
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Chivilikhin, Daniil; Patil, Sandeep; Chukharev, Konstantin; Cordonnier, Anthony; Vyatkin,
Valeriy
Automatic State Machine Reconstruction from Legacy Programmable Logic Controller Using
Data Collection and SAT Solver

Published in:
IEEE Transactions on Industrial Informatics

DOI:
10.1109/TII.2020.2992235

Published: 01/12/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Chivilikhin, D., Patil, S., Chukharev, K., Cordonnier, A., & Vyatkin, V. (2020). Automatic State Machine
Reconstruction from Legacy Programmable Logic Controller Using Data Collection and SAT Solver. IEEE
Transactions on Industrial Informatics, 16(12), 7821-7831. Article 9086061.
https://doi.org/10.1109/TII.2020.2992235

https://doi.org/10.1109/TII.2020.2992235
https://doi.org/10.1109/TII.2020.2992235

© 2020 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

1

Automatic state machine reconstruction from
legacy PLC using data collection and SAT solver

Daniil Chivilikhin, Sandeep Patil, Member, IEEE, Konstantin Chukharev,
Anthony Cordonnier, and Valeriy Vyatkin, Senior Member, IEEE

Abstract—Nowadays an increasing number of industries are
considering moving towards being Industry 4.0 compliant. But
this transition is not straightforward: transfer to new system can
lead to significant production downtime, resulting in delays and
cost overruns. The best way is systematic seamless transition to
newer and advanced technologies that Industry 4.0 offers.

This paper proposes a framework based on automatic syn-
thesis methods that learns the behavior of an existing legacy
programmable logic controller (PLC) and generates state ma-
chines that can be incorporated into IEC 61499 function blocks.
Proposed algorithms are based on Boolean satisfiability (SAT)
solvers. The first algorithm accepts a set of noisy PLC traces
and produces a set of candidate state machines that satisfy
the traces. The second algorithm accepts error-free traces and
synthesizes a modular controller that may be distributed across
several physical devices. The toolchain architecture is exemplified
on a laboratory scale Festo mechatronic system.

I. INTRODUCTION

Programmable logic controllers (PLC) have been the
workhorse of industrial automation for decades. It is often the
case that software of legacy PLCs is hard to understand since it
was developed not following approaches and languages known
to the current engineers. Sometimes the source code of PLC
programs is not available at all.

Transition to the Industry 4.0 state of the technology could
be hampered by the fear not to be able to integrate the legacy
machines into modern automation systems, often referred to as
cyber-physical systems (CPS). Substituting the legacy PLCs by
modern devices may require complete redesign and retesting
of their software, which is a major investment.

Most often, this is due to human factor: in any project people
come and go. Thus, at some point an engineer responsible for
an automation system may encounter a situation when: (a)
he is not familiar with the implementation language of the
control algorithm, (b) or the control algorithm source code is
lost, (c) or the documentation is lost. In such cases it is hard

D. Chivilikhin and K. Chukharev are with the Computer Technologies
Laboratory, ITMO University, St. Petersburg 197101, Russia (email: chiv-
dan,kchukharev@itmo.ru).

S. Patil is with the Department of Computer Science, Electrical, and Space
Engineering, Luleå University of Technology, Luleå 97187, Sweden (email:
sandeep.patil@ltu.se).

A. Cordonnier is with ENEDIS, Saint-Pierre-la-Palud 69210, France (email:
anthony.cordonnier@enedis.fr).

V. Vyatkin is with the Department of Electrical Engineering and Au-
tomation, Aalto University, Espoo 02150, Finland, with the Department of
Computer Science, Electrical, and Space Engineering, Luleå University of
Technology, Luleå 97187, Sweden, and also with the Computer Technolo-
gies Laboratory, ITMO University, St. Petersburg 197101, Russia (e-mail:
vyatkin@ieee.org).

to even support normal system operation, let alone to modify
or modernize it.

This work suggests a method of re-implementing the logic
of legacy PLCs in the form of state machines, with their
subsequent deployment in function blocks of IEC 61499
standard, that takes advantage of the emerging data collection
infrastructure of automated plants and automatic synthesis
techniques. The method helps to replicate the functionality
of a legacy PLC on a new technological basis by observing
its behavior, collecting the corresponding data and then auto-
matically generating a state machine controller in IEC 61499
format that mimicks the observed PLC behavior. The synthe-
sized controller can thus become an integral part of automation
systems compliant with Industry 4.0 standards.

Real-time data collection is becoming one of the most
important aspects of a successful control system hierarchy.
There were four main pillars in any industrial automation
control system: (1) PLC Control system, (2) interaction be-
tween the PLC and Supervisory Control And Data Acquisition
(SCADA), (3) interaction between SCADA and Manufacturing
Execution System (MES), (4) Scheduled Maintenance.

But research has shown that the changing market needs have
added a fifth pillar to the above process – data collection [1].
To address this issue, industry started with manual data col-
lection, however soon it became inadequate because manual
data collection is not real-time, is inaccurate, and many times
biased. Real-time automated data collection has now become
an important integral part of industrial automation ecosystems.

IEC 61499 [2], [3] is a new standard addressing the need
for a new paradigm of distributed control systems. However,
there are many legacy systems based on IEC 61131-3 [4].
Research [5], [6] has shown IEC 61499 to be a good fit for
distributed system design and development, so in this paper
the data collection application is built using the IEC 61499
design paradigm.

Preliminary results were published in [7], where we:

• developed a hardware and software architecture for col-
lecting behavior traces from legacy PLCs in production;

• developed an algorithm for reconstructing controller logic
in the form of a single monolithic state machine from
PLC behavior traces which is based on translation to
the Boolean satisfiability problem (SAT) and accounts for
possible errors in collected traces;

• demonstrated the proposed solution on an example of a
laboratory scale mechatronic system.

This paper extends results of [7] in two directions.

2

1) We improved the SAT-based controller logic recon-
struction algorithm, which now enumerates synthesized
solutions in the order of increasing number of errors in
traces.

2) We developed a SAT-based algorithm for modular con-
troller synthesis which enables distributing the generated
control logic across several function blocks.

The proposed toolchain and algorithms can be used for (1)
recording behavior traces from a legacy PLC, (2) automatically
correcting errors in collected traces, and (3) generating a
modular state machine controller based on corrected traces.

The rest of this paper is structured as follows. In Section II
related research on state machine synthesis and data collection
is reviewed. Section III describes the proposed hardware
and software architecture for data collection from PLCs. In
Section IV the suggested algorithmic approach to synthesizing
a monolithic state machine from collected data is described.
Section V introduces the algorithm for modular state machine
synthesis. Section VI describes the case study on which the
suggested approach was tested, threats to the validity of results
are discussed in Section VII, and Section VIII concludes.

II. RELATED WORK

A. State machine synthesis

The most efficient methods for state machine synthesis
are based on propositional encoding [8] – e.g., the problem
is reduced/translated to SAT, and corresponding tools (SAT
solvers) are used for finding a satisfying assignment of the
SAT formula. Most SAT solvers implement complete decision
procedures based on the conflict-driven clause learning algo-
rithm [9] – apart from finding satisfying assignments, they
can prove that no such assignment exists. Thus, using SAT
solvers for state machine synthesis enables construction of
minimal-sized models [10], [11], [12] – one can prove that a
smaller model does not exist. Heuristic state merging methods
are fast [13], [14], but, being based on incomplete decision
procedures, cannot ensure the minimality of the result.

When behavior data is collected from a working PLC, noise
is inherently introduced into collected behavior traces. The
case of noisy behavior examples has only been considered
in a couple of works: evolutionary [15] and SAT-based [16]
algorithms for learning deterministic finite automata from
noisy dictionaries. We believe that the reason for such a
small number of works on state machine construction from
noisy data is two-fold. First, it is due to vast computational
complexity of the noisy problem(s). Indeed, in the worst case,
the number of possible solutions increases exponentially with
the number of allowed errors – one needs to consider all
possible positions of each error. The second reason is probably
that for many applications the presence of errors in data is
not crucial: for example, probabilistic models generated for
analysis of the system rather than for system replacement may
include erroneous traces.

Considering modular state machine synthesis, the most
closely related paper is [17], where a modular formal model of
the plant is synthesized from behavior traces. There are two
major differences from the method proposed in this paper:

Fig. 1. Hardware architecture for data collection

first, [17] builds nondeterministic state machines so it cannot
be applied to synthesizing deterministic controller models;
second, the modular decomposition in [17] is given as input
to the algorithm and not synthesized automatically as in our
approach.

B. Data collection

Data monitoring techniques have been widely researched
for decades now [18]. The most common usages of data
collection or machine monitoring are for the purposes of pre-
ventive maintenance [19], condition monitoring [20], machine
availability [21] for downtime planning. Sensory monitoring
techniques are well researched and established [22] and their
challenges are well researched and addressed as well [23].
However, research on data collection for software optimiza-
tion, software upgrading and reverse engineering is limited.

III. HARDWARE AND SOFTWARE ARCHITECTURE FOR THE
PROPOSED TOOLCHAIN

The goal of PLC data collection is to record both the
input and output values whenever there is a change in any
of the input/output (I/O) values. Fig. 1 shows the hardware
architecture for collecting the traces. In the used setup inputs
of a secondary PLC running an IEC 61499 application that
collected data traces were connected with the I/O’s of the
legacy PLC. Since only inputs were used, it was a safe way
to directly connect the I/O’s.

The data collection application logged data every time any
I/O’s of the legacy PLC changed state. In our example we
only used Boolean data and it was easy to track the rising and
falling edges of each of the I/O’s of the legacy PLC. Each
time the I/O’s are sampled, a line with status (either 0 or 1)
of all the I/O’s is logged into a file stored on the PLC.

Fig. 2 shows the toolchain overview with five steps: (1) the
black-box legacy PLC is physically connected with a special
data collection PLC; (2) several use cases are run on the real
physical system while the data collection PLC records traces
of legacy PLC behavior; (3, 4) gathered PLC traces are used to
synthesize an equivalent state machine controller in the form of
one or several IEC 61499 function blocks; (5) the synthesized
IEC 61499 function block controller is uploaded to a third

3

Fig. 2. Toolchain overview

PLC (shown in the upper right corner in Fig. 1) that is used
to run the synthesized function block application.

IV. MONOLITHIC STATE MACHINE CONTROLLER
SYNTHESIS FROM NOISY BEHAVIOR TRACES

In this section we describe the proposed algorithm for
synthesizing a monolithic IEC 61499 state machine from
collected PLC traces T. A trace is a list of elements. Each
trace element includes a tuple of input variable values (later
referred to as input) and a tuple of output variable values (later
referred to as output). For example, below is a trace of three
elements for five input and three output variables:

〈01010, 001〉; 〈01011, 011〉; 〈11010, 101〉.
The proposed method solves the problem of generating an
IEC 61499 state machine (execution control chart of a basic
function block) with the minimum number of states that
repeats the behaviors represented by traces. The suggested
method is based on an existing approach of state machine
identification for IEC 61499 function blocks [24], but addi-
tionally accounts for possible errors in collected PLC traces.

The following model of an IEC 61499 state machine is used
in this work. Denote X and Z the sets of Boolean input and
output variables correspondingly. A state machine is a set of
states connected with transitions; one state is marked as initial.
A state is attributed with an output action which is represented
by an output event that is generated upon entering the state,
and an output algorithm that modifies output variable values.
We assume that a state algorithm is represented by a string
over the alphabet {0, 1, x} of length |Z|. If the i-th element
of the algorithm is “0” or “1”, the i-th output variable is set to
this value when the algorithm is executed; if the value of the
algorithm element is “x”, the value of the corresponding output
variable is not changed in this state. A transition is labeled
with an input event and a guard condition which corresponds
to a tuple of values of all input variables, thus the number of
transitions from one state is at most 2|X| for each input event.
In practice it is smaller and bounded by the number of input
tuples observed in the traces.

This model can represent any ECC of a basic function block
with Boolean input and output variables. Note that input and
output events and their associations with the variables are
neglected here, since legacy PLC behavior is not event-based.
Therefore, only one input (REQ) and one output (CNF) events
are used in the synthesized state machines.

A. Trace preprocessing and trace graph construction

Each trace is preprocessed: while two consecutive elements
si and si+1 have the same input value but different output
values, we delete the element si. This partly deals with
nondeterministic behaviors due to different scan cycles of
the original PLC and the data collection system. Also, this
procedure is safe and may not corrupt the input data. Naturally,
traces collected from the PLC do not contain events, but only
values of all input and output variables collected with a certain
frequency. In this work events are assigned heuristically. We
assign every input tuple a REQ input event. If elements si
and si+1 have different output values, si+1 is assigned a CNF

output event, otherwise, si+1 is not assigned an output event.

After preprocessing, the trace graph (V,E) is constructed,
in which vertices V correspond to outputs and edges E
correspond to inputs. Note that we cannot use the traditional
trace (scenario) tree used in [10], [24], [25] since due to noise
in the traces a nondeterministic node of the tree may appear:
node with different children for the same inputs. Thus, the
trace graph is comprised of M (number of distinct traces)
connected components. The set of vertices is divided into
active and passive vertices V = V active ∪ V passive: active ones
have an associated output event (CNF), while passive ones do
not. Similarly, active and passive edges Eactive and Epassive are
defined based on active/passive end node of an edge.

Work [26] also uses a trace graph for representing traces for
a method of synthesizing plant behavior models in the form
of nondeterministic state machines. However, in this paper we
are dealing with controller logic and thus are interested in
deterministic models. Hence, to account for possible errors, in
addition to graph edges added due to the traces themselves,
we add hypothesis edges in accordance with some error model
of the PLC data collection system.

In this paper we consider a simple error model: we assume
that the sole source of errors is the difference between scan
cycles of the legacy PLC and the data collection PLC. Con-
sider a situation when a change in input values of the legacy
PLC leads to a change in output values. An ideal trace will
first record the change in inputs and after that the change in
outputs. However, in reality, since the scan cycles of the legacy
and data collection PLCs are different and not synchronized
with each other, it may happen that the changed output values
are recorded before the input values, thus leading to a causality
error in the recorded trace. More intricate and complex error
models may also be considered.

In order to account for such errors, for each connected
component of the trace graph we identify all pairs of consecu-
tive nodes for which the output values are different. Consider
one such pair of nodes (u, v) connected with edge uv with
guard condition guv and also consider the child of node v –
node l with corresponding edge vl and guard condition gvl.
Then we add an alternative edge from u to v but with guard
condition gvl (see Fig. 3 as an example). Denote the set of
these additional alternative edges as Ealternative ⊂ Eactive ⊂ E.

4

o1 o1 o2 o2

u v l

guv

gvl

gvl
... ...

Fig. 3. Fragment of the trace graph describing the error model for PLC data
collection: for the pair of nodes on the interface between different output
values (o1 and o2) an additional (dashed) edge is considered

B. Translation to SAT

Denote N the number of states in the automaton. The main
idea of SAT-based algorithms for automaton synthesis from
noiseless data (e.g. [10], [16], [24], [27]) is to color the nodes
of the trace graph (tree) with N colors so that the automaton
produced by merging nodes with the same color into one state
is deterministic and satisfies the traces. In other words, we are
searching for a specific mapping of trace graph nodes and
edges to automaton states and transitions. If the traces are
noisy (contain errors) we have to ensure that only one of the
edges connecting each pair of adjacent nodes of the graph is
mapped to a transition in the generated automaton.

Colors of trace graph nodes are described by color variables
cv,i for each node v ∈ V and each color i ∈ [0..N). At least
one (ALO) and at most one (AMO) constraints are placed:

ALOi(cv,i) ⇐⇒
∨
i

cv,i

AMOi(cv,i) ⇐⇒
∧

i1<i2

(¬cv,i1 ∨ ¬cv,i2) .

Root nodes of the graph are attributed to the initial state 0:∧
isRoot(v) cv,0. For the sake of brevity we further omit explic-

itly describing AMO/ALO constraints on variables: we assume
that they are implicitly added when Boolean variables are used
to encode integer values.

Denote G the enumerated set of all unique inputs present on
the edges of the trace graph. Transitions of the automaton are
represented with Boolean variables yn1,g,n2 (0 ≤ n1, n2 < N ,
0 ≤ g < |G|) that encode whether the state machine includes
a transition from state n1 to state n2 labeled with input g.

Specific selection of alternative edges of the trace graph is
represented with variables eu,v,g (u, v ∈ V , uv ∈ Ealternative,
0 ≤ g < |G|) – can the edge from node uv labeled with input
g be used as a transition in the state machine. Since exactly
one edge must be used for each pair of connected nodes, ALO
and AMO constraints are placed on eu,v,g .

For each active edge (u, v, g), if node u has color n1, v has
color n2, and the edge can be used, the transition is defined:∧

(u,v,g)∈Eactive

cu,n1 ∧ cv,n2 ∧ eu,v,g =⇒ yn1,g,n2 .

For a passive edge there should be no defined transitions, and
the color of the start vertex of the edge is propagated to its
end vertex, encoding that the controller does not change state:∧

(u,v,g)∈Epassive

(cu,n1 =⇒ cv,n1 ∧
∧
n2

¬yn1,g,n2).

State algorithms are described by variables d0n,j and d1n,j –
is the algorithm element in state n for output variable j zero
or one, correspondingly. If both d0n,j and d1n,j are False, the
element is interpreted as “x” (retain previous value). Denote

zv,j the value of the j-th output variable in node v ∈ V . The
following constraints encode the rules of transforming output
variable values in accordance with graph edges:∧

0≤n<N

∧
0≤j<|Z|

d0n,j =⇒ ¬d1n,j

∧
(u,v,g)∈Eactive

∧
0≤n1,n2<N

∧
0≤j<|Z|

cu,n1 ∧ cv,n2∧

∧ eu,v,g ∧ yn1,g,n2 =⇒


¬d1n2,j

, if ¬zu,j ∧ ¬zv,j
d1n2,j

, if ¬zu,j ∧ zv,j
d0n2,i

, if zu,i ∧ ¬zv,i
¬d0n2,i

, if zu,i ∧ zv,i

.

Described constraints allow constructing an automaton that
satisfies the given noisy PLC traces with respect to the
selected error model. However, the resulting state machine is
not unique since, in the worst case, the number of possible
unique alternative edge choices is exponential. Also, not all
synthesized state machines that correspond to the traces with
respect to the error model are correct in terms of the ground
truth – true noiseless behavior traces of the PLC, which we
do not have access to.

Thus, in order to find the correct solution we need to
enumerate all different state machines of minimal size that
are consistent with traces – in other words, find all possible
solutions and check them by some external means. For that
an iterative algorithm is used, where on the i-th iteration
constraints that prohibit previous choices of alternative edges
in the trace graph are added:∧

0≤j<i

¬ ∧
(u,v,g)∈E

eju,v,g

 ,

where eju,v,g is the value of eu,v,g found on the j-th iteration.

Note that in order to efficiently enumerate different state
machines we need to maximally reduce all symmetries of
the problem. Additional constraints are employed for further
reduction of symmetries. First, we apply symmetry break-
ing predicates [16] which fix the enumeration of automaton
states in the order they would be visited by the breadth-first
search (BFS) algorithm. Second, we force all transitions not
covered by traces to be self-loops [28]. Third, the number of
distinct states reachable from each state is limited to constant
K [24].

Fourth, the number of transitions in the state machine is
fixed. For that we introduce variables tn,g (0 ≤ n < N ,
0 ≤ g < |G|) – whether there exists a transition from state n
labeled with input g with the following definition constraints:∧

n1,g

tn1,g ⇐⇒
∨
n2

yn1,g,n2 .

Then, auxiliary variables t′i,r (0 ≤ i, r ≤ N |G|) encode
whether the number of defined transitions among the first
i possible transitions equals to r. The following constraints

5

define variables t′i,r based on the state machine:∧
0≤i≤N |G|

t′i,0

∧
0≤i≤N

0≤g<|G|

0≤j<N |G|

{
tn1,g ∧ t′n1|G|+g−1,j =⇒ t′n1|G|+g,j+1

¬tn1,g ∧ t′n1|G|+g−1,j =⇒ t′n1|G|+g,j

(1)

Finally, the maximal number of transitions in the state
machine is fixed to constant R:∧

0≤i<N |G|

¬t′i,R+1. (2)

Note that the auxiliary variables t′n,g and constraints (1-2)
described for limiting the number of True variables tn,g to
constant R comprise a form of cardinality constraints [29] for
Boolean variables. Such auxiliary variables and constraints can
be formulated for applying cardinality to any set of Boolean
variables, and we denote them as card({tn,g}, R), where the
first argument is the set of variables and the second argument
is the constant representing the maximal number of True

variables from the set.
Finally, we add constraints that limit the number of errors

allowed in the behavior traces to constant ε by counting used
alternative hypothesis edges of the trace graph:

card({eu,v,g|(u, v, g) ∈ Ealternative}, ε). (3)
Described constraints define the following decision proce-

dures of searching for an automaton that complies with noisy
traces T by means of a SAT solver:
• with at most N states – findModel(T, N);
• and with at most K states reachable from each state –
findModel(T, N,K);

• and with at most R transitions –
findModel(T, N,K,R);

• and with at most ε errors in traces and previously found
solutions S prohibited – findModel(T, N,K,R, S, ε).

If the underlying SAT solver call returns an UNSAT message,
each of these findModel procedures return ∅.

The final procedure for constructing a state machine from
noisy PLC traces is described in Algorithm 1. First, we try
to find any automaton with the minimal number of states N .
Second, we additionally minimize parameter K – maximal
size of the set of states reachable from each state with one
transition. Third, we minimize the total number of transitions
R. Last, we search for all unique state machines with found
parameters N , K, and R that use different alternative edge
choices in the trace graph and have a fixed number of errors ε.
Since the ground truth (correct traces) is not known, the final
solution can only be found by checking generated solutions
S by an external procedure – manual checking, simulation,
model checking, testing, etc. Note that as the by-product the
algorithm generates for each candidate solution a set of error-
free behavior traces which are represented by specific selection
of alternative trace graph edges. Described symmetry breaking
approaches decrease the number of candidate solutions that
have to be checked manually – either by loading the generated
controller to the CPS, using formal verification, or with

Algorithm 1: SAT-based synthesis of a set of mono-
lithic state machines from noisy PLC traces
Data: noisy PLC execution traces T
N ← 1
while findModel(T, N) = ∅ do

N ← N + 1
K ← 1
while findModel(T, N , K) = ∅ do

K ← K + 1
R ← 1
while findModel(T, N , K, R) = ∅ do

R ← R+ 1

/* find all minimal solutions
consistent with traces, increasing
the number of errors from zero */

S ← list(), ε← 0
while True do

A ← findModel(T, N , K, R, S, ε)
if A 6= ∅ then S.add(A)
else

ε← ε+ 1

if ε ≥ |Ealternative| then
break

return S

simulation testing. In addition, constraints (3) allow examining
solutions in the order of increasing number of errors ε. In our
case study this feature proved useful since the correct solution
has been found for ε = 1, so only one solution had to be
examined.

V. MODULAR CONTROLLER SYNTHESIS

The proposed modular controller synthesis algorithm allows
distributing control logic across several function blocks: it
solves the problem of generating an IEC 61499 composite
function block and underlying basic function blocks with
corresponding ECCs, such that the composite function block
repeats the behaviors represented by traces. A simple modular
decomposition is employed: control is distributed across M
modules, each module controls a subset of all output variables
without intersections with other modules. Input variables are
distributed arbitrarily: each module may use any input vari-
ables.

Main input data for the method are behavior traces T, the
number of modules M , and the number N which is here
treated as the maximal number of states in each module. It is
assumed that the traces do not contain errors. If initial traces
have been gathered from a legacy PLC, this can be achieved
by means of the algorithm described in Section IV, since the
by-product of this algorithm is a set of error-free traces.

A trace tree (V,E = Eactive ∪ Epassive) is constructed using
the traces. The main idea of the approach is to color the trace
tree with N colors for each of M modules – thus, each vertex
of the scenario tree has M colors, one for each module. The
color i ∈ [0..N) of node v ∈ V for module m ∈ [0..M) is
represented by variable cm,v,i. It is similar to variable cv,i used
in Section IV, so we use the same letter; below we will use the
same approach for other variables introduced in Section IV.

6

A. Modular decomposition, transitions, and guard conditions

The modular decomposition for output variables is encoded
by mapping each output variable to a single module: variable
θm,i denotes that output variable i is controlled by module m.

Transitions of the state machine for each module are en-
coded differently than in Section IV. Instead of labeling a
transition with an input tuple (values of all input variables),
a transition is here labeled with a guard condition of the
form

∧
il∈[0..|X|) ξil where ξil ∈ {xil ,¬xil} – conjunction of

input variable literals, each positive or negative. This is done
in order to enable modular decomposition of input variables.
Each state of each module’s state machine is allowed to have
at most K transitions. Thus, transitions are encoded with three
types of variables. Variable ym,n1,k,n2

denotes that the k-
th transition from state n1 of module m leads to state n2.
Variable αm,i encodes the modular decomposition of input
variables and denotes that input variable i is used in module
m. Variable βm,n,k,i encodes the literal value of input variable
i in the guard condition of the k-th transition from state n of
module m.

Each guard condition can evaluate to True or False de-
pending on inputs G. We say that a transition fires for some
input from G if its guard condition evaluates to True on this
input. To encode whether the k-th transition from state n in
module m fires for some input g ∈ [0..|G|) we introduce
variable fm,n,k,g defined as follows:

fm,n,k,g ⇐⇒
∧

{i|Gg,i=1}

(αm,i =⇒ βm,n,k,i)

∧
∧

{i|Gg,i=0}

(αm,i =⇒ ¬βm,n,k,i).

In other words, if for each variable i used in module m its
literal in a guard condition is equal to the value of this variable
for some input g, then this guard condition evaluates to True,
and the transition fires for input g.

According to IEC 61499 the ECC follows the first transition
for which the guard condition evaluates to True [2]. We
introduce variable ff m,n,k,g that represents that the corre-
sponding transition fires first: the guard condition for this
k-th transition evaluates to True, while guard conditions of
previous transitions (0..(k − 1)) must evaluate to False.
To encode this efficiently we introduce auxiliary variables
nf m,n,k,g that denote that the transition does not fire:

nf m,n,0,g ⇐⇒ ¬fm,n,0,g∧
1≤k<K

nf m,n,k,g ⇐⇒ ¬fm,n,k,g ∧ nf m,n,k−1,g.

Then, first fired variables ff m,n,k,g are defined as follows:
ff m,n,0,g ⇐⇒ fm,n,0,g∧

1≤k<K

ff m,n,k,g ⇐⇒ fm,n,k,g ∧ nf m,n,k−1,g.

B. Correspondence between trace tree and controller behav-
ior: transition firing, output algorithms

For each active tree edge (u, v, g) some transition of some
module should fire, while for passive edges no transitions
should be fired. We also want to minimize the number of

modules that make a transition. For that we require that a
transition is made by modules which are associated with output
variables that have different values in u and v:∧

(u,v,g)∈Eactive:zu,j 6=zv,j

θm,j ∧ cm,u,n1 ∧ cm,u,n2 =⇒

=⇒
∨
k

ym,n1,k,n2
∧ ff m,n1,k,g;∧

(u,v,g)∈Epassive

cm,u,n =⇒ cm,v,n ∧
∧
k

¬fm,n,k,g.

In other words, for each active edge and each output variable
that changes its value there exists a module that has a corre-
sponding transition that fires; for passive edges no transitions
are fired, and the child vertex is colored the same as the parent.

Next, consider the case when for an active edge some
module m does not make a transition. The child node of the
edge must be colored with the parent color:∧

(u,v,g)∈Eactive

cm,u,n ∧
∧
k

¬fm,n,k,g =⇒ cm,v,n.

Further, if there is a transition that fires for an input, then the
child node of an edge is colored according to the transition:∧
(u,v,g)∈Eactive

ym,n1,k,n2 ∧ ff m,n1,k,g ∧ cm,u,n1 =⇒ cm,v,n2 .

Transitions of each state machine are forced to be covered
by the traces. Constraints ensure that each transition corre-
sponds to at least one edge for which the transition fires:

ym,n1,k,m2 ⇐⇒
∨

(u,v,g)∈Eactive

cm,u,n1 ∧ cm,v,n2 ∧ ff m,n,k,g.

Output algorithms attributed to states are encoded similar to
the way employed in Section IV, with the exception that the
module index is added to the corresponding variables d0m,n,i

and d1m,n,i, and that the left part of implication is augmented
with the output mapping correspondence, together with the
transition existence and firing conditions:∧

(u,v,g)∈Eactive

cm,u,n1
∧ cm,v,n2

∧ θm,j ∧ ym,n1,k,n2
∧

∧ ff m,n1,k,g =⇒


¬d1n2,j

, if ¬zu,j ∧ ¬zv,j
d1n2,j

, if ¬zu,j ∧ zv,j
d0n2,i

, if zu,i ∧ ¬zv,i
¬d0n2,i

, if zu,i ∧ zv,i

.

C. Parameter minimization

We would like our modular controller to be as simple as
possible, thus its parameters need to be minimized. First,
minimization of the maximal number of states N in all
modules is done the same way as in Algorithm 1. Second,
we would like to minimize the total number of input variables
used by the modules by limiting the total number of True

αm,i variables to constant A: card({αm,i}, A).
Third, we would also like to minimize the total number of

states used in all modules, thus we add constraints that limit
this number to constant N ′ < M ×N . In order to do this, we

7

first introduce variables trm,n1,n2
that denote that in module

m there is a transition from state n1 to state n2:∧
m

∧
n1,n2

trm,n1,n2 ⇐⇒
∨
k

ym,n1,k,n2 .

Then, we introduce variables ucm,n indicating that the m-th
module uses color n. By definition of uc we state that the
color is used whenever there is a tree vertex colored with it:

ucm,n ⇐⇒
∨
v

cm,v,n.

If the color n1 is used in module m and there is a transition
in this module to state n2, then color n2 is also used:

ucm,n1 ∧ trm,n1,n2 =⇒ ucm,n2 .

If color n1 > 0 is used, then there must be a transition in the
automaton that ends in state n1:

ucm,n1 =⇒
∨

n2 6=n1

trm,n2,n1(n1 > 0).

If color n1 is not used, then larger colors are not used either:
¬ucm,n =⇒ ¬ucm,n+1.

If either of colors n1 or n2 are not used, no transition may
connect corresponding states:

¬ucm,n1 ∨ ¬ucm,n2 =⇒ ¬ym,n1,k,n2 .

Finally, if a color is not used, then output algorithms for the
corresponding unused states are fixed:

¬ucm,n =⇒ ¬d0m,n,j ∧ ¬d1m,n,j .

The total number of states in the modular controller is
limited to constant N ′ by constraints: card({ucm,n}, N ′).

D. Modification of BFS symmetry breaking constraints [16]
for modular controller synthesis

As in Section IV, we also apply the symmetry breaking
constraints that enforce the states of the automaton to be
enumerated in the ordered defined by the BFS algorithm [16].
However, direct application of these constraints leads to an
unsatisfiability result in the case when we try to find a modular
controller with a total number of states that is less than M×N .
The reason is that one of the constraints from [16] demands
that each state has a defined parent in the BFS tree (BFS
parent) with a smaller number:∧

1≤n<N

pn,1 ∨ pn,2 ∨ . . . ∨ pn,n−1,

where pn1,n2
denotes that n2 is the BFS parent of n1.

If a state is not used, then it, obviously, does not have a BFS
parent. Therefore, we rewrite the above constraint from [16]
by adding an additional index for the module and a condition
that the state must be used in order to have a BFS parent:∧

m

∧
1≤n<N

ucm,n =⇒ pm,n,1 ∨ pm,n,2 ∨ . . . ∨ pm,n,n−1,

and also state that an unused state does not have a BFS parent:∧
m

∧
1≤n1<N

∧
0≤n2<N

¬ucm,n1 =⇒ ¬pm,n1,n2 .

The monolithic and modular controller synthesis algorithms
are implemented as stand-alone Java tools. The generated
controller is exported as a set of IEC 61499 XML function
block files: one composite function block that determines
the modular decomposition and M basic function blocks

representing the modules of the controller. The generated
controller can be directly used in NxtStudio.

VI. CASE STUDY: DISTRIBUTION STATION

A. Physical system description

As a case study in this paper we use a Festo didactics’
distribution station from our lab. It is comprised of two main
units (Fig. 4): a Stack Magazine Module (SMM) and a Rotating
Arm Changer (RAC) module. The station has six digital inputs
and five digital outputs: SMM has three inputs and one output,
whereas the RAC has three inputs and four outputs.

Fig. 4. The Distribution Station: physical implementation (top), Stack
Magazine (left), and Rotating Arm (right)

The SMM consists of three parts: a gravity-feed magazine,
a mechanical stop, and a single-acting cylinder (needs a single
actuation to extend and retract). When the actuation is True

it extends, and retracts when the actuation is False. The feed
magazine holds a maximum of eight work pieces. Table I
summarizes the I/O’s and their actions for SMM.

TABLE I
SMM I/O’S AND THEIR ACTIONS

Name Type Description

empty input True if there are no work pieces in the magazine,
False otherwise

retracted input True if cylinder is retracted, False otherwise
extended input True if cylinder is extendeda, False otherwise

retract output True when cylinder needs to be retracted, False
otherwise

aThe default/reset position of the cylinder is extended.

8

The RAC is the transport system that moves the work pieces
from magazine physical stop position to another side (down-
stream) using the suction cup. The arm behaves as a double-
acting cylinder, instead of extending and retracting, it swivels
from the magazine (SMM) side (to magazine) downstream
(to client). The arm has two stop positions, at magazine and
at client. Table II summarizes the I/O’s and their actions
for RAC. A simulation model of the system developed in

TABLE II
RAC I/O’S AND THEIR ACTIONS

Name Type Description

at magazine input True when arm is at the magazine side,
False otherwise

at client input True when arm is at the client(downstream)
side, False otherwise

vac on input True if vacuum (suction), False otherwise

vacuum on output True if vacuum needs to be turned on,
False otherwise

vacuum off output True if vacuum needs to be turned off,
False otherwise

to magazine output True if arms needs to be moved towards
magazine side, False otherwise

to client output True if arms needs to be moved towards
client (downstream) sidea, False otherwise

aThe default/reset position of the arm is at client position.

NxtStudio was used to test the generated controller models.

B. Data collection

A total of six logs were generated from the physical system
for six different use cases. The use cases consisted of varying
complexity and varying length of runs (from use case trans-
ferring just one work piece to use cases collecting up to eight
work pieces). Use cases differed in intermediate pushes of
buttons on the machine control panel. Apart from I/O’s of the
legacy controller for SMM and RAC, human-machine inter-
face (HMI) signals are also logged: input signals start but,
stop but, aut man, emerg but indicating clicks of buttons,
and output signals reset led and start led indicating
turning on lamps of corresponding buttons. This way, the
generated state machine will also incorporate logics of the
HMI. The source code of the legacy PLC is written using
IEC 61131-3 languages.

C. Monolithic state machine synthesis from noisy PLC traces

We used the method proposed in Section IV to find state
machine models for the collected PLC traces. The algorithm
found no solution for the number of errors ε = 0, and found
one solution for ε = 1. The generated state machine was
checked using simulation testing in NxtStudio.

In contrast, the preliminary algorithm published in confer-
ence proceedings [7] found 63 state machines with different
numbers of errors, since no constraints on ε were used at that
time. Out of these 63 solutions, only one demonstrated fully
correct behavior during simulation. Thus, use of additional
constraints (3) allowed to reduce the amount of manual work
required for checking generated solutions. The constructed
state machine with 8 states and 10 transitions (not counting

the default START and INIT states and two corresponding
transitions) is shown in Fig. 5 in the form of a basic function
block ECC. Due to long guard conditions, we display each
of them with a binary string in which the i-th character
corresponds to the i-th input variable.

D. Modular controller synthesis

We then used the modular controller synthesis method to
generate a two-module controller where the first module oper-
ates HMI signals (start led, reset led and mag empty),
and the second module operates all other output signals. The
architecture of the generated modular controller is shown in
Fig. 6. The first (HMI) module operates three output variables
using three input variables, has four states and three transi-
tions. The second module operates five output variables using
seven input variables, has eight states and nine transitions.

VII. DISCUSSION & THREATS TO VALIDITY

We have shown that it is possible to identify a state machine
controller from noisy traces collected from the legacy PLC that
is correct in the sense that it copies the behavior of the PLC
controller for situations represented by the traces. However, the
question of ensuring that the generated state machine is indeed
in some sense equivalent to the original controller still stands:
in our black-box case it is impossible to formally guarantee
that all possible input-output combinations are featured by
collected behavior traces.

As an example, consider Fig. 5: one can notice that the
first input variable (start but) value in all guard condi-
tions is “0”, meaning that there is no transition for which
start but = True. Consider the following consecutive ele-
ments of one of the preprocessed behavior traces.

1) 〈REQ[000000100100], CNF[10000010]〉
2) 〈REQ[100000100100], [10000010]〉
3) 〈REQ[000000100100], CNF[00000001]〉

In the second element the first input variable is True (1), it is
the start but variable. We can see that the output variable
values in elements 1 and 2 are the same, so our algorithm treats
element 2 as a passive one. In element 3 start but is already
False, and the output variables have changed (the RAC started
moving). This is due to the behavior of the original PLC
code: the start but variable remains True only while the
user keeps the button pressed down. This time interval is
very small, so when the plant reacts to the button press, the
start but variable is already back to False. So from one
or even several traces it is unclear which inputs (e.g. from
element 2 or 3) trigger the corresponding output. Nevertheless,
the state machine works correctly in NxtStudio simulation: the
ECC waits for a REQ event so it does not move the arm until
the start button is pressed; though ideally it should wait for a
REQ event with start but = True).

Some possible ways of countering such issues may include:
(1) use of integration tests from the production environment
if any; (2) use of formal verification (e.g. model checking) to
ensure compliance of the generated state machine controller
with formal specification (if any); (3) use of a testing period:
e.g. one week data is collected, then a state machine generated,

9

Fig. 5. ECC derived from the synthesized monolithic automaton

Fig. 6. Architecture of the generated modular controller

then new data is collected and checked for compliance with
state machine. The third approach appears to be the most prac-
tically applicable one and is a variation of counterexample-
guided inductive synthesis (CEGIS) [30], [31]. It would feature
the following loop.

1) Collect initial behavior traces from the PLC.
2) Generate state machine(s), upload to new controller that

works in monitoring mode; real work is still done with
the legacy controller.

3) Monitor differences in legacy PLC and new controller
behavior; if a difference is detected, form a new trace
and go to step 2.

4) Deploy the generated state machines to the new con-
troller and use it in production.

In this paper we only make several steps towards this goal
by developing the state machine synthesis methods capable of
dealing with noisy PLC traces and modular decomposition.
Implementation of the CEGIS loop is part of future work.

The proposed modular controller synthesis algorithm may
be used in various scenarios. First, the method can be used
to find some modular decomposition, given only the behavior
traces and the number of modules. This is useful when little
is known about the synthesized system.

Second, the user may specify the modular decomposition
represented by variables αm,i and θm,j , partially or com-
pletely. For example, the user may request variables z1, z3
and z7 to be controlled by module 1, for which we will
add constraints θ1,1, θ1,3 and θ1,7; other parts of the modular
decomposition will be determined automatically. This is useful
when the user has specific requests about the design of the
modular system.

Two algorithms developed in this paper – (1) monolithic
controller synthesis from noisy PLC traces and (2) modular
controller synthesis from error-free traces – may be used
either separately or in a single toolchain. In the latter case
the monolithic algorithm is used to prepare error-free traces,
while the modular algorithm allows distributing control logic
across several function blocks. Such distribution should allow
making synthesized controller more user-friendly and easily
understandable to humans, especially if the modular decom-
position was partially selected by the user and if all parameters
of the synthesized controller have been minimized.

Note that the proposed modular controller synthesis method
only allows to distribute sequential control logic (e.g. de-
scribed by traces from one physical PLC) across several
modules which can be attributed to several physical devices.
The method is, however, inapplicable for data collected from
several points in a distributed automation system. This is a
more challenging problem and will be subject of future work.

VIII. CONCLUSION AND FUTURE WORK

Factory floors always need upgrading to stay competitive
due to new technologies being introduced. The proposed
methodology is well-suited for upgrading legacy PLCs so that
current advanced technologies can be applied in an existing
production environment while also allowing vendors of other
more traditional automation platforms to “test” the effective-
ness of modern approaches without risking high investments
from the beginning. This allows the industry to study the
effects and make a seamless transition.

This paper only covers some initial steps towards this goal.
Several directions of further development and improvement are

10

envisaged. First, data could be logged into the cloud directly
instead of files locally stored on the PLCs. The second possible
improvement is to run the learning algorithm in the cloud
too and constantly check with automated testing to see if the
generated model behaves the same way as the legacy system.
This process may continue until all test cases are satisfied,
and no new test cases are generated. The third idea would be
to collect data through distributed data collection points with
time synchronization in order to extend the modular controller
synthesis method proposed in this paper and to be able to
generate distributed control software based on traces collected
from a distributed system.

Another direction of future research is increasing readabil-
ity of automatically synthesized state machines. Partly the
readability is increased with our modular controller synthesis
method, which can decompose control logic over several
independent function blocks. Readability of each individual
ECC is increased by minimization of the number of states
and transitions, as well as guard conditions size. Future work
may target the readability issue specifically, e.g., by inferring
invariants for each state of each ECC and deriving state
annotations automatically.

ACKNOWLEDGMENT

We thank Vladimir Ulyantsev for fruitful discussions, and
the anonymous reviewers for their comments that helped us
improve the paper. This work was supported by the Govern-
ment of Russian Federation (Grant 08-08) and by European
project DAEDALUS (H2020 Grant Agreement n◦: 723248),
and also by RFBR, project number 19-07-01195 A.

REFERENCES

[1] Y. Shimanuki, “OLE for process control (OPC) for new industrial
automation systems,” in IEEE International Conference on Systems,
Man, and Cybernetics, vol. 6, 1999, pp. 1048–1050.

[2] “IEC 61499-1: Function Blocks Part 1: Architecture,” 2012.
[3] V. Vyatkin, IEC 61499 function blocks for embedded and distributed

control systems design, 3rd ed. ISA-Instrumentation, Systems, and
Automation Society, 2015.

[4] “Programmable Logic Controllers - Part 3: Programming Languages,
IEC Standard 61131-3,” 2013.

[5] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” IEEE Trans. Ind. Inform., vol. 7, no. 4, pp.
768–781, 2011.

[6] ——, “Software engineering in industrial automation: State-of-the-art
review,” IEEE Trans. Ind. Inform., vol. 9, no. 3, pp. 1234–1249, 2013.

[7] D. Chivilikhin, S. Patil, A. Cordonnier, and V. Vyatkin, “Towards
automatic state machine reconstruction from legacy plc using data
collection,” in 17th IEEE International Conference on Industrial In-
formatics, 2019, pp. 147–151.

[8] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[9] J. Marques-Silva and K. A. Sakallah, “GRASP—a New Search Algo-
rithm for Satisfiability,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, ser. ICCAD ’96. USA: IEEE
Computer Society, 1997, p. 220–227.

[10] M. J. H. Heule and S. Verwer, “Exact DFA identification using SAT
solvers,” in Grammatical Inference: Theoretical Results and Applica-
tions, 2010, pp. 66–79.

[11] ——, “Software model synthesis using satisfiability solvers,” Empirical
Softw. Eng., vol. 18, no. 4, pp. 825–856, 2013.

[12] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. Ulyantsev, and J. Marques-
Silva, “Efficient symmetry breaking for SAT-based minimum DFA
inference,” in LATA, 2019, pp. 159–173.

[13] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” Empirical Softw. Eng.,
vol. 21, no. 3, pp. 811–853, 2016.

[14] G. Giantamidis and S. Tripakis, “Learning moore machines from input-
output traces,” in Formal Methods, 2016, pp. 291–309.

[15] S. M. Lucas and T. J. Reynolds, “Learning deterministic finite automata
with a smart state labeling evolutionary algorithm,” IEEE Trans. Pat.
Anal. Mach. Int., vol. 27, no. 7, pp. 1063–1074, 2005.

[16] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto, “BFS-based symmetry
breaking predicates for DFA identification,” in Language and Automata
Theory and Applications. Springer International Publishing, 2015, vol.
8977, pp. 611–622.

[17] I. Buzhinsky and V. Vyatkin, “Modular plant model synthesis from
behavior traces and temporal properties,” in 22nd IEEE International
Conference on Emerging Technologies and Factory Automation, 2017,
pp. 1–7.

[18] J. S. Mitchell, An introduction to machinery analysis and monitoring.
Pennwell Publishing, 1981.

[19] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery di-
agnostics and prognostics implementing condition-based maintenance,”
Mechanical systems and signal processing, vol. 20, no. 7, pp. 1483–
1510, 2006.

[20] A. G. Rehorn, J. Jiang, and P. E. Orban, “State-of-the-art methods and
results in tool condition monitoring: a review,” Intern. J. Adv. Manufact.
Techn., vol. 26, no. 7-8, pp. 693–710, 2005.

[21] L. Wang, “Machine availability monitoring and machining process
planning towards cloud manufacturing,” CIRP Journal of Manufacturing
Science and Technology, vol. 6, no. 4, pp. 263–273, 2013.

[22] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans.
Ind. Electr., vol. 56, no. 10, pp. 4258–4265, 2009.

[23] L. Zhuang, K. M. Goh, and J.-B. Zhang, “The wireless sensor networks
for factory automation: Issues and challenges,” in IEEE Conference on
Emerging Technologies and Factory Automation, 2007, pp. 141–148.

[24] D. Chivilikhin, V. Ulyantsev, A. Shalyto, and V. Vyatkin, “Function
block finite-state model identification using SAT and CSP solvers,” IEEE
Trans. Ind. Inform., 2019.

[25] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, “Exact finite-state machine
identification from scenarios and temporal properties,” Int. J. Softw. Tools
Technol. Transfer, vol. 20, no. 1, pp. 35–55, 2018.

[26] I. Buzhinsky and V. Vyatkin, “Automatic inference of finite-state plant
models from traces and temporal properties,” IEEE Trans. Ind. Inform.,
vol. 13, no. 4, pp. 1521–1530, 2017.

[27] F. Avellaneda and A. Petrenko, “FSM inference from long traces,” in
Formal Methods. Springer, 2018, pp. 93–109.

[28] I. Zakirzyanov, A. Shalyto, and V. Ulyantsev, “Finding all minimum-size
DFA consistent with given examples: SAT-based approach,” in Software
Engineering and Formal Methods, 2018, pp. 117–131.

[29] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean
cardinality constraints,” in Principles and Practice of Constraint Pro-
gramming, F. Rossi, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 108–122.

[30] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS XII. New York,
NY, USA: Association for Computing Machinery, 2006, p. 404–415.

[31] A. Solar-Lezama, “Program synthesis by sketching,” 2008, PhD thesis.

Daniil Chivilikhin received the Bachelor’s and Mas-
ter’s degrees in applied mathematics and informatics
from ITMO University, Saint Petersburg, Russia, in
2011 and 2013, respectively; and the Ph.D. degree
in technical sciences (mathematics and software for
computing systems) from the same university, in
2015.

He is currently a Research Associate with the
Computer Technologies Laboratory, ITMO Univer-
sity, Saint Petersburg, Russia. His research interests
include program synthesis and verification, industrial

informatics, evolutionary algorithms, and SAT solver applications.

11

Sandeep Patil (S’11–M’19) received the Bachelor’s
degree in computer science engineering from the
CMR Institute of Technology, Bangalore, India, in
2005; the Master of computer science (software
engineering) degree from the Illinois Institute of
Technology, Chicago, IL, USA, in 2010; the Master
of Engineering Studies (computer systems) degree
from the University of Auckland, Auckland, New
Zealand, in 2011; and Ph.D. degree in formal ver-
ification of cyber physical systems from the Lulea
University of Technology, Lulea, Sweden in 2018.

His research interests include software engineering principles and method-
ologies in distributed industrial automation, especially using the IEC 61499
paradigm. He also works with formal verification techniques in the same field.
He is an accomplished software engineering professional with over 14 years
of research and development experience in systems and application software,
including four years at Motorola India Pvt. Ltd., India, as a Senior Software
Engineer.

Anthony Cordonnier received the Baccalaureate
(equivalent of an A-level or high school diploma) in
sciences and technologies of industry and of sustain-
able development option energies and environment
from the Louis Majorelle High School, Toul, France,
in 2014; the “Brevet de Technicien Supérieur en
Electrotechnique” (equivalent of a Higher National
Diploma in Electrotechnics) from the Pôle des In-
dustries de Lorraine, Maxeville, France, in 2016; and
the Master’s degree in electrical engineering from
Institut National des Sciences Appliquées (INSA),

Strasbourg, France, in 2019.
He has completed his last five years of studies in sandwich course: he

worked as a maintenance technician apprentice between 2014 and 2016, and
market researcher engineer apprentice between 2016-2019 at RTE company.
He is currently working at ENEDIS company as an in-company trainer and
course developer in the field of electrical network management.

Konstantin Chukharev received the Bachelor’s de-
gree in control systems and informatics from ITMO
University, Saint Petersburg, Russia, in 2018. Ad-
ditionally, he finished the one-year program “Algo-
rithmic Bioinformatics” at Bioinformatics Institute,
Saint Petersburg, Russia, in 2017.

He is currently is a Junior Research Associate
with the Computer Technologies Laboratory, ITMO
University, Saint Petersburg, Russia. He studies for-
mal methods, finite-state automata, SAT and phy-
logenetics while teaching students and writing his

Master’s thesis in applied mathematics and informatics devoted to modular
automata synthesis.

Valeriy Vyatkin (M’03–SM’04) received Ph.D. in
1992 and Dr. Sc. in 1999 in applied computer
science from Taganrog Radio Engineering Institute,
Russia, in 1992, Dr. Eng. degree from Nagoya Insti-
tute of Technology, Japan in 1999, and Habilitation
degree in Germany in 2002. He is on joint ap-
pointment as Chair of Dependable Computations and
Communications, Luleå University of Technology,
Sweden, and Professor of Information Technology
in Automation, Aalto University, Finland. He is also
co-director of the international research laboratory

“Computer Technologies”, ITMO University, Saint Petersburg, Russia.
Previously, he was a visiting scholar at Cambridge University, UK, and

had permanent appointments with the University of Auckland, New Zealand;
Martin Luther University, Germany, as well as in Japan and Russia.

His research interests include dependable distributed automation and in-
dustrial informatics; software engineering for industrial automation systems;
artificial intelligence, distributed architectures and multi-agent systems in var-
ious industries: smart grid, material handling, building management systems,
datacentres and reconfigurable manufacturing.

Dr. Vyatkin received the Andrew P. Sage award for the best IEEE
Transactions paper in 2012. He is the Chair of IEEE IES Technical Committee
on Industrial Informatics.

