate alternatives for investing in component co. 
Dt Representative days of year t. 
DNC Distribution network components. 
EH Energy hubs. 
EHC Energy hub components, including transformer, wind 

turbine, photovoltaic panel, CHP, and heat furnace. 
LScd Set of various scenarios for hourly electricity and heat 

load in representative day d. 

SScd, WScd Set of various scenarios for hourly solar radiation and 
wind pattern in representative day d, respectively. 

TScd Set of total scenarios which is Cartesian product of 
wind power, solar radiation and demand scenarios as 
TScd= WScd× SScd× LScd 

Parameters 
err Maximum acceptable tolerance as the stopping crite-

rion of loss factor. 
EDem, HDem Electricity and heat demands. 
EPrd,h, Prd,h Electricity and natural gas prices. 
i  Interest rate. 
ICco Investment cost of component co. 

 ICa
co Investment cost of alternative a for component co. 

 MCapeh
co Maximum possible capacity of component co within 

energy hub eh. 
Nd Number of days of a year which are represented by 

day d. 
 OMC(.)

(.) Operation and maintenance cost. 
psc  Probability of scenario sc as psc=plspsspws. Where, pls, 

pss, pws are load, solar radiation, and wind pattern sce-
narios, respectively. 

TIeh,t A binary parameter, which is 1 if energy hub eh is for 
the first time connected to the grid at year t, being 0 
otherwise. 

ULco Useful life of component co. 
α Sell-to-purchase electricity price ratio. 
δco Perpetuity factor. 
γd,ws,h

WS , γd,ss,h
SR  Correction coefficients for calculation of available ca-

pacity of wind and solar generating units. 
 ηGE

CHP, ηGH
CHP CHP Gas-to-electricity and Gas-to-heat conversion 

efficiencies. 
ηFu, ηTr Efficiency of heat furnace and transformer. 
λt Average loss cost at year t. 
μco A binary parameter, which is 1 if network component 

co is initially existent, being 0 otherwise. 
ζ Loss factor. 

Variables 
 Capeh

co Capacity of component co of energy hub eh. 
Ib,… Branch currents. 
Invt

DN, Opt
DN Investment and operating costs of distribution net-

work. 
Invt

EH, Opt
EH Investment and operating costs of EHs. 

Losst Total annual loss of year t. 
Losst

act, 
Losst

est 
Actual and estimated values of total network loss in 
year t, respectively. 

Losst.md
CC , 

Losst.mg
CC  

Network power loss associated with two critical load 
conditions. 

OFEH Objective function of EH planner. 
OFDN Objective function for electricity distribution network 

expansion planning. 
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OpT
EH, OpT

DN Operating costs of EHs and distribution network in the 
last stage of the planning horizon. 

Peh.t.md
CC ,

 Peh,t,mg
CC  

Two critical conditions of electricity exchange be-
tween energy hub eh and grid, as maximum demand 
and maximum generation, respectively. 

P(.)
El,P, P(.)

El,S  Electricity power purchased/sold from/to the grid. 
P(.)

El,PV, P(.)
El,WT   Electricity power generated by photovoltaic and wind 

turbine, respectively. 
 P(.)

𝐺  Natural gas purchased from the grid. 
P(.)

G,CHP, 
P(.)

G,Fu 
Natural gas input of CHP and heat furnace. 

Vn,… Nodal voltages. 
φ0,t

co , φa,t
co  Binary utilization variables. 

 σa,t
co  Binary investment variables, which become 1 when 

investment alternative a should be performed on com-
ponent co at year t, being 0 otherwise. 

υeh,…
md , υeh,…

mg  Binary auxiliary variables. 

I. INTRODUCTION 
HARE of distributed generation (DG) technologies in elec-
tricity production portfolio has increased in recent years.  

Integration of DG units in distribution grids can bring about 
various advantages such as transmission and distribution cost 
savings [1], congestion alleviation [2], deferral of investments 
in transmission and distribution grids [3], system reliability and 
resilience improvement [4], [5], as well as power quality en-
hancement [6]. Increased deployment of renewable energy 
sources (RESs) (mainly in the form of small-scale solar and 
wind generating systems) has been another major driving force 
for proliferation of DG units in distribution sector [7]. 

Considering the abovementioned benefits, it is anticipated 
that penetration of DG units in distribution grid would increase 
in the upcoming years. Since integration of these small-scale 
generating systems would considerably affect the performance 
of future distribution grids [8], they have to be incorporated in 
the planning studies of distribution companies (DISCOS). In 
this context, installation of DG units has been a common aspect 
of many publications in the field of electricity distribution plan-
ning. 

A mixed integer non-linear programming (MINLP) model is 
developed in [9] for distribution network expansion planning 
(DNEP). In this paper, installation of DG units is considered as 
an alternative alongside traditional measures such as substation 
and feeder reinforcements. The results confirmed that optimal 
deployment of DG units can minimize total expansion cost of 
DISCO, improve the voltage profile, reduce network losses, and 
increase feeders’ lifetime by reducing their loading levels. This 
model is further extended in [10] as a dynamic planning prob-
lem, and it is solved using genetic algorithm (GA). DNEP con-
sidering DG units is also investigated in [11] using a nonlinear 
model. It should be noted that construction of new feeders and 
substations are not modeled in the abovementioned works.  

A MINLP model for DNEP considering gas-fired DG units 
is introduced in [12], where  construction as well as reinforce-
ment of network assets, and installation of DG units are consid-
ered as network expansion alternatives.  

In contrast to the above-mentioned papers that only consider 

conventional DG units, renewable DGs are also modeled in 
[13]. Reactive capability limits of different RESs including 
wind turbine (WT), solar photovoltaic (PV), and biomass gen-
erating units are incorporated in the planning model of this pa-
per, and uncertainties of load demand, wind speed, and solar 
radiation are captured using probabilistic models. 

DG integration as well as conventional alternatives such as 
rewiring, network reconfiguration, and installation of new pro-
tection devices are considered in the expansion planning model 
of [14]. Uncertainties associated with DG power generation and 
load growth are taken into account, and multiple objectives 
such as reliability, energy losses, and power import cost are 
modeled in the optimization problem. 

However, all the above mentioned models are nonlinear, and 
thus there are no guaranteed global optimal solutions for them. 
On this basis, some papers have focused on linearization of 
planning models. For example, a linearization technique to per-
form multistage DNEP including DGs is presented in [15]. The 
proposed mixed integer linear programming (MILP) model can 
be efficiently solved using mathematical methods such as 
branch-and-bound algorithm [15]. It is worth mentioning that 
locations and installation times of DG units are considered as 
input parameters of the planning model. The MILP model of 
[15] is further extended in [16] to incorporate DG integration 
plans. Both conventional and wind generating units are consid-
ered in this paper, although uncertainty of wind speed is ne-
glected. This model is further developed in [17]–[19] where un-
certainty of RESs and demand as well as network reliability 
costs, demand response (DR), and energy storage systems 
(ESSs) are taken into account. 

A MILP formulation for multi-stage and multi-load scenario 
expansion planning of active DN is presented in [20]. This pa-
per models the integration of new DG units and construction of 
new feeders at planning level, and addresses topology reconfig-
urations at the operation level.   

Careful review of all the above-mentioned works reveals that 
they have assumed DG units are installed and operated by 
DISCOS. However, this is not the case in practice, as DISCOS 
are not legally allowed to own generating units in many coun-
tries [21].  Therefore, developing an efficient mathematical 
model is crucial for studying the interaction between autono-
mous DG units and DISCOS. Such a model should meet the 
following requirements: 
 Guaranteed convergence to the optimal solution. 
 Providing a tool for assessing the collaboration plans be-

tween DG owners and DISCOS. 
 Systematically modeling the effects of various DG tech-

nologies on DN expansion. 
 Capturing the inherent uncertainties. 
On these bases, this paper aims at presenting such a mathe-

matical model. The proposed model comprises efficient models 
for planning and operation of DG units and DN, which are in 
MILP form. Hence, they can be readily solved with global op-
timal solutions by the standard mathematical programming al-
gorithms. In this model, energy hub (EH) concept is used for 
systematic integration of various DG technologies, and uncer-
tainties of demand and renewable generation are represented 
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using various scenarios. On this basis, the main contributions of 
this paper can be listed as follows: 
 Deriving a linear model for joint expansion planning of 

electricity DN and DG units. This model can be used as a 
benchmark for assessment of collaboration plans between 
DG owners and DISCOS. 

 Accounting for uncertainties of RESs output power as 
well as electricity and heat demands. 

 Using EH concept to systematically model the effects of 
various DG technologies and customer heat and electricity 
demands on distribution grid expansion requirements. 

 Proposing an efficient iterative method for incorporating 
power flow equations in the planning studies and accurate 
estimation of network energy loss costs. 

The remainder of this paper is organized as follows. The 
problem under study is described in Section II. Detailed formu-
lation of the proposed model is provided in Section III. Several 
case studies are presented in Section IV, followed by conclu-
sions in Section V. 

II. PROBLEM DESCRIPTION 
Traditional passive DNs were responsible for delivering 

electricity from transmission networks to medium and low volt-
age consumers. In this respect, for many years such networks 
were planned in anticipation of load growth in order to effi-
ciently (from cost and reliability viewpoints) serve their cus-
tomers. However, like most of the industries, DISCOS have 
also been affected by new technological advances. Integration 
of various DG technologies has been one of the major changes 
in this field. In fact, recent technical developments alongside 
regulatory supports have resulted in increased economic effi-
ciency of small-scale generating units. Therefore, as schemati-
cally depicted in Fig. 1, customers are not forced to purchase all 
their electricity needs from distribution grid anymore. Moreo-
ver, as illustrated, they can sell their excess power to the grid. 
Consequently, electricity consumption pattern at various load 
points are changed owing to the local electricity generation. 
This, in turn, can have positive or negative influences on DN 
planning and operation [22]. In other words, integration of DG 
units can positively or negatively affect DN investment cost, 
energy losses, and voltage profile, depending on various factors 
such as their penetration, location, size, and operating condi-
tions [22]. In order to fully exploit potential DG benefits for 
network or at least avoid their drawbacks, collaboration be-
tween DISCOS and DG owners would be crucial. 

Regarding DG integration, DISCOS face a new situation 
which is depicted in Fig. 2. Accordingly, there are some new 
generating units as well as upcoming loads to be connected to 
the grid for which network must be expanded to accommodate 
them. To handle this new situation, beside prevalent alterna-
tives including construction and reinforcement of feeders, sub-
stations and connections to the transmission network, distribu-
tion system planners can also collaborate with DG owners to 
achieve more effective solutions. In this respect, an efficient 
mathematical model is essential to assess all profits of such col-

laborations. To this end, efficient formulations for optimal plan-
ning and operation problem of DG owners and DISCOS are de-
rived in this paper. Subsequently, benefits of collaborative plan-
ning are quantified employing the proposed models.  

It is worth noting that, although discussion of practical tools 
(such as various kinds of contracts) for realizing such collabo-
rations is out of the scope of this paper, the proposed model can 
also be utilized to evaluate the effectiveness of those tools. In 
this context, results of the collaborative plans obtained here can 
be employed as a benchmark for assessing the effectiveness of 
any kind of contracts between DISCOS and DG owners. 

III. PROBLEM FORMULATION 

A. Planning and Operation of DG Units Modeled as EH 
In order to systematically model various DG technologies, 

the well-known EH concept is utilized in this paper. This con-
cept has been developed in response to the enormous demand 
for improving energy efficiency through considering the inter-
action between various energy carriers [23], [24]. Using this 
model, it is possible to systematically explore the effects of 
combined heat and power (CHP) units on net energy demand of 
customers. Structure of the intended EH is depicted in Fig. 3. 
As shown, various energy sources including electricity and nat-
ural gas from distribution grids as well as solar and wind power 
are considered in the model. These energy sources are then pro-
cessed by EH components to serve electricity and heat demands 
at the output layer [25]. In order to achieve efficient perfor-
mance of EHs, various components should be optimally 
planned and utilized. In this respect, present value of total in-
vestment and operating costs of supplying EH demands, as ex-
pressed in (1a), is considered as the objective function of the 
EH planner. As a typical method for evaluating the net present 
value of a cash flow, an infinite perpetuity is considered [16]. 

Renewable Generation

Conventional 
Generation

Electricity 
Consumption

Electricity Distribution Grid

 
Fig. 1.  Schematic structure of customers in an active distribution network. 

Distribution Network

DG

DG

DG

Existing Demand
New Demand

DG Existing DG Unit
DG New DG Unit

Existing Connection to Transmission Network
New Connection to Transmission Network  

Fig. 2.  Distribution companies’ responsibilities in the new situation: they need 
to provide enough capacity for upcoming local generation and demands. 
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According to this technique, operating cost of the last year of 
planning horizon T is repeated in the following years as ex-
pressed by the second term on the right-hand side of (1a) [16]. 
Moreover, by considering perpetuity factor δco, an infinite 
stream is considered for investment costs, i.e. it is assumed that 
each equipment is replaced by the same one after reaching its 
useful lifetime (ULco). 

1 1
1 (1 ) (1 )

EH EH EHT
EH t t T

t T
t

Inv Op OpOF
i i i 



 
  

  
  (1a) 

,
EH co co co
t eh t eheh EH co EHC

Inv TI IC Cap
 

   (1b) 



,
1

24
, ,

, , , , , , , , , , , , , ,
1

+





  

   

 
  

 

 
 



  

   
t d

t
EH co co
t eh t

eh EH co EHC

El P El S G
d sc eh t d sc h eh t d sc h d h eh t d sc h d h

eh EH d D sc TSc h

Op OMC Cap TI

N p P P EPr P GPr

 (1c) 

 (1 ) (1 ) 1
co coco UL ULi i      (1d) 

As can be inferred from (1b), it is also assumed that the total 
investment costs of a given EH are spent at the time step when 
the EH operator is going to connect the EH to the distribution 
grids in order to start operation. Operating cost is also formu-
lated as (1c) which comprise operation and maintenance costs 
of various equipment as well as the costs associated with elec-
tricity transactions with power DN and purchasing natural gas 
from the grid. It is worth mentioning that parameter α is em-
ployed to model the difference between purchasing/selling 
prices from/to DN owing to the network use-of-system charges. 
It should be noted that in each hour, only one of the two non-
negative variables Peh,t,d,sc,h

El,S  and Peh,t,d,sc,h
El,P  can take a non-zero 

value. However, there is no need to explicitly impose this con-
straint, since it will be automatically enforced during the opti-
mization process. This is because the electricity power selling 
price is lower than the purchasing price, so it is not optimal to 
inject power to the grid while the EH needs to purchase elec-
tricity. 

As can be seen from (1c), in order to reduce the computa-
tional burden, some representative days of a year are consid-
ered. Subsequently, various scenarios are taken into account for 
hourly wind power, solar radiation and load patterns in the rep-
resentative days to model the corresponding uncertainties. 
Therefore, the cost calculated by (1c) is expected value of an-
nual operating costs of the EHs for all scenarios. 

The above objective function is subject to various investment 
and operating constraints, as follows: 

co co
eh ehCap MCap  (2) 

, , ,
, , , , , , , , , , , , , , , , , , , ,

Tr El CHP G CHP El PV El WT
eh t d sc h GE eh t d sc h eh t d sc h eh t d sc h eh t d ls hP P P P EDem      (3a) 

, ,
, , , , , , , , , , , ,

El El P El S
eh t d sc h eh t d sc h eh t d sc hP P P   (3b) 

, ,
, , , , , , , , , , , ,

CHP G CHP Fu G Fu
GH eh t d sc h eh t d sc h eh t d ls hP P HDem    (4) 

, ,
, , , , , , , , , , , ,

G CHP G Fu G
eh t d sc h eh t d sc h eh t d sc hP P P   (5) 

, ,
, , , , , , , ,

El P El S Tr
eh t d sc h eh t d sc h ehP P Cap   (6a) 

,
, , , ,

CHP G CHP CHP
GE eh t d sc h ehP Cap  , , , , ,

Fu Fu
eh t d sc h ehP Cap  (6b) 

,
, , , , , ,

El WT WS WT
eh t d sc h d ws h ehP Cap , ,

, , , , , ,
El PV SR PV

eh t d sc h d ss h ehP Cap  (6c) 
Equation (2) indicates the maximum possible capacity (due 

to practical limitations such as space availability) of each equip-
ment which can be installed in a given EH. Electricity, heat and 
natural gas balance in the EHs are formulated in (3)−(5), re-
spectively. Capacity limitations of various EH equipment are 
also modeled by (6a)−(6c). Note that for renewable units, equa-
tion (6c) ensures that power production do not exceed the asso-
ciated maximum available power. In this context, coefficient γ 
(0≤ γ ≤1), which is the ratio of the renewable unit’s available 
power to its capacity at each scenario, is used for determination 
of the maximum power available from these units. The γ values 
are input data of the problem, and are determined based on solar 
radiation and wind speed data [26]. 

B. Multistage Distribution System Expansion Planning 
This problem generally aims at finding optimal investment 

plan to provide adequate network capacity to serve upcoming 
demands and DGs, which are assumed to be balanced [15], [16], 
[19]. Such investment solution includes optimal sets of feeders 
and substations, which should be reinforced or constructed in 
each year. Accordingly, objective function of DNEP problem 
can be expressed as (7). Analogous to (1a), expression (7) is 
derived based on an infinite perpetuity. Thus, the second term 
on the right-hand side of (7) represents the present value of the 
infinite stream of OpT

DN following the last stage of the planning 
horizon. 

1 1
1 (1 ) (1 )

DN DN DNT
DN t t T

t T
t

Inv Op OpOF
i i i 



 
  

  
  (7) 

Assuming various investment options for each network com-
ponent, and considering a binary variable corresponding to each 
investment alternative, a, in a given year, t, the investment cost 
is formulated as (8a). It should be noted that subscript t of the 
binary investment variables σa,t

co  implies that the problem is a 
multistage planning study. In other words, solving this problem 

determines not only the optimal investment alternatives, but 
also the year at which each of these plans should be performed. 
Moreover, as a common assumption in the literature of DNEP, 
it is assumed that only one investment action is allowed to be 
performed on each network component during the planning 
horizon, as expressed by (8b) [15], [16], [19]. 

,co
DN co co co
t a t aco DNC a CA

Inv IC 
 

   (8a) 

,1
1co

T co
a tt a CA


 

   (8b) 
Since some network assets might not be utilized during the 

operation (for example some feeder sections are switched off to 

, , , ,
G

eh t d sc hP

eh,t ,d ,ls ,hEDem
, , , ,

El
eh t d sc hP

,
, , , ,

G Fu
eh t d sc hP

Energy HubInput Layer Output Layer

Transformer

CHP

Furnace
eh,t ,d ,ls ,hHDem

,
, , , ,

G CHP
eh t d sc hP

Wind Turbine PV Panel

 
Fig. 3.  Energy hub structure.  
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ensure the network radiality), some binary utilization variables 
should also be considered for each component. In this respect, 
in addition to considering binary variables regarding the utili-
zation of various investment alternatives φa,t

co , a binary variable, 
φ0,t

co  is also assigned to indicate the utilization of initial state of 
each component. Using these variables, operating cost of DN is 
formulated as (9a). However, these binary variables are also 
subject to some logical constraints. Equation (9b) restricts the 
utilization of component alternative a prior to performing the 
corresponding investment. Since after doing any of the candi-
date investment alternatives on a component, its initial state is 
not available anymore, (9c) must be imposed. For instance, can-
didate alternatives for an existing feeder might be various op-
tions for enhancing its capacity. From the year when one of 
these alternatives is selected, only the state associated with the 
chosen alternative can be utilized. Accordingly, as an invest-
ment alternative is chosen, the associated binary variable σa,t

co  
becomes one, and makes the right-hand side of (9c) zero. It 
should be noted that according to (8b) only one of the binary 
variables σa,t

co  can be one. Moreover, (9d) forces  φ0,t
co  of all com-

ponents which are not initially existent (e.g. a new feeder sec-
tion which is candidate to be constructed) to zero. 

0, 0 ,
co

DN co co co co
t t a t a t t

co DNC a CA

Op OMC OMC Loss  
 

 
   

 
   (9a) 

, ,1

tco co
a t a 

 


  (9b) 

0, ,1
1 co

tco co
t aa CA 

 
 

    (9c) 

0,
co co

t   (9d) 
The DNEP problem is also subject to various technical con-

straints associated with DN operation such as capacity limits of 
feeders and substations, and nodal voltage limits. In order to 
obtain the nodal voltages and line currents for formulating these 
constraints and also calculating network losses, power flow 
equations should also be incorporated into the model. Although 
power flow equations are nonlinear in nature, various consistent 
linearized approximate models can be found in the literature. In 
this paper, we have employed the linearization technique pro-
posed in [15]. Using this method, power flow equations of a DN 
can be expressed in terms of mixed-integer linear equality and 
inequality constraints, as generally stated in (10a) and (10b). 

, , , , , , , , , , , , 0, ,( , , , , ) 0El co co
n t d sc h b t d sc h eh t d sc h t a tV I P     (10a) 

, , , , , , , , , , , , 0, ,( , , , , ) 0El co co
n t d sc h b t d sc h eh t d sc h t a tu V I P     (10b) 

Moreover, by solving these power flow equations and calcu-
lating the loss associated with each state using a piecewise lin-
ear approximation [16], the annual network energy loss can be 
formulated as follows: 

24
, , ,1t d

t d sc t d sc hd D sc TSc h
Loss N p Loss

  
    (11) 

Nonetheless, solving the resulting optimization problem is 
not practically possible owing to the enormous number of deci-
sion variables and constraints associated with power flow equa-
tions. This is because power flow must be performed for all sce-
narios and time stages.  

The main reasons of incorporating power flow equations into 
the optimization model can be listed as follows: 

1) Obtaining nodal voltages and current flow of various 
feeder sections to impose operational constraints. 

2) Calculating network energy loss. 
In order to reach the first goal in an efficient way, instead of 

calculating the load flow equations for all states, we only con-
sider two critical cases: maximum load and maximum genera-
tion conditions. The first case represents the situation in which 
the nodal electricity consumption at each load point has its max-
imum value, i.e. the annual peak load. For a passive network, 
this is the only critical condition to be considered. Hence, pas-
sive DNEP models are traditionally performed based on this 
load condition [27]. However, for an active DN, there is another 
critical condition: a situation in which the net power generation 
of each node (power injection to the grid) is at the maximum 
value. Accordingly, based on Fig. 3, it can be said that these 
two critical conditions are equivalent to the maximum and min-
imum values of Peh,t,d,sc,h

El , as below: 
, , , , , , , , {1,...,24}{ }

t d

CC El
eh t md eh t d sc h d D sc TSc hP max P      (12a) 

, , , , , , , , {1,...,24}{ }
t d

CC El
eh t mg eh t d sc h d D sc TSc hP min P      (12b) 
Equation (12a) can be written in a linear form as follows: 
, , , , , ,

CC El
eh t md eh t d sc hP P  (13a) 

, , , , , , , , , ,(1 )CC El md
eh t md eh t d sc h eh t d sc hP P M     (13b) 

24
, , , ,1

1
t d

md
eh t d sc hd D sc TSc h


  

    (13c) 

Constraint (13a) indicates that for a given load point con-
nected to hub eh, peak demand of year t, Peh,t,md

CC , is greater than 
or equal to the demand of all time steps within year t. This 
forces the Peh,t,md

CC  to take a value greater than or equal to the 
annual peak load. In addition, expressions (13b) and (13c) state 
that Peh,t,md

CC  must be lower than or equal to exactly one of the 
hourly loads of year t. This is because in case binary variable 
𝜐eh,t,d,sc,h

md  is zero, constraint (13b) is relaxed due to the presence 
of big number, M, in the right-hand side of the equation. On the 
other hand, when this binary variable equals to one, the big 
number, M, is eliminated and (13b) enforces Peh,t,md

CC  to be lower 
than or equal to Peh,t,d,sc,h

El . In addition, according to (13c), only 
one of the binary variables, 𝜐eh,t,d,sc,h

md , can be equal to one. 
Hence, the set of equations (13) states that Peh,t,md

CC  is greater or 
equal to all Peh,t,d,sc,h

El  and at the same time, is lower than or equal 
to one of them. Therefore, these equations set the Peh,t,md

CC  to the 
maximum value of Peh,t,d,sc,h

El  in year t. Similarly, equation (12b) 
can be expressed by (14a)−(14c). 

, , , , , ,
CC El

eh t mg eh t d sc hP P  (14a) 

, , , , , , , , , ,(1 )CC El mg
eh t mg eh t d sc h eh t d sc hP P M     (14b) 

24
, , , ,1

1
t d

mg
eh t d sc hd D sc TSc h


  

    (14c) 

Now, the power flow equations need to be calculated merely 
for these two critical cases, as generally expressed by (15a) and 
(15b). 

, , , , , , 0, ,( , , , , ) 0,    { , }CC co co
n t k b t k eh t k t a tV I P k md mg      (15a) 
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, , , , , , 0, ,( , , , , ) 0,    { , }CC co co
n t k b t k eh t k t a tu V I P k md mg     (15b) 

In order to achieve the second goal of incorporating the 
power flow equations into the model, i.e. annual network en-
ergy loss calculation, the following equation is utilized: 

, ,8760
2

CC CC
t md t mgest

t

Loss Loss
Loss 

 
   

 

 (16) 

However, the accurate value of loss factor, ζ, depends on the 
network topology and operating condition, which both are the 
outcomes of the optimization model. Hence, in order to obtain 
the precise value of this parameter, an iterative method is pro-
posed in this paper. Detailed discussion of this technique is pre-
sented in the following subsection. 

C. Proposed Iterative Framework 
Structure of the proposed procedure for solving the presented 

optimization formulation is illustrated in Fig. 4. As shown, the 
algorithm starts with setting an initial value for loss factor. 
Then, this value is sent to General Algebraic Modeling System 
(GAMS) environment, where the mixed-integer linear models 
proposed for EH and DNEP problems are solved using the 
CPLEX solver. It should be noted that the arrow between elec-
tricity distribution and EH planning models represents the in-
terdependence of these cost functions, which is determined by 
the type of collaboration. In this respect, two extreme scenarios 
will be investigated in this paper, as follows: 
 Independent Planning: This is equivalent to the tradi-

tional state of DN and DG planning. In this framework, 
EH planners autonomously perform the expansion plan-
ning of DGs. Their required connection capacity is then 
announced to the grid planners and the network is ex-
panded to serve these demands. Accordingly, in our 
model, the EH planning model is solved at first. Then, the 
obtained results for Peh,t,d,sc,h

El  are utilized as the input data 
for solving the DNEP problem. 

 Ideal Collaboration: In this framework, the objective is to 
minimize the total expansion cost of serving customers’ 
demand. Hence, both planning models should be simulta-
neously solved, considering the total objective function as 
the sum of OFEH and OFDN. 

It is worth mentioning that these two cases are evaluated as 
the benchmarks for quantifying the benefits of collaborative 
planning. However, the proposed model is not limited to these 

frameworks and can be utilized to assess other types of collab-
orative plans, as well. 

Once the solutions are achieved, the results are returned to 
MATLAB and by solving the power flow equations for all sce-
narios and time steps, the actual value of annual energy losses 
are obtained using (11). Subsequently, the new loss factor is 
calculated by (17). 

1 1
( )T Tnew act est old

t tt t
Loss Loss 

 
    (17) 

Finally, the stopping criterion is checked by comparing this 
value of loss factor with the previous one, as expressed by (18). 
Accordingly, as the rate of loss factor variation becomes less 
than a specific value, err, the algorithm would stop. 

new old

old err
 




  (18) 

IV. NUMERICAL RESULTS 
This section is devoted to the application of the proposed 

model to two distribution test networks with 18 and 54 nodes. 
As previously mentioned, the optimization models are imple-
mented in MATLAB and GAMS (Version 24.7.4). CPLEX 
12.6 is used for solving the GAMS model, and the associated 
optimal gap tolerances were respectively set to 0.1% and 1% 
for the 24-node and 54-node test grids. Stopping criterion (err 
in (18)) is set to 0.01, and the optimization models are imple-
mented on a Fujitsu Celsius W530 POWER PC with a Quad 
3.30 GHz Intel Xeon E3-1230 processor and 32 GB of RAM. 

A. The 18-node Test Grid  
In order to demonstrate the application of the proposed 

model, several case studies are defined for the 18-node test dis-
tribution system (Fig. 5). Feeder sections of this network are 
categorized into three groups: Fixed branches which exist at the 
beginning of planning horizon, and there are no plans for their 
reinforcement. Candidate branches for reinforcement are ini-
tially existent likewise, but the network planner has some can-
didate plans to reinforce them. Finally, in order to serve new 
load points, there are some candidate plans for network expan-
sion through construction of new feeder sections. These 
branches are called Candidate branches for construction. 

Six load points are considered as the candidate places for es-
tablishment of EHs, which are depicted as shaded circles in 
Fig. 5. A planning horizon of three years is considered. Two 
representative days in summer and winter are used for planning, 
where each day consists of 24 hourly load steps. In order to cap-
ture different system uncertainties, Monte Carlo simulation 
method is used to generate a suitable set of scenarios, and they 
are reduced to 12 final scenarios using the backward reduction 
technique [28]. In this context, three scenarios for wind speed, 
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Energy Hub Planning 
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Fig. 4.  Flowchart of the proposed optimization technique. 
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two scenarios for solar radiation, and two scenarios for electric-
ity as well as heat demand are considered as representative sce-
narios. It is worth mentioning that the Cartesian product of sets 
of wind speed, solar radiation, as well as demand scenarios 
yields the set of the final scenarios. Hence, the number of the 
final scenarios is equal to the product of the number of each set 
of scenarios. Moreover, it is assumed that prediction errors of 
electricity as well as heat demands, wind, and solar power fol-
low the normal distributions with standard deviations equal to 
3%, 3%, 10%, and 5% of the forecasted values, respectively.  

Based on the electricity price in Finland, a time of use (ToU) 
tariff including 4 levels with an average price of 120 $/MWh is 
assumed. Average natural gas price is also set based on Fin-
land’s prices, and its value is 23 $/MWh. Additionally, feed-in 
tariff of DG units is assumed to be 50% of the retail price. The 
other case study parameters can be found in [29]. 

In order to better demonstrate the benefits of collaborative 
planning of distribution system and EHs, three cases are ana-
lyzed as follows. The former two cases are based on independ-
ent planning and the third case is according to the ideal collab-
oration plan introduced earlier. It should be noted that due to 
space limitation, detailed topology of optimal expansion plans 
in different cases have been uploaded at [29]. 
1) Case I: Passive Distribution System Planning 

In this case, it is assumed that EHs do not install DG units. 
In other words, they purchase natural gas and electricity to serve 
their demands. On this basis, investment cost of EHs is com-
prised of transformer and heat furnace installation costs. The 
results of multistage planning of distribution grid and EHs are 
reported in Table I (Note: Trans. denotes EH transformer). As 
can be observed, total cost of EHs’ objective function is consid-
erably higher than sum of the associated investment and opera-
tion costs. This is due to consideration of an infinite perpetuity, 
as mentioned in (1a). Moreover, in contrast to distribution grid, 
a significant share of EH objective function is related to the per-
petuity of operating cost. In other words, high costs are required 
for fulfilling the demand of passive EHs. 
2) Case II: Separate Planning 

In this case, it is assumed that the DISCO has no control over 
the installation as well as operation of DGs. In other words, EHs 
are planned in the first step, without considering DN expansion. 
The obtained results are then used as the input data for DNEP. 

The results are summarized in Table II. As can be seen, ob-
jective function of EHs has significantly decreased due to the 
low cost electricity production of RESs as well as high overall 
efficiency of combined heat and power (CHP) units. Interest-
ingly, operating cost of EHs in the first and second stages are 
negative, which indicates that EHs have gained profit from sell-
ing electricity to the grid. On the other hand, objective function 
of distribution system is also decreased as a result of DG de-
ployment. This observation is a result of overall loss reduction 

in the grid (annual loss costs (M$) for Case II are respectively 
0.0131, 0.0195 and 0.0251, while the associated values for Case 
I are 0.0129, 0.02, and 0.0326). Total capacity of transformers 
has increased with respect to Case I, as EHs need more trans-
former capacity to export their excess electricity to the grid. On 
the contrary, total capacity of heat furnaces is decreased owing 
to the heat production of CHP units. The results also reveal that 
EHs would install maximum allowable capacity of renewables 
in Case II (total allowable capacities of PV and WT at all buses 
were set to 3.7MW and 2.7MW, respectively).  
3) Case III: Collaborative Planning 

Collaborative planning of EHs and electricity DN is investi-
gated in Case III. In other words, the objective function is to 
minimize the sum of EHs’ and DN’s objective functions. This 
case can be imagined as ideal collaboration between EH and 
distribution grid planners. Hence, the obtained results in Case 
III can be considered as a benchmark to compare the effective-
ness of different contracts between these entities.  
As per Table III, although EHs’ cost is slightly increased com-
pared to Case II, DN’s cost is significantly decreased and as a 
result, total costs have fallen. Similar to Case II, all available 
capacity of RESs are utilized. However, total capacity of in-
stalled transformer is lower than Case II. This is because the 
peak injected power of EHs’ to the grid is decreased, thus, a 
lower transformer capacity is required. Accordingly, a lower 
network capacity is needed and as a result, network investment 
cost is decreased compared to Case II. 

On the other hand, installed capacity of CHP is slightly lower 
than Case II, while furnace capacity is significantly increased. 
This is a result of reduced EHs’ injected power for network ex-
pansion cost saving. Therefore, a lower capacity of CHP units 
are installed and furnaces are used to fulfil the heat load instead. 
4) Discussion of the Proposed Optimization Model 

In this subsection, salient features of the proposed optimiza-
tion model are discussed based on the conducted case studies. 
The associated information are summarized in Table IV. 

Running Time: Among the three cases, simulation time of 
Case I is the lowest, since the network is passive and there are 
no decision variables associated with planning and operation of 
DG units. In contrast, Case III where EH and DN planning are 
simultaneously conducted as a single optimization problem, has 

TABLE I. OUTCOMES FOR CASE I (ALL COSTS ARE IN M$) 
 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 0.473 0.368 0 
84.8445 

Opt
EH 0.798 1.596 3.192 

OFDN 
Invt

DN 15.422 4.741 0 
20.0657 

Opt
DN 0.0133 0.0205 0.0331 

Total Cost 104.9102 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 3.920 3.916 - - - 
 

TABLE II. OUTCOMES FOR CASE II (ALL COSTS ARE IN M$) 
 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 1.606 1.112 0 
25.9560 

Opt
EH -0.659 -0.226 0.944 

OFDN 
Invt

DN 14.731 5.263 0 
19.7803 

Opt
DN 0.0135 0.0201 0.0257 

Total Cost 45.7363 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 5.01 1.59 1.91 3.70 2.70 
 
 

TABLE III. OUTCOMES FOR CASE III (ALL COSTS ARE IN M$) 
 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 1.603 1.121 0 
26.0167 

Opt
EH -0.652 -0.214 0.946 

OFDN 
Invt

DN 13.280 3.811 0 
17.0063 

Opt
DN 0.0154 0.0202 0.0251 

Total Cost 43.0230 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 4.74 1.72 1.89 3.70 2.70 
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the longest run time. This is due to the increased number of var-
iables and constraints in the associated problem.  

Loss Factor: As expected, the value of loss factor varies for 
different planning and operating conditions. Hence, instead of 
using a predetermined value for loss factor in the net planning 
studies (such as [27]), it is more accurate to employ the pro-
posed iterative method. The obtained results confirmed the ef-
ficiency of the introduced method, where all cases converged in 
a few iterations. 

Iterations: The number of iterations for Case I is lower than 
the other cases. This is because in Cases II−III, electricity de-
mand of EH nodes (Peh,t,d,sc,h

El ) are decision variables of the op-
timization problem. These variable demands, in turn, can 
change the network losses. Hence, there are more variables in-
fluencing the network loss in Cases II−III, which increases the 
number of iterations needed to obtain the accurate value of loss 
factor. 

Convergence of Power Flow Equations: In the proposed 
model, it is assumed that if network constraints are satisfied for 
the two critical situations (maximum demand and generation), 
they would be satisfied for all other time steps as well. During 
calculation of the actual value of energy loss in MATLAB en-
vironment, we solved the power flow equations for all time 
steps and checked the results. In all occasions, power flow equa-
tions were successfully converged, which validates our assump-
tion.  
5) Sensitivity Analysis 

In this part, a sensitivity analysis is provided to explore the 
impacts of electricity and natural gas prices on the obtained re-
sults. In this regard, four situations are compared with the base 
case (S0) as follows: 
 S0: Base case, in which average electricity and natural gas 

prices are based on the prices in Finland (120$/MWh and 
23$/MWh, respectively). 

 S1: Average electricity price is half of that of S0. 
 S2: Average electricity price is 1.5 times of that of S0. 
 S3: Average gas price is half of that of S0. 
 S4: Average gas price is 1.5 times of that of S0. 

The results are given in Table V and Figs 6 and 7. As can be 
seen in the figures, Case I is more sensitive to the electricity 
price, while the other two cases are more sensitive to the gas 
price. The reason for this is that in Case I customers are forced 
to purchase all their electricity demand from the grid and thus 
any increase in the electricity price will highly affect their costs. 
It is worth noting that in the simulations, the elasticity of elec-
tricity demand was neglected. In other words, it was assumed 
that customers would not change their consumption behavior 
when electricity price is increased. In contrast, customers in 
Cases II−III can produce part of their required electricity and 
even sell their excess generation to the grid. Hence, they are 
more sensitive to the natural gas price in these cases, since they 
produce part of their electricity demand using gas-fired CHP 
units. 

According to Table V, it can be claimed that at higher DG 
penetrations, an increased value of electricity price would result 
in higher expansion costs, as DG owners tend to inject more 
power to the DN (compare OFDN in S1 and S2 with that of S0 
for Cases II and III). Moreover, it can be concluded that DN 
expansion cost is not sensitive to the natural gas price. On the 
other hand, installation of DG units decrease DN expansion 
costs, whether DGs are controlled by DISCO or not (in all 
states, OFDN in Case I is higher than that of Cases II and III). 
Finally, it can be concluded that the value of DN expansion cost 
reduction caused by DG integration would be higher, if DISCO 
determines its expansion plan with collaboration of DG owners 
(compare OFDN of Case III with that of Case II). 
6) Sensitivity Analysis on the Number of Scenarios 

In order to assess the effect of the uncertainty modeling on 
the obtained solution, two cases, namely a deterministic case 
and a case with more scenarios are considered in this part. In 
the deterministic case, the uncertain input parameters including 
wind and solar patterns as well as daily heat and electricity de-
mand curves for each representative day are set to their ex-
pected values. Running the collaborative planning model for 
this deterministic case yields the results provided in Table VI. 

The total number of scenarios is increased to 24 for the latter 
case, and, hence, is doubled with respect to the base case with 
12 scenarios. The outcomes of the collaborative planning model 
for this case are also represented in Table VII. 

Comparing these results with those reported in Table III re-
veals that the investment cost of the distribution grid  
Invt

DN is identical for all cases. Thus, uncertainties of the input 

TABLE V. SENSITIVITY ANALYSIS RESULTS (ALL COSTS ARE IN M$) 
  S1 S2 S3 S4 S0 

Case I 
OFEH 47.15 122.54 80.52 89.17 84.84 
OFDN 19.90 20.23 20.07 20.07 20.07 

Total Cost 67.05 142.77 100.59 109.23 104.91 

Case II 
OFEH 21.67 30.14 18.48 33.42 25.96 
OFDN 19.65 19.91 19.78 19.78 19.78 

Total Cost 41.32 50.05 38.26 53.20 45.74 

Case III 
OFEH 21.89 30.22 18.56 33.45 26.02 
OFDN 16.61 17.13 17.00 17.00 17.01 

Total Cost 38.50 47.35 35.56 50.45 43.02 
 

 
Fig. 6.  Sensitivity analysis on electricity price.  

 
Fig. 7.  Sensitivity analysis on gas price. 
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TABLE IV. COMPARISON OF DIFFERENT CASES (ALL COSTS ARE IN M$) 
 Case I Case II Case III 

Simulation Time of Each Iteration 
(min) 4.70 15.29 612.59 

Loss Factor 0.1310 0.1690 0.1543 
Final Mismatch 2.11E-16 0 1.28E-3 

Number of Iterations 2 4 4 
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parameters do not affect the network expansion plans. How-
ever, the investment as well as operating costs of the EHs and 
the operating cost of the distribution grid are influenced by 
these uncertainties. According to the results provided in Tables 
III, VI, and VII, increasing the number of scenarios, which, in 
turn, enhances the precision of the model, results in lower total 
costs. In other words, the deterministic case (Table VI) has the 
highest total cost, whereas the case with 24 scenarios (Table 
VII) features the lowest total planning cost. 

With regard to the convergence of the proposed model, the 
deterministic case converges after 6 iterations and reaches to 
the final loss factor of 0.0919, whereas the case with increased 
number of scenarios converges to the final loss factor of 0.0819 
after 4 iterations. The simulation time for each iteration of the 
deterministic case and the case with increased number of sce-
narios are 0.24 and 10.76 hours, respectively. 
7) Sensitivity Analysis on the Number of Representative Days 

In this part, the number of representative days is doubled to 
investigate its effect on the planning solution. In other words, 
four representative days, i.e., one day per season, are consid-
ered. It should be noted that a representative day is not a specific 
day in the associated season. In fact, we have selected four 
months in different seasons, namely February (winter), May 
(spring), August (summer), and November (fall). Subsequently, 
mean values of daily wind and solar patterns as well as daily 
heat and electricity demand curves for each representative day 
are set to the associated  average values in that month. For ex-
ample, average values of variable parameters (wind speed, solar 
radiation, and load) in February are used for the day that repre-
sents winter, and average values of variable parameters in May 
are used for the day representing spring. Nonetheless, this is not 
a general rule, and the representative days can be selected in a 
different fashion based on the depth of study and the desired 
accuracy. 

Solving the collaborative planning model for this case results 
in the outcomes presented in Table VIII. As per this table, the 
total objective of the EHs is considerably increased compared 
to Case III (Table III). Consequently, the total planning cost is 

markedly higher for the case with four representative days, 
which is more accurate than the previous case with two repre-
sentative days. This reveals the significance of selecting appro-
priate representative days for performing the planning studies. 

It is worth mentioning that for the case presented in this part, 
the model converges after two iterations reaching the final loss 
factor of 0.1531; and the simulation time for each iteration is 
9.14 hours. 

B. The 54-node Test System 
In order to investigate the scalability of the proposed model, 

it is applied to a test distribution network with 54 nodes in this 
part. This system comprises 50 load nodes, 4 substation nodes 
as well as 63 branches, of which 9 are fixed branches, 8 are 
candidates for reinforcement, and the remainder are candidates 
for construction. The whole data for this system can be 
downloaded from [29].  

Running the proposed model for collaborative planning of 
EHs and electricity DN for this test network yields the results 
presented in Table IX. Negative values for the operating cost as 
well as the total cost of the EHs indicate that the EHs make 
profit from selling their surplus electricity to the grid. This is 
because in this case, the total installed capacity of the 
generating units within the EHs is higher than the overall 
demand of the corresponding nodes. Again, the total installed 
capacities of the wind and solar units are equal to the considered 
upper limits, revealing that it is optimal to deploy the entire 
available capacity of such units. Moreover, the system net loads 
for the maximum demand case are 5.0540, 9.6956, and 13.3053 
MW in years 1–3, respectively, whereas for the maximum 
generation case the system net loads are respectively 5.0540, 
5.3643, and 6.0031 MW. It is worth mentioning that in the first 
year, installed DG capacity is zero (as can be inferred from the 
zero investment cost of the EHs in the first year, as per Table 
IX), and, hence, the system net load for both cases are identical, 
i.e., 5.0540 MW.  

It is worth mentioning that for this simulation, the initial loss 
factor is set to 0.150. The proposed model converges after 6 
iterations, reaching the final loss factor of 0.138, with the final 
mismatch error equal to 0.0016. In addition, the simulation time 

TABLE VIII. OUTCOMES FOR THE CASE WITH INCREASED NUMBER OF 
REPRESENTATIVE DAYS (ALL COSTS ARE IN M$) 

 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 1.580 1.102 0 
30.3769 

Opt
EH -0.344 -0.034 1.100 

OFDN 
Invt

DN 11.828 5.263 0 
17.1218 

Opt
DN 0.0270 0.0374 0.0494 

Total Cost 47.4987 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 4.62 1.55 1.86 3.70 2.70 
 

TABLE VI. OUTCOMES FOR THE DETERMINISTIC CASE (ALL COSTS ARE IN 
M$) 

 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 1.583 1.103 0 
26.0199 

Opt
EH -0.652 -0.221 0.948 

OFDN 
Invt

DN 13.280 3.811 0 
17.0432 

Opt
DN 0.0172 0.0221 0.0288 

Total Cost 43.0631 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 4.57 1.90 1.90 3.70 2.70 
 

TABLE VII. OUTCOMES FOR THE CASE WITH INCREASED NUMBER OF 
SCENARIOS (ALL COSTS ARE IN M$) 

 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 1.605 1.121 0 
25.5108 

Opt
EH -0.658 -0.229 0.927 

OFDN 
Invt

DN 13.280 3.811 0 
17.0235 

Opt
DN 0.016 0.021 0.027 

Total Cost 42.5343 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 4.84 1.69 1.89 2.7 3.7 
 

TABLE IX. OUTCOMES FOR THE 54-NODE TEST NETWORK (ALL COSTS ARE 
IN M$) 

 t=1 t=2 t=3 Total 

OFEH 
Invt

EH 0 1.962 1.243 
–2.370 

Opt
EH 0 –0.114 –0.198 

OFDN 
Invt

DN 0.068 0.380 0.196 
0.845 

Opt
DN 0.092 0.020 0.027 

Total Cost –1.525 
Component Trans. Furnace CHP PV Panel Wind Turbine 

Total Capacity (MW) 6.65 0.26 1.26 6.50 3.30 
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for each iteration is 44.62 minutes. The detailed set of outcomes 
is also available from [29]. 

V. CONCLUSION 
In this paper, a stochastic MILP model for joint expansion 

planning of DN and autonomous DG units was developed. Au-
tonomous DGs were aggregated as EHs, and the impacts of col-
laboration programs on expansion cost savings were investi-
gated using several case studies. Moreover, an efficient iterative 
method was proposed for incorporating power flow equations 
in the planning model and accurate estimation of network en-
ergy loss costs. It is worth mentioning that although the ideal 
collaboration between DISCO and EHs was considered in this 
paper, the proposed model can also be used to assess other types 
of collaboration programs such as tariff setting, capacity provi-
sion contracts, and generation control contracts. This is the 
topic of authors’ future work, where this model will be deployed 
for investigating the effectiveness of such collaboration plans. 
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