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A B S T R A C T

How the human brain uses self-generated auditory information during speech production is rather unsettled.
Current theories of language production consider a feedback monitoring system that monitors the auditory
consequences of speech output and an internal monitoring system, which makes predictions about the auditory
consequences of speech before its production. To gain novel insights into underlying neural processes, we
investigated the coupling between neuromagnetic activity and the temporal envelope of the heard speech sounds
(i.e., cortical tracking of speech) in a group of adults who 1) read a text aloud, 2) listened to a recording of their
own speech (i.e., playback), and 3) listened to another speech recording. Reading aloud was here used as a
particular form of speech production that shares various processes with natural speech. During reading aloud, the
reader’s brain tracked the slow temporal fluctuations of the speech output. Specifically, auditory cortices tracked
phrases (<1 Hz) but to a lesser extent than during the two speech listening conditions. Also, the tracking of words
(2–4 Hz) and syllables (4–8 Hz) occurred at parietal opercula during reading aloud and at auditory cortices during
listening. Directionality analyses were then used to get insights into the monitoring systems involved in the
processing of self-generated auditory information. Analyses revealed that the cortical tracking of speech at <1 Hz,
2–4 Hz and 4–8 Hz is dominated by speech-to-brain directional coupling during both reading aloud and listening,
i.e., the cortical tracking of speech during reading aloud mainly entails auditory feedback processing. Never-
theless, brain-to-speech directional coupling at 4–8 Hz was enhanced during reading aloud compared with
listening, likely reflecting the establishment of predictions about the auditory consequences of speech before
production. These data bring novel insights into how auditory verbal information is tracked by the human brain
during perception and self-generation of connected speech.

1. Introduction

To produce understandable speech, humans rely on self-monitoring of
speech output. Such monitoring is based on neural integration of self-
generated sensory information, which links speech production to

speech perception (for a review, see Hickok, 2012). Still, how this
self-produced sensory information is used to control speech remains
unclear.

Current theories of language production consider a feedback moni-
toring system that monitors the sensory consequences of speech output to
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correct errors during production (for reviews, see Hickok, 2012 and
Houde and Chang, 2015). Evidence about the importance of such a sys-
tem comes from adaptations of the speaker’s speech output to compen-
sate for sensory (i.e., auditory and somatosensory) feedback
manipulations (Bauer et al., 2006; Burnett et al., 1998; Guo et al., 2017;
Houde, 1998; Liu et al., 2018; Shiller et al., 2009; Tremblay et al., 2003).
But such feedback monitoring system cannot account for extremely fast
self-corrections of speech observed in humans (Blackmer and Mitton,
1991; Nozari et al., 2011), as they require excessive neural processing
time. Hence, most of the current models of language production addi-
tionally include an internal speech monitoring system, which makes
predictions about motor programs and sensory consequences of speech
output before its actual production (Hickok, 2012; Houde and Chang,
2015). Consensus about the neural basis of such an internal system is
however lacking (Gauvin et al., 2016). Indeed, some authors consider
that the sensory consequences of speech are predicted by sensory net-
works similar to those involved in monitoring feedback speech (Hickok,
2012; Indefrey, 2011), while others consider that this process recruits
distinct neural structures such as, e.g., brain structures involved in con-
flict monitoring (Hickok, 2012; Nozari et al., 2011).

A potential way to gain insights into the neuronal bases of internal
and feedback monitoring systems supporting speech production is to
study the coupling between the speaker’s voice and his/her own brain
activity during connected speech production. Previous magnetoenceph-
alography (MEG) studies focusing on connected speech listening
demonstrated speech–sensitive coupling between the slow modulations
in the temporal envelope of the speaker’s voice and the listeners’ (mainly
auditory) cortex activity both in quiet and adverse auditory scenes
(Alexandrou et al., 2018a; Bourguignon et al., 2013a; Clumeck et al.,
2014; Ding et al., 2016; Ding and Simon, 2013; Gross et al., 2013;
Molinaro et al., 2016; Peelle et al., 2013a; Vander Ghinst et al., 2019,
2016a; Zion Golumbic et al., 2013). This coupling, henceforth referred to
as the cortical tracking of speech, mainly occurs at syllable (4–8 Hz),
word (2–4 Hz) and phrasal/sentential (<1 Hz) rates. It is considered to
play a pivotal role in parsing connected speech into linguistic units (i.e.,
syllables, words or phrases/sentences) to promote subsequent speech
recognition (Park et al., 2018; Zion Golumbic et al., 2012). Additionally,
it might help predict the precise timing of events in the speech stream
such as syllables, words and phrases/sentences (Donhauser and Baillet,
2020; Zion Golumbic et al., 2012). Such predictions probably facilitate
speech comprehension as well as coordination of turn-taking transitions
during verbal conversation (Friston and Frith, 2015; Zion Golumbic et al.,
2012). It is then sensible to hypothesize that similar cortical tracking of
speech is also at work during connected speech production. Given the
crucial role of the cortical tracking of speech in language comprehension
(Bourguignon et al., 2013a; Clumeck et al., 2014; Ding et al., 2016; Gross
et al., 2013; Molinaro et al., 2016; Peelle et al., 2013a; Vander Ghinst
et al., 2016a), such tracking might indeed contribute to self-produced
speech monitoring systems. If confirmed, this could bring unprece-
dented insights into how humans handle self-generated auditory infor-
mation during language production. Additionally, investigating coupling
directionality (i.e., speech → brain vs. brain → speech coupling) during
connected speech production could bring critical information about the
neural bases of speech production monitoring systems in humans: feed-
back monitoring systems that monitor the sensory consequences of
speech output during production should indeed involve speech → brain
coupling, while internal monitoring systems that generate predictions
about motor programs and sensory consequences of speech output before
its actual production should involve brain → speech coupling. The
demonstration of a difference in coupling directionality between con-
nected speech listening and production might ultimately bring additional
clues about the functional roles (i.e., epiphenomenon vs. effective
contribution to speech production monitoring systems) of the cortical
tracking of speech during speech production.

To address these issues, the present MEG study relied on the com-
parison of the cortical tracking of speech while subjects listened to

recordings of texts read aloud (by a reader or themselves) and while they
read themselves a text aloud. This approach was similar to those used in
previous studies investigating the cortical tracking of speech during
listening to the live (Bourguignon et al., 2013a; Clumeck et al., 2014) or
recorded (Clumeck et al., 2014; Destoky et al., 2019; Vander Ghinst et al.,
2019, 2016a) voice of somebody reading a text aloud. It was also based
on the assumption that some neurocognitive processes are shared by
natural speech production and reading aloud (Sulpizio and Kinoshita,
2016). Indeed, although reading aloud differs in several aspects (e.g,
rhythmicity, prosody, etc.) from natural speech and could be considered
as a non-naturalistic form of speech stimuli (for a detailed review, see
Alexandrou et al., 2018b), it is recognized as a form of speech production
such as, e.g., spontaneous narrative, narrative recalls, conversation,
picture description (see, e.g., B�ona, 2014). The last stages of language
production in these different speech situations indeed share various
output processes: all include phonological encoding (i.e., assigning a
segment to a position in a metrical frame), phonetic encoding (i.e.,
retrieving the motor plans required for articulation), and articulation
(i.e., producing the gestures leading to an acoustic sound) (Kawamoto
et al., 2015). Settling on reading aloud as a task also makes it possible to
control speech content and linguistic form, which are parts of the main
speech features (i.e., speech rhythm, linguistic content, speaker’s iden-
tity) previously reported to affect brain rhythms (Alexandrou et al.,
2017). However, reading aloud decreases the subjects’ need to focus on
semantic/lexical access, other cognitive processes or speech style, which
can potentially affect the cortical tracking of speech and directionality
assessments during language production (B�ona, 2014). Still, during
reading aloud, read speech provides an external frame of reference to
which readers can compare their speech output to, which is not the case
during naturalistic speech production (Alexandrou et al., 2018b). Finally,
comparing the neural processes at play during listening to somebody
reading aloud and during reading aloud allows relying on auditory verbal
information that shares common rhythmicity and prosody.

This MEG study assesses coherence and directionality between slow
temporal modulations in voice and brain activity to investigate the
cortical tracking of speech in subjects who (i) read a text aloud, (ii)
listened to a recording of a different text, and (iii) listened to a recording
of their own speech while reading aloud (i.e., playback). The study was
specifically designed to (i) identify cortical areas that track the slow
fluctuations of the speakers’ voice during self-produced speech, (ii)
determine the causal nature of this tracking in the framework of feedback
and internal speech monitoring systems, and (iii) assess tracking and
directionality differences between reading aloud and listening. We pre-
dicted that (i) the human brain would track the hierarchical linguistic
structures (i.e., syllables, words, sentences/phrases) of speech during
both reading aloud and listening conditions, (ii) tracking levels, areas
and directionality would differ between reading aloud and listening
conditions, and (iii) that listening to a recording of a different text vs.
playback would modulate the level of internal predictions about the
upcoming speech during listening.

2. Methods

2.1. Participants

Eighteen healthy native Spanish speakers without any history of
neuropsychiatric disease or language disorders were studied. One
participant was excluded from the study due to excessive artifacts in the
data. The study therefore reports on 17 participants (range 20–32 years;
mean age 23.9 years; 9 females and 8 males). Sixteen participants were
right-handed according to Edinburgh handedness inventory (score range
40–100%; mean � SD, 70.6 � 19.1%) (Oldfield, 1971). Handedness
appraisal was missing from the last participant. Thirteen participants had
a university degree, 1 was a master student, and 3 were trained pro-
fessionals with high school or secondary school degree (degree obtained
at age ~18 or ~16 respectively when no grade is repeated). The study
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was approved by the BCBL Ethics Committee. Participants were included
in the study after written informed consent.

2.2. Experimental paradigm

The experimental stimuli were derived from 2 narrative texts of
~1000 words. The topics of the texts were maximally neutral: the first
elaborated on the origin of life and human spirituality, while the second
was an attempt to define what is a “discourse”. Both texts were read
aloud by a male and a female native Spanish speaker and recorded with a
high quality microphone. We kept only the first 5 min of these audio
recordings. Reading pace was 2.53 � 0.12 words/s (mean � SD across
the four recordings of the number of words read divided by recording
duration).

Participants underwent four experimental conditions (read, listen,
playback, and rest) lasting ~5 min each while they were sitting in the
MEG chair with their head inside the MEG helmet. During the read
condition, participants continuously read aloud one of the two texts
printed on A4 pages for 314 � 13 s (mean � SD across participants).
During the listen condition, they listened to the audio recording of the
other text read by the reader of their gender. Texts were assigned to
conditions in a counterbalanced manner. During the playback condition,
participants listened to their own voice recorded (see section 2.3 for data
acquisition details) earlier during the read condition. Obviously, playback
condition was performed in all subjects after the read condition. This
playback condition was used (i) to assess the impact of possible sensory
prediction about upcoming speech (as subjects had some hints about
speech content and production from the prior read condition) on the
cortical tracking of speech and on tracking directionality, and (ii) to
control for potential differences in speech rhythm between listen and
read. For both listen and playback conditions, sounds were played with
VLC running on a MacBook pro and delivered at 60 dB (measured at ear-
level in every participant) through a MEG-compatible front-facing flat-
panel loudspeaker (Panphonics Oy, Espoo, Finland) placed ~2 m from
the participants. During the rest condition, participants were asked to
fixate the gaze at a point on the wall of the magnetically shielded room
(MSR) and try to reduce blinks and saccades to the minimum. The order
of the conditions was either read–listen–rest–playback or
listen–read–rest–playback.

2.3. Data acquisition

Neuromagnetic signals were recorded at the Basque Centre on
Cognition, Brain and Language (BCBL) with a whole-scalp-covering
neuromagnetometer installed in a MSR (Vectorview & Maxshield™;
MEGIN Elekta Oy, Helsinki, Finland). The 306-channel MEG sensor
layout consisted in 102 sensor triplets, each comprising one magne-
tometer and two orthogonal planar gradiometers characterized by
different patterns of spatial sensitivity to nearby or right beneath cortical
sources. The recording pass-band was 0.1–330 Hz and the signals were
sampled at 1 kHz. The head position inside the MEG helmet was
continuously monitored by feeding current to five head-tracking coils
located on the scalp and observing the corresponding coil-induced
magnetic field patterns by the MEG sensors. Head position indicator
coils, three anatomical fiducials, and at least 150 head-surface points
(covering the whole scalp and the nose surface) were localized in a
common coordinate system using an electromagnetic tracker (Fastrak,
Polhemus, Colchester, VT, USA).

An optical fiber microphone was placed inside the MSR to record
participants’ voice during the read condition. To maximize sound quality,
the microphone was taped to the edge of the MEG helmet, ~5 cm away
from subjects’ mouth. Sound signals were recorded with Audacity at a
sampling rate of 44.1 kHz. Electrooculograms (EOG) monitored vertical
and horizontal eye movements, and electrocardiogram (ECG) recorded
heartbeat signals. All these signals were recorded time-locked to MEG
signals.

High-resolution 3D cerebral magnetic resonance images (MRI; T1-
weighted MPRAGE sequence) were acquired on a 3 T MRI scan
(Siemens Medical System, Erlangen, Germany) with a 32-channel head
coil.

2.4. Data preprocessing

As reading aloud is typically associated with many sources of high-
amplitude artifacts in electrophysiological signals (e.g., head move-
ments, muscle artifacts, eye movements, etc.), special care was taken
during data preprocessing to subtract as much as possible these artifacts
from raw MEG data.

Fig. 1 (left part) depicts all the preprocessing steps.
Continuous MEG data were first preprocessed off-line using the

temporal signal space separation (tSSS) method (with a correlation limit
of 0.9 and the segment length of the temporal projection set equal to the
recording duration) to subtract external interferences, to correct for head
movements, and to dampen movement artifacts induced by reading
aloud (Taulu et al., 2005; Taulu and Simola, 2006). To further suppress
heartbeat, eye-blink, and eye-movement artifacts, 30 independent com-
ponents were evaluated from the MEG data low-pass filtered at 25 Hz
using FastICA algorithm (dimension reduction, 30; non-linearity, tanh)
(Hyv€arinen et al., 2001; Vigario et al., 2000). Independent components
displaying a correlation exceeding 0.15 with any EOG or ECG signals
were subtracted from the full band and full rank MEG data. The mean �
SD of rejected components was 7.2 � 1.4 (read), 5.1 � 1.8 (listen), 4.9 �
2.0 (rest), and 5� 2.0 (playback). MEG data were then low-pass filtered at
145 Hz and notched at 50 and 100 Hz for landline artifact removal.
Finally, when the maximum MEG amplitude exceeded 5 pT (magne-
tometers) or 1 pT/cm (gradiometers), data within 1 s before and after the
excessive amplitude were discarded from further analyses to avoid in-
clusion of MEG data compromised by any other high-amplitude artifacts
(e.g., head movements or excessive muscle artifacts; Muthukumar-
aswamy, 2013) not removed by tSSS or ICA. Note that we did not attempt
to remove muscle artifacts because these are typically not well removed
by classical linear regression techniques (for a review, see Muthuku-
maraswamy, 2013), and most importantly, because their power mainly
lies at frequencies above 20 Hz (Muthukumaraswamy, 2013) on which
we did not focus. That is, we here focused on brain activity at frequencies
below 8 Hz.

To estimate the efficacy of the preprocessing steps described in the
paragraph above, MEG data were also minimally preprocessed, with
signal space separation (SSS) only. Power spectral densities were then
estimated for minimally and fully preprocessed gradiometer data, based
on the same time segments (identified based on fully preprocessed data).

Speech temporal envelopes were obtained from all sound recordings
as the rectified sound signals low-pass filtered at 50 Hz. Speech temporal
envelopes were further resampled at 1000 Hz time-locked to MEG
signals.

2.5. Coherence analysis

Fig. 1 (middle part) depicts all the processing steps related to
coherence analysis.

To perform coherence analyses, continuous data obtained in all
conditions (listen, playback, read and rest) were split into 2-s epochs with
1.6-s epoch overlap, leading to a frequency resolution of 0.5 Hz (Bortel
and Sovka, 2014). Also, for each participant, only the minimum amount
of epochs across all conditions was used for subsequent analyses to
enforce similar signal to noise ratio across conditions. These steps led to
703 � 45 epochs of MEG and voice envelope signals for each participant
and condition.

Coherence is an extension of Pearson correlation coefficient to the
frequency domain that determines the degree of coupling between two
signals, providing a number between 0 (no linear dependency) and 1
(perfect linear dependency) for each frequency (Halliday, 1995).
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Coherence was previously used to assess the coupling between voice and
brain signals at the frequencies corresponding to phrasal/sentential (<1
Hz), word (2–4 Hz) and syllable (4–8 Hz) rates (Bourguignon et al.,
2013b; Keitel et al., 2018; Luo and Poeppel, 2007; Molinaro and Lizar-
azu, 2018; Peelle et al., 2013b; Poeppel, 2003; Vander Ghinst et al.,
2016b). Based on these studies, we focused on these predefined fre-
quency ranges. Identifying relevant frequency ranges in a data-driven
way might have proven challenging for the read condition since we ex-
pected remaining artifacts to give rise to significant values of coherence
with speech temporal envelope.

Coherence was first estimated at the sensor level. Data from gradi-
ometer pairs were combined in the orientation of maximum coherence as
done in Bourguignon et al. (2015). Coherence at phrasal/sentential level
was taken at the frequency bin corresponding to 0.5 Hz; coherence at
word level was taken as the mean coherence across frequency bins
comprised in 2–4 Hz; coherence at syllable level was taken as the mean
coherence across frequency bins comprised in 4–8 Hz. These frequency
ranges matched well with the occurrence rate of silent periods longer
than 100 ms (listen, 0.41� 0.07 Hz; read& playback, 0.45� 0.05 Hz), the
effective rate of words (listen, 3.13 � 0.13 Hz; read & playback, 3.17 �
0.35 Hz) and the effective rate of syllables (listen, 6.86 � 0.28 Hz; read &
playback, 6.95 � 0.76 Hz). As in previous studies (Bourguignon et al.,
2020; Vander Ghinst et al., 2019), silent periods were defined as periods
when the auditory speech envelope was below a tenth of its mean, and
the effective rates were assessed as the number of words or syllables
manually extracted from audio recordings divided by the corrected
duration of the audio recording. The corrected duration was taken as the
total time during which the reader was actually talking, that is the total
duration of the audio recording minus the sum of all silent periods lasting
at least 100 ms.

Coherence was also evaluated at the source level using a beamformer
approach since this method has a high sensitivity to activity coming from
locations of interest while attenuating external interferences such as
reading-induced head movement, eye movements, or muscle artifacts
(Hillebrand et al., 2005). Beamforming also presents the valuable
advantage of reconstructing residual muscle artifacts close to the acti-
vated muscles, making it easy to identify such artifacts on
source-reconstructed images (Muthukumaraswamy, 2013). To do so,
individual MRIs were first segmented using Freesurfer software (Marti-
nos Center for Biomedical Imaging, Massachusetts, USA; Reuter et al.,
2012). Then, the MEG forwardmodel was computed for three orthogonal
tangential current dipoles placed at the nodes of a homogeneous 5 � 5 �
5 mm3 cubic grid source space covering the entire brain volume,
including the cerebellum and brainstem (MNE suite; Martinos Center for
Biomedical Imaging, Massachusetts, USA; Gramfort et al., 2014). The 3-D
forward model was further reduced to its two first principal components
(Hillebrand et al., 2012; Sekihara and Nagarajan, 2008). The last
component was discarded because it closely corresponds to the radial
orientation with respect to the skull and hence is close to magnetically
silent. Finally, coherence maps were produced within the computed
source space at 0.5 Hz, 2–4 Hz, and 4–8 Hz using Dynamic Imaging of
Coherent Sources (DICS; Gross et al., 2001), and further interpolated
onto a 1-mm grid. Both planar gradiometers and magnetometers were
used for inverse modeling after dividing each sensor signal by its noise
variance. Despite the fact that raw magnetometer signals are considered
noisier than planar gradiometers, in the framework of signal space sep-
aration, signals from both sensor types are reconstructed from the same
inner components, corresponding to the magnetostatic multipole
expansion, and have therefore similar levels of residual interference after
suppression of signals from external sources (Garc�es et al., 2017).

Fig. 1. Main processing steps applied to the data, including preprocessing, coherence analysis and renormalized partial directed coherence (rPDC) analysis. Gray
squared corner boxes indicate data input/output. White rounded corner boxes indicate processing steps.
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Accordingly, even in the read condition where distal artifacts contami-
nated magnetometers’ more than gradiometers’ raw signals, it makes
little difference to include either or both of the sensor types for source
reconstruction. The noise variance was estimated from the preprocessed
rest MEG data, for each sensor separately. As the analyses described in a
further paragraph require extracting the time course of some sources, we
used the additional constraint that beamformer weight coefficients are
real-valued. This constraint is sensible since one can easily argue that
electrical currents in the brain are real:-valued. Practically, it leads to
using the real part of the cross-spectral density matrix in DICS beam-
former computation.

To compute group-level coherence maps, a non-linear transformation
from individual MRIs to the standard Montreal Neurological Institute
(MNI) brain was first computed using the spatial-normalization algo-
rithm implemented in Statistical Parametric Mapping (SPM8, Wellcome
Department of Cognitive Neurology, London, UK; Ashburner et al., 1997;
Ashburner and Friston, 1999) and then applied to individual MRIs and
coherence maps. This procedure generated a normalized coherence map
in the MNI space with 1-mm cubic voxels for each subject, condition and
frequency of interest (i.e., 0.5 Hz, 2–4 Hz, and 4–8 Hz). Group-level maps
were obtained by averaging the normalized coherence maps across par-
ticipants and conditions.

We further identified the coordinates of local maxima in group-level
coherence maps. Such local coherence maxima are sets of contiguous
voxels displaying higher coherence values than all neighboring voxels.
We only report statistically significant local coherence maxima, dis-
regarding the extent of these clusters. Indeed, cluster extent is hardly
interpretable in view of the inherent smoothness of MEG source recon-
struction (Bourguignon et al., 2018; H€am€al€ainen and Ilmoniemi, 1994;
Wens et al., 2015). We also disregarded some local maxima that, based
on their location, were likely to arise out of artifacts.

2.6. Directionality assessment

Fig. 1 (right part) depicts all the processing steps related to direc-
tionality assessment.

The directionality of the coupling between the temporal envelope of
voice signals and the activity within brain areas displaying a significant
local maximum of coherence (see section 2.8), was assessed with
renormalized partial directed coherence (rPDC; Schelter et al., 2009,
2006). To this aim, the time-course of brain electrical activity within
these brain areas was estimated with the beamformer described in sec-
tion 2.5, in the orientation maximizing the coherence with speech tem-
poral envelope. Source and voice signals were low-pass filtered at 10 Hz
and down-sampled at 20 Hz. Then, for each source separately, a vector
autoregressive (VAR) model of order 40 was fitted to the source and the
voice data using the ARfit package (Schneider and Neumaier, 2001). The
rPDC was then estimated based on the Fourier transform of the VAR
model coefficients. This enabled for estimating rPDC at frequencies from
0 to 10 Hz with 0.5 Hz resolution.

2.7. Partial coherence to control for artifacts

In the read condition, there was a discrepancy between sensor and
source-level results (see Results section). In the sensor space, strong ar-
tifacts at the edge of the sensor array obscured the 2–4-Hz and 4–8-Hz
cortical tracking of speech. In the source space, artifacts were present but
genuine cortical tracking of speech in auditory cortices was clearly visible
thanks to the use of the beamformer approach. To verify that this
discrepancy pertained to that beamformer did effectively dampen arti-
facts—and hence strengthen results derived from source-space data—,
we estimated the coherence between speech temporal envelope andMEG
signals while partialling out the contribution of MEG signals recorded at
sensors on the edge of the sensor array.

The following analysis was performed separately at 0.5 Hz, 2–4 Hz
and 4–8 Hz. For each gradiometer pair on the edge of the sensor array (23

in total), we estimated the orientation in the 2-d space spanned by both
gradiometer signals (Bourguignon et al., 2015) yielding the maximum
coherence with speech temporal envelope. Partial coherence was then
estimated between speech temporal envelope and all gradiometer signals
(again optimizing on the orientation within all pairs) while partialling
out edge gradiometer signal in its optimal orientation (Halliday, 1995).
This led to as many sensor distribution of partial coherence as there are
edge gradiometer pairs. For each sensor, we retained the minimum
partial coherence value across all these edge gradiometer pairs.

2.8. Statistical analyses

2.8.1. Reading pace
Participants’ word production rate in the read condition was

compared to that in the texts used in the listen condition with a paired t-
test.

2.8.2. Comparison of power spectral density between conditions
We compared power spectral densities between the read and listen

conditions at the frequencies of interest. For each subject, tested condi-
tion and preprocessing scheme (SSS only, and tSSS þ ICA), global power
spectral density was computed as the mean power spectral density across
gradiometer sensors. The global power densities averaged across each
frequency range of interest (0.3–0.7 Hz, 2–4, Hz and 4–8 Hz) were log-
transformed and compared between conditions with a paired-sample t-
test. We also compared between conditions the difference between global
power for fully- and minimally preprocessed data.

2.8.3. Significance of subject-level coherence in the sensor space
We evaluated the statistical significance of sensor-space coherence

values, using surrogate-data-based statistics (Faes et al., 2004). For each
participant, condition, and frequency range of interest (i.e., 0.5 Hz, 2–4
Hz, and 4–8 Hz), we extracted the maximum across gradiometer pairs of
the mean coherence across the frequency range of interest. This
maximum genuine coherence was then compared to a distribution of
1000 surrogate values computed in the same way, but with speech
temporal envelope replaced by its Fourier transform surrogate (Faes
et al., 2004). Fourier transform surrogate preserves the power spectrum
but destroys the phase information by replacing the phase of Fourier
coefficients by random numbers in the range [–π; π] (Faes et al., 2004).
Genuine maximum coherence values were deemed significant when they
exceeded the 95th percentile of their surrogate distribution.

2.8.4. Significance of group-level coherence in the source space
The statistical significance of—genuine—group-level coherence maps

was assessed with non-parametric permutation test (Nichols and Holmes,
2002). First, participant- and group-level null coherence maps at the
frequencies of interest (i.e., 0.5 Hz, 2–4 Hz, and 4–8 Hz) were computed
with the MEG signals and the voice signals rotated in time by about 2 min
30 s (i.e., where the first and second halves were swapped, thereby
destroying genuine coherence but preserving spectral properties). The
exact temporal rotation applied was chosen to match a pause in speech to
enforce continuity. Group-level difference maps were obtained by sub-
tracting f-transformed genuine (read, listen or playback) and null
group-level coherencemaps for each frequency of interest. Under the null
hypothesis that coherence maps are the same whatever the experimental
condition, the labeling genuine or null are exchangeable prior to differ-
ence map computation (Nichols and Holmes, 2002). To reject this hy-
pothesis and to compute a significance threshold for the correctly labeled
difference map, the sample distribution of the maximum of the difference
map’s absolute value within the entire brain was computed from a subset
of 1000 permutations. The threshold at p < 0.05 was computed as the 95
percentile of the sample distribution (Nichols and Holmes, 2002). All
supra-threshold local coherence maxima were interpreted as indicative
of brain regions showing statistically significant coupling with the pro-
duced (read) or heard (listen and playback) sounds.
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2.8.5. Comparison of source location between conditions
The coordinates of significant local coherence maxima were statisti-

cally compared between frequency ranges (0.5 Hz vs. 2–4 Hz, 0.5 Hz vs.
4–8 Hz, and 2–4 Hz vs. 4–8 Hz) and between conditions (listen vs. play-
back, listen vs. read, and playback vs. read) using the location-comparison
approach proposed by Bourguignon et al. (2018). This method uses a
bootstrap procedure (Efron, 1979) to estimate the sample distribution of
coordinates of the two local coherence maxima under comparison and
tests the null hypothesis that the distance between them is zero. Briefly,
for each comparison, we generated 1000 group-level maps of the con-
ditions under assessment by random bootstrapping from the subjects, and
identified in each map the coordinates of the local maximum closest to
the average location of the two maxima in the genuine maps. The
resulting sample distribution of coordinate difference was then submit-
ted to a multivariate location test evaluating the probability that this
difference is zero (Bourguignon et al., 2018). That test tightly relates to
the multivariate T2 test (Hotelling, 1931) and assumes that the sample
distribution of coordinates difference is normal.

For some local maxima, we further tested the—a posteriori—hypo-
thesis that their bootstrap coordinate distributions were bimodal rather
than unimodal, suggesting that two separate sources would contribute to
these single local maxima (for a full description of the methods, see
supplementary material subsections 8.1.1 & 8.2.1). Note that this anal-
ysis cannot tell apart the two following possibilities: 1) the two sources
are present in all participants with inter-individual variability in their
relative strength or 2) either of the sources is present in a given partici-
pant, so that there is inter-individual variability in the recruited network.

2.8.6. Significance of individual subjects’ rPDC values and comparison
between coupling directions

We evaluated the number of participants showing statistically sig-
nificant rPDC at 0.5 Hz, 2–4 Hz, or 4–8 Hz, using surrogate-data-based
statistics (Faes et al., 2010). For each participant, selected brain area,
and coupling direction, the genuine rPDC value (at 0.5 Hz, or the mean
across 2–4 Hz or 4–8 Hz) was compared to a distribution of 1000 sur-
rogate rPDC values derived from causal Fourier transform surrogate data
(Faes et al., 2010). Causal Fourier transform surrogate data were
generated with the estimated VARmodel wherein coupling in the specific
causal direction being tested is abolished by setting to 0 the associated
coefficients. Because other coefficients in the VAR model were kept un-
altered, coupling in the causal direction that was not being tested was
preserved. As a consequence, some degree of coherence within the data
was preserved; arguably only that ascribable to the preserved coupling
direction (Faes et al., 2010). Genuine rPDC values were deemed signifi-
cant when they exceeded the 95th percentile of their surrogate
distribution.

Values of rPDC were compared between speech → brain and brain →
speech directions using paired t-tests across participants.

2.8.7. ANOVA assessment of coherence, rPDC, and partial coherence values
Source-level coherence, rPDC and sensor-level partial coherence

values were analyzed with 2-way repeated measures ANOVAs. In these
assessments, the first factor was the condition (listen, playback, and read).
Based on the result that only one—non-artifactual—local maximum was
found per hemisphere in all conditions, we also included the hemisphere
as a second factor. ANOVAs were run separately for 0.5 Hz, 2–4 Hz and
4–8 Hz coupling, and for speech→ brain and brain→ speech directions in
case of rPDC assessment. This is justified by that coupling values within
these two classes had relatively different variances. Analysing data
together would have violated the homoscedasticity assumption of the
ANOVA. For source-level coherence values, the dependent variable was
the maximum coherence across a 10-mm sphere centered on significant
local maxima of group-level coherence maps. For sensor-level partial
coherence values, the dependent variable was the maximum partial
coherence across subsets of gradiometer pairs showing the peaks of
coherence. Formally, these subsections comprised the 9 gradiometers of

maximum coherence averaged across participants and conditions. There
were 2 selections, one for the left and one for the right hemisphere.

2.8.8. Significance of the difference between coupling directions in effects
involving rPDC

For each effect revealed by the ANOVA conducted on rPDC values, we
evaluated whether this effect was significantly different between
coupling directions with a Bootstrap approach. That is, we created a
Bootstrap distribution of the difference in F value associated to this effect
assessed on rPDC in the brain → speech vs. speech → brain directions. A
p-value was computed as the proportion of negative (or positive) F
values.

2.9. Data and software availability

Data and analysis scripts are available upon reasonable request to the
corresponding author.

3. Results

3.1. Reading pace

In the read condition, participants read at a pace (uncorrected) of
2.64 � 0.28 words/s (mean � SD) or 5.83 � 0.62 syllables/s. This pace
was not significantly different from the one they heard in the listen
condition (t16 ¼ 1.26, p ¼ 0.23). Their reading fluency (percentage of
words correctly read without hesitation) was 98.3 � 0.7%.

3.2. Artifact removal in the read condition

Fig. 2 (top) shows that reading-induced artifacts were dampened by
the preprocessing steps. When the data were minimally preprocessed
(only with signal space separation), the overall MEG power was ~100%
higher in read than listen in the frequency ranges of interest (~0.5 Hz,
118%, t16 ¼ 2.60, p ¼ 0.019; 2–4 Hz, 105%, t16 ¼ 3.01, p ¼ 0.0082; 4–8
Hz, 71%, t16 ¼ 2.42, p ¼ 0.028). For the fully preprocessed data (tem-
poral signal space separation and ICA), overall MEG power was less than
25% higher in read than listen (~0.5 Hz, 13%, t16 ¼ 2.30, p ¼ 0.035; 2–4
Hz, 23%, t16 ¼ 4.12, p ¼ 0.0008; 4–8 Hz, 5%, t16 ¼ 1.24, p ¼ 0.23).
Importantly, the difference in overall power between read and listen was
significantly lower for fully than minimally preprocessed MEG (~0.5 Hz,
t16 ¼ 2.39, p¼ 0.030; 2–4 Hz, t16 ¼ 2.27, p¼ 0.038; 4–8 Hz, t16 ¼ 2.34, p
¼ 0.33). Overall, this indicates that some artifacts remained in readMEG
signals, but that their amplitude was low.

Fig. 2 (bottom) shows that reading-induced artifacts affected mainly
the sensors on the edge of the sensor array, more so for minimally than
fully preprocessed data. After full preprocessing, some sensors at the
vertex even showed lower power in read than listen at ~0.5 Hz and 4–8
Hz.

3.3. Coherence results

3.3.1. Coherence in the sensor space
Fig. 3 illustrates the results of cortical tracking of speech quantified

with coherence in the sensor space. The maximum coherence between
MEG signals and speech temporal envelope was observed at 0.5 Hz as in
previous studies (Bourguignon et al., 2018, 2013a; Clumeck et al., 2014;
Molinaro et al., 2016; Vander Ghinst et al., 2019, 2016a). Coherence at
0.5 Hz was significant in all subjects and conditions (ps < 0.05). This
frequency matches the supra-second phrasal/sentential time-scale.
Coherence was also significant in a substantial proportion of the 17
subjects at 2–4 Hz (listen, 11; playback, 8; read, 17) and 4–8 Hz (listen, 13;
playback, 12; read, 17). Note that the detection rate of significant
coherence in the read condition has likely been inflated by the presence
of artifacts inherent to speech production. These frequency ranges were
further investigated because they match the 250–500 ms word time-scale
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(2–4 Hz), and the 150–300-ms syllable time-scale (4–8 Hz). In both
listening conditions (listen & playback), coherence topographies were
characterized by clusters over bilateral temporal sensors, more posterior
at 0.5 Hz than at 2–4 and 4–8 Hz. In the read condition, coherence to-
pographies were suggestive of the presence of strong artifacts but also of
genuine bilateral activity arising from temporal sensors (more convinc-
ingly so at 0.5 Hz than at 2–4 Hz, and 4–8 Hz). At 0.5 Hz, the peak
coherence in both hemispheres was one sensor more anterior in the read
condition than in the listening conditions. However, we did not appraise
the statistical significance of this location difference in the sensor space
since such comparison was planned (and will be fulfilled) for source
space data.

3.3.2. Coherence in the source space
Fig. 4A presents the source-space coherence maps obtained with DICS

at 0.5 Hz, 2–4 Hz, and 4–8 Hz separately.
Table 1 presents the MNI coordinates of significant local coherence

maxima observed in source-space maps that we treated as non-artifactual
based on their location.

In both listening conditions (listen & playback) significant local
coherence maxima localized in bilateral cortex around posterior superior
temporal sulcus (pSTS) at 0.5 Hz and at bilateral supratemporal auditory
cortex (STAC) at 2–4 Hz, and 4–8 Hz, except for the right-hemisphere
source of 2–4-Hz coherence in playback that localized at the pSTS.
Still, the location comparison test revealed no statistically significant

difference in location between frequencies (ps > 0.05; 12 comparisons: 2
conditions� 2 hemispheres� 3 pairs of frequency ranges). This negative
result was likely due to limited statistical power since location differ-
ences between 0.5-Hz and 4–8-Hz cortical tracking of speech was pre-
viously reported to be highly significant in the right hemisphere on a
larger sample (Bourguignon et al., 2018). There were also no statistically
significant differences in location between the two listening conditions
(ps > 0.5; 6 comparisons: 3 frequencies � 2 hemispheres).

In the read condition, source reconstruction results emphasized the
presence of genuine cortical tracking of speech. Some artifacts remained
but they did not overshadow coherence local maxima in the auditory/
speech regions of each hemisphere and in each frequency range explored
(see Fig. 4A and Table 1 for peak coordinates and coherence values).
Local maxima of coherence interpreted as artifactual were in the pons
(0.5 Hz, MNI [–1 –1 –35]; 2–4 Hz, [1 –4 –38]; 4–8 Hz, [2 –14 –36]), in the
right frontal pole (4–8 Hz, [52 34 –9]), and in the right temporal pole
(0.5 Hz, [52 17 –26]; 2–4 Hz, [52 19 –29] and [30 13 –41]).

The cortical tracking of speech elicited by the read condition appeared
to be different from that during listening conditions at 0.5 Hz, 2–4 Hz,
and 4–8 Hz. We focus below on the source location comparison between
read and listen, and thereafter, highlight the differences seen when read
and playback were compared.

At 0.5 Hz, right-hemisphere local coherence maxima in read and listen
were distant of only 3 mm, a distance that was not statistically significant
(F3,998 ¼ 0.052, p¼ 0.98). In the left hemisphere, they were distant of 19

Fig. 2. Adequacy of preprocessing steps to suppress artifacts. Top — Power spectral densities of MEG gradiometer signals averaged across sensors and subjects in the
read (black traces) and listen conditions (gray traces). MEG data were either preprocessed with signal space separation only (left) or with temporal signal space
separation and independent component analysis (ICA) (right). Bottom — Spatial distribution of power spectral densities at frequencies of interest (mean across 0.3–0.7
Hz, 2–4 Hz, and 4–8 Hz) in listen and read, and ratio thereof. In ratio maps, significant ratios are highlighted with red (read > listen) or blue (read < listen) discs.
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Fig. 3. Coherence at the sensor level. Left — Sensor distribution of the coherence at 0.5 Hz, 2–4 Hz, and 4–8 Hz averaged across subjects. White discs highlight the
sensors of maximum coherence, or, in the read condition at 2–4 Hz and 4–8 Hz, the sensors suggestive of the presence of genuine speech brain tracking. Right —
Individual (gray) and group-averaged (black) coherence spectra at the highlighted sensors. Values from 0 to 1.5 Hz are taken from sensors identified in the 0.5 Hz map,
and values from 1.5 Hz to 10 Hz from the sensors identified in the 2–4 and 4–8 Hz maps (identical sensors).

Fig. 4. Coherence in the source space. Top — Group-level coherence maps at 0.5 Hz, 2–4 Hz, and 4–8 Hz in the 3 conditions (listen, playback and read) thresholded at
statistical significance level. The color scale is tailored to each coherence map: it ranges from 0 to its maximum (indicated in between brain images). Bottom —

Individual (gray) and group-averaged (black) coherence spectra at the local maxima of coherence.
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mm, which, surprisingly, was not deemed statistically significant either
(F3,998 ¼ 1.41, p ¼ 0.24). Detailed analyses revealed that this lack of
significance pertained to that bootstrap coordinates of the local coher-
ence maximum in the listen condition peaked at two locations: at the pSTS
but also at the STAC (for more details, see supplementary material sub-
section 8.1.2). There was only one peak in the STAC in the read condition
(see supplementary material subsection 8.1.3). These results indicate
that reading aloud elicits cortical tracking of speech at 0.5 Hz only in
STAC while speech listening also recruits the cortex around the pSTS (see
supplementary material subsection 8.2.2).

At 2–4 Hz, local coherence maxima in the read condition localized in
the parietal operculum bilaterally. Although these locations were distant
from those in the listen condition by 18 mm (left hemisphere) and 9 mm
(right hemisphere), the location-comparison test did not deem this dif-
ference in location statistically significant (left hemisphere, F3,998¼ 2.02,
p ¼ 0.11; right hemisphere, F3,998 ¼ 2.51, p ¼ 0.058). Again, the lack of
significance for the left-hemisphere assessment pertained to that boot-
strap coordinates of the local coherence maximium in the listen condition
peaked at both the pSTS and the parietal operculum (close to the STAC
though) (see supplementary material subsection 8.1.4). There was only
one peak in the parietal operculum in the read condition (see supple-
mentary material subsection 8.1.5). This pattern of results indicates that
reading aloud elicits cortical tracking of speech at 2–4 Hz only in the
parietal operculum while speech listening also recruits the cortex around
the pSTS (see supplementary material subsection 8.2.3).

At 4–8 Hz, local coherence maxima in the read condition localized in
bilateral parietal operculum, i.e., more dorsally (above the sylvian
fissure) than those in the listen condition by 19 mm (left hemisphere) and
11 mm (right hemisphere). The location-comparison test confirmed that
this difference in location between read and listen conditions was statis-
tically significant (left hemisphere, F3,998 ¼ 10.10, p < 0.0001; right
hemisphere, F3,998 ¼ 3.49, p ¼ 0.015).

Similar results were obtained for the comparison between read and
playback. Still, the following statistical conclusions were different: the
location comparison test did reveal a significant difference in location
between read and playback at 2–4 Hz (left hemisphere, F3,998 ¼ 4.34, p ¼
0.0048; right hemisphere, F3,998 ¼ 2.70, p ¼ 0.044), and no significant
difference at 4–8 Hz in the right hemisphere (F3,998 ¼ 2.47, p ¼ 0.061).

3.3.3. Effect of conditions on the coherence strength
Values of the cortical tracking of speech quantified with coherence at

condition-specific dominant sources were compared with repeated
measures ANOVA, separately at 0.5 Hz, 2–4 Hz, and 4–8 Hz.

At 0.5 Hz there was a main effect of condition on coherence level
(F2,32 ¼ 8.10, p¼ 0.0014), no significant main effect of hemisphere (F1,16
¼ 0.20, p ¼ 0.66), and no significant interaction (F2,32 ¼ 1.95, p ¼ 0.16).
Post-hoc t-tests revealed that coherence values in listen (0.092 � 0.039,
mean � SD of the mean coherence across hemispheres) and playback

(0.090 � 0.046) did not differ significantly (t16 ¼ 0.21, p ¼ 0.84), while
values in read (0.057 � 0.022) were significantly lower than those in
listen (t16 ¼ 3.95, p ¼ 0.0012) and playback (t16 ¼ 3.47, p ¼ 0.0031).

At 2–4 Hz there was a main effect of condition on coherence level
(F2,32 ¼ 10.2, p¼ 0.0004), no significant main effect of hemisphere (F1,16
¼ 4.31, p¼ 0.054), and no significant interaction (F2,32¼ 1.39, p¼ 0.26).
Post-hoc t-tests revealed that coherence values in listen (0.0135 �
0.0049) and playback (0.0150 � 0.077) did not differ significantly (t16 ¼
0.65, p ¼ 0.53), while values in read (0.0218 � 0.0053) were signifi-
cantly higher than those in listen (t16 ¼ 6.85, p < 0.0001) and playback
(t16 ¼ 3.16, p ¼ 0.0061).

At 4–8 Hz there was a main effect of condition on coherence level
(F2,32 ¼ 16.6, p< 0.0001), no significant main effect of hemisphere (F1,16
¼ 2.23, p ¼ 0.15), and no significant interaction (F2,32 ¼ 0.06, p ¼ 0.94).
Post-hoc t-tests revealed that coherence values in listen (0.0183 �
0.0052) and playback (0.0191 � 0.052) did not differ significantly (t16 ¼
0.58, p ¼ 0.57), while values in read (0.0294 � 0.0086) were signifi-
cantly higher than those in listen (t16 ¼ 4.28, p ¼ 0.0006) and playback
(t16 ¼ 4.37, p ¼ 0.0005).

3.4. Directionality results

rPDC was used to separate the relative contributions of signals
reacting to speech (i.e., external feedbackmonitoring system) and signals
preceding speech (i.e., internal speech monitoring system) to the cortical
tracking of speech. In practice, rPDC was computed between speech
temporal envelope and the time-course of each source of significant
cortical tracking of speech.

Fig. 5 presents rPDC values in all conditions.
Table 2 details the number of participants displaying significant rPDC

in all conditions, directions and frequency ranges of interest.
Paired t-tests revealed that rPDC was systematically higher in the

speech→ brain direction than in the brain→ speech direction (ps< 0.05)
except at 0.5 Hz in the left hemisphere in the read condition (t16¼ 1.61, p
¼ 0.13), and at 2–4 Hz in 2 instances (ps ¼ 0.06).

The ANOVA assessment of rPDC values was performed with factors
condition (listen, playback and read) and hemisphere (left and right)
separately at 0.5 Hz, 2–4 Hz, and 4–8 Hz, and for the two coupling di-
rections. There was a significant main effect of condition on speech →
brain rPDC at 0.5 Hz (F2,32 ¼ 4.66, p ¼ 0.017) explained by lower values
in read (10.8 � 7.2, mean � SD of the mean rPDC across hemispheres)
than in listen (16.9 � 7.9; t16 ¼ 2.70, p ¼ 0.016) and playback (17.0 �
11.9; t16 ¼ 3.45, p ¼ 0.0033), with the two latter that did not differ
significantly (t16 ¼ 0.063, p¼ 0.95). There was also a significant effect of
condition on brain → speech rPDC at 4–8 Hz (F2,32 ¼ 8.43, p ¼ 0.0011)
explained by higher values in read (2.75 � 0.74) than in listen (2.06 �
0.38; t16 ¼ 2.90, p ¼ 0.011) and playback (2.02 � 0.38; t16 ¼ 3.50, p ¼
0.0030), with the two latter that did not differ significantly (t16 ¼ 0.30, p

Table 1
MNI coordinates [mm] and coherence values of maximum speech brain tracking, as well as corresponding sensor-level coherence values controlled for artifacts in
sensors at the edge of the sensor array.

Left hemisphere Right hemisphere

MNI coordinate [mm] Source coherence Sensor partial coherence MNI coordinate [mm] Source coherence Sensor partial coherence

Cortical tracking of speech at 0.5 Hz
listen [–66 –25 1] 0.068 0.056 [66 –25 7] 0.070 0.060
playback [–67 –28 –3] 0.063 0.046 [66 –24 3] 0.068 0.046
read [–62 –10 12] 0.040 0.045 [66 –22 6] 0.043 0.041

Cortical tracking of speech at 2–4 Hz
listen [–63 –25 15] 0.0128 0.0106 [67 –11 6] 0.0157 0.0123
playback [–64 –17 9] 0.0138 0.0104 [68 –23 3] 0.0162 0.0118
read [–63 –15 30] 0.0178 0.0132 [68 –15 14] 0.0269 0.0169

Cortical tracking of speech at 4–8 Hz
listen [–61 –12 7] 0.0159 0.0138 [65 –13 7] 0.0162 0.0133
playback [–63 –12 9] 0.0153 0.0122 [65 –11 7] 0.0172 0.0135
read [–62 –13 28] 0.0209 0.0174 [65 –10 18] 0.0286 0.0249
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¼ 0.77). There were no other significant main effects or interactions (ps
> 0.1). Importantly, the factor condition had a significantly stronger
effect on speech → brain than brain → speech rPDC at ~0.5 Hz (p ¼
0.034; Bootstrap-based assessment), and on brain → speech than speech
→ brain rPDC at 4–8 Hz (p ¼ 0.028).

As it is unclear how artifacts contributed to these rPDC results at 0.5
Hz and 4–8 Hz, we repeated the rPDC analysis between speech temporal
envelope and signals from a sensor that picked up strong artifacts (left
hemisphere: MEG153*; right hemisphere: MEG263*). The ANOVA
assessment of these rPDC values revealed in all 4 instances (2 coupling

directions � 2 frequency ranges) a significant effect of condition (ps <
0.05) explained by higher values in read than in listen and playback. Also,
the factor condition did not have a significantly stronger effect on speech
→ brain than brain→ speech rPDC at ~0.5 Hz (p ¼ 0.73), and it affected
significantly less the brain→ speech than speech→ brain rPDC at 4–8 Hz
(p ¼ 0.002; i.e., the effect opposite to that found at the sources of sig-
nificant cortical tracking of speech).

3.5. Partial coherence

Fig. 6 illustrates the cortical tracking of speech in sensor space
controlled for artifacts in edge sensors using partial coherence. It is
noteworthy that in the read condition, artifacts were substantially sup-
pressed with partial coherence, while coherence at sensors above bilat-
eral auditory cortices was essentially preserved. Moreover, partial
coherence values were quite faithful to the source-space coherence
values, as can be seen in group-level values displayed in Table 1 (simi-
larity in source coherence and sensor partial coherence values).

Partial coherence levels were compared with repeated measures
ANOVA with factors condition (listen, playback and read) and hemisphere
(left and right) separately at 0.5 Hz, 2–4 Hz and 4–8 Hz. At 0.5 Hz, there
were no significant effects nor interaction (ps > 0.5). At 2–4 Hz and 4–8
Hz there was a main effect of condition (2–4 Hz, F2,32 ¼ 7.75, p¼ 0.0018;
4–8 Hz, F2,32 ¼ 18.3, p < 0.0001), and no significant main effect of
hemisphere nor interaction (ps > 0.2). Partial coherence values in read
(2–4 Hz, 0.0226 � 0.0057; 4–8 Hz, 0.0292 � 0.0106; mean � SD of the
mean coherence across hemispheres) were higher than those in listen

Fig. 5. Directionality assessment with renormalized partial directed coherence
(rPDC). Bars display the mean and SD of rPDC values. There is 1 bar per con-
ditions (listen, playback and read), frequency range of interest (0.5 Hz, 2–4 Hz,
and 4–8 Hz), hemisphere (left and right), and direction (speech → brain and
brain → speech). Significance of the comparison between directions are indi-
cated above each pair of bars (*p < 0.05, **p < 0.01).

Table 2
Number of subjects displaying significant renormalized partial directed coher-
ence (rPDC).

listen playback read

left right left right left right

0.5 Hz speech → brain 16 15 14 13 10 12
brain → speech 4 5 5 3 5 4

2–4 Hz speech → brain 12 10 8 16 10 10
brain → speech 2 1 4 2 7 3

4–8 Hz speech → brain 10 8 9 9 12 9
brain → speech 0 0 1 1 4 6

Fig. 6. Speech brain tracking at the sensor level assessed with partial coherence
to control for artifacts in edge sensors (highlighted in magenta). Note that to-
pographies at 2–4 Hz and 4–8 Hz are displayed with a different scale for the read
and listening (listen and playback) conditions. White discs highlight the same
sensors as those in Fig. 1 (sensors of maximum coherence, or, in the read con-
dition at 2–4 Hz and 4–8 Hz, the sensors suggestive of the presence of genuine
speech brain tracking).
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(2–4 Hz, 0.0158 � 0.0042, t16 ¼ 5.12, p ¼ 0.0001; 4–8 Hz, 0.0157 �
0.0049, t16 ¼ 4.38, p ¼ 0.0005) and playback (2–4 Hz, 0.0160 � 0.0085,
t16 ¼ 2.86, p ¼ 0.011; 4–8 Hz, 0.0158 � 0.0046, t16 ¼ 4.41, p ¼ 0.0004),
while they did not differ significantly between listen and playback (2–4
Hz, t16 ¼ 0.0714, p ¼ 0.94; 4–8 Hz, t16 ¼ 0.14, p ¼ 0.89).

4. Discussion

This MEG study investigates how the human brain uses self-generated
auditory information during connected speech production in the frame-
work of feedback and internal speech monitoring systems. For that pur-
pose, the cortical tracking of the hierarchically nested linguistic
structures of speech was compared between reading aloud and two
listening conditions, i.e., listening to someone reading a text or to a
recording of the self-generated speech while reading aloud. Main original
findings are that (i) the human brain tracks the speech temporal envelope
at frequencies matching the occurence rate of the main linguistic struc-
tures of speech during both reading aloud and listening conditions, (ii)
the auditory cortex tracks sentences/phrases (<1 Hz) with a decreased
strength during reading aloud compared with listening conditions, (iii)
the parietal operculum tracks syllables and words (2–4 and 4–8 Hz)
during reading aloud while this tracking occurs at primary (4–8 Hz) or
secondary (2–4 Hz) auditory cortex during listening, (iv) there was no
statistically significant difference in tracking directionality between
listening to a recording of a different text vs. playback, and (v) the
cortical tracking of speech at <1 Hz, 2–4 Hz, and 4–8 Hz is dominated by
auditory feedback processing during both reading aloud and listening,
with an enhancement of internal speech monitoring at 4–8 Hz during
reading aloud compared with listening. Taken together, these data bring
unprecedented insights into the neural mechanisms at play for the
monitoring of the auditory consequences of self-produced speech while
reading aloud.

4.1. Cortical tracking of speech at frequencies <1 Hz

The cortical tracking of speech at <1-Hz was attenuated during self-
produced speech compared with listening to external speech. A control
analysis, however, failed to corroborate this finding as it indicated
similar rather than lower level of <1-Hz tracking during reading
compared with listening. An attenuation would be well in line with the
literature on speech-evoked brain responses. Indeed, auditory cortical
responses (i.e., N100/M100 evoked response) to self-produced speech
are typically attenuated or suppressed compared with those obtained
during listening to a playback recording of the same sounds or during
silent reading of a text (Curio et al., 2000; Houde et al., 2002; Numminen
et al., 1999; Numminen and Curio, 1999). Such attenuation is absent
when the auditory feedback is altered (e.g., pitch-shifted or alien speech
feedback) (Heinks-Maldonado et al., 2006, 2005).

Our results also indicate that the cortical tracking of speech at <1-Hz
while reading aloud is dominated by the speech feedback monitoring
system. Indeed, both reading and listening gave rise to similarly low level
of <1-Hz brain → speech coupling, which we posit, is the hallmark of
reliance on the internal speech monitoring system. Note that the signif-
icant brain → speech coupling observed in ~30% of the subjects was
most likely spurious, i.e., related to the fact that, in directionality
assessment, strong coupling in one direction generates spurious coupling
in the other direction (Faes et al., 2010).

Our results also shed light on the neural network involved in moni-
toring <1-Hz fluctuations in speech temporal envelope. During speech
listening, this network seems to include the STAC and cortex around
pSTS (possibly owing to inter-individual variability in the recruited
area), while it only involves the STAC during reading aloud. This suggests
that during self-generated speech, sensory feedback at phrasal/sentential
level is mainly processed at early auditory cortices. The fact that we
observed similar brain sources at the origin of the cortical tracking of
speech <1 Hz also suggests that speech-related artifacts did not

substantially influence source space results.

4.2. Cortical tracking of speech at 2–4 and 4–8 Hz

At 2–4 and 4–8 Hz, the cortical tracking of speech was stronger when
reading aloud than during passive listening and it peaked in different
cortical areas: primary (i.e., STAC for 4–8 Hz) or secondary (i.e., cortex
around the pSTS for 2–4 Hz) auditory cortices during listening and pa-
rietal operculum during reading aloud. Tracking was mainly driven by
the speech → brain contribution during reading aloud similarly to the
listening conditions. There was however a significant enhancement in
brain → speech coupling at 4–8 Hz during reading compared with
listening conditions.

A previous MEG study demonstrated the existence of significant
coupling between ventral primary sensorimotor (SM1) cortex (i.e.,
mouth area) and orbicular oris muscle activities during silent mouthing
of a syllable (/pa/) periodically repeated at different frequencies (i.e.,
0.8–5 Hz) (Ruspantini et al., 2012). This coupling phenomenon was
driven by the mouth movement repetition rate during syllable mouthing
and peaked at the individual spontaneous movement rate (i.e., self-paced
rate of syllable articulation: ~2–3 Hz). It is therefore probably analogous
(for a detailed discussion, see Bourguignon et al., 2019) to the previously
described cortico-kinematic coupling (CKC) phenomenon, which is the
coupling between the kinematics of finger or toe movements and the
activity in the SM1 cortex corresponding to the moved limb (Bourgui-
gnon et al., 2012, 2011; Marty et al., 2015a, 2015b; Piitulainen et al.,
2015). CKC indeed occurs at movement frequency (and harmonics),
which is rather similarly visible in the rectified surface electromyogram
and other kinematic-related signals such as acceleration, force and
pressure (Piitulainen et al., 2013a,b). Of note, CKC is mainly driven by
proprioceptive afferents to SM1 cortex (Bourguignon et al., 2015; Piitu-
lainen et al., 2013a,b). Accordingly, our data suggests that during con-
nected speech production, self-generated proprioceptive and auditory
information resulting from word and syllable production are monitored
in ventral SM1 cortex. In particular, the multimodal (i.e., somatosensory
and auditory) nature of such speech-related sensory monitoring at SM1
cortex is supported by the rather low correlation between rhythmical lip
movement and auditory speech temporal envelope during speech pro-
duction (Bourguignon et al., 2020; Chandrasekaran et al., 2009; Park
et al., 2016). The observed frequency-specific auditory feedback moni-
toring at SM1 cortex is in agreement with the external feedback moni-
toring system and the sensorimotor transformation theories of speech
(Cogan et al., 2014; Hickok, 2012; Houde and Chang, 2015). Critically,
the present study suggests that the neocortical areas involved in cortical
tracking of speech at 2–4 Hz and 4–8 Hz are different during speech
perception and production, which brings novel major insights into the
neural bases of speech external feedback monitoring systems. Finally, the
fact that the 4–8-Hz brain→ speech coupling was significantly enhanced
during reading (compared to listening) also suggests that the brain does
generate internal sensorimotor representations of upcoming
self-produced syllabic sounds, as put forward by the predictive coding
theory (Friston, 2010). Importantly, the motor origin of this effect sup-
ports the notion that, in this frequency band, the brain computes the
time-course of the to-be-produced articulation.

4.3. Methodological considerations

First, there was no difference between listen and playback conditions
in any of the tested aspects of the cortical tracking of speech. This implies
that the effects we uncovered (i) were not influenced by priming about
upcoming speech content (intrinsic to playback) and (ii) not linked to a
difference in speech rhythm between listen and read.

Second, neurophysiological mechanisms involved in overt language
production are typically difficult to explore using MEG due to multiple
sources of high-amplitude artifacts (e.g., head and jaw movements,
muscular activity, etc.) that contaminate brain signals (see, e.g.,
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Simmonds et al., 2014). Here, we were minimally concerned with muscle
artifacts because their power mainly lies at frequencies above 20 Hz
(Muthukumaraswamy, 2013) on which we did not focus. For the removal
of other artifacts (at lower frequencies; including those induced by
articulatory mouth gestures in read), we relied on tSSS, ICA, and
threshold-based artifact rejection. Power spectral analyses showed that
these preprocessing steps were efficient to dampen artifacts, but not to
fully suppress them from sensors at the edge of the sensor array. We then
reconstructed brain activity with a minimum variance beamformer, an
approach that specifically passes activity coming from locations of in-
terest while cancelling external interferences (Hillebrand et al., 2005).
Still, sensor and source maps of cortical tracking of speech in the pro-
duction condition indicated the presence of remaining movement arti-
facts characterized by coherence values comparable to those associated
with genuine cortical tracking of speech. It is therefore probable that
these artifacts were mild and hence not suppressed by tSSS, ICA or
beamforming.

Beyond attempting to suppress artifacts, we conducted two control
analyses designed to evaluate the impact of remaining artifacts on our
results. First, by computing the rPDC between speech temporal envelope
and MEG signals at sensors with high amplitude artifacts, we could
demonstrate that reading-induced artifacts spuriously inflate rPDC
values in both directions. This supports our two main findings since
reading (compared with listening) was associated with decreased <1-Hz
tracking (rather than increased), and specifically increased 4–8-Hz
tracking in the brain→ speech direction (rather than in both directions).
As further support for the genuineness of these patterns of directionality,
the effect of condition on coupling direction at the sensors with high
amplitude artifacts was completely absent (<1-Hz) or even opposite to
that found at the sources of significant cortical tracking of speech (4–8-
Hz). Finally, we used partial coherence analysis in sensor space wherein
we subtracted the contribution of MEG signals at sensors on the edge of
the sensor array to support our source-level results. This second control
analysis corroborated the finding that 2–4 and 4–8 Hz tracking is
enhanced during reading compared with listening. However, it suggested
similar rather than lower level of <1-Hz tracking during reading
compared with listening. Further studies based on artifact free electro-
physiological signals (e.g., intracranial recording; Cogan et al., 2014) will
be required to confirm source-space results. Also, we cannot exclude that
the sources of 2–4 and 4–8 Hz tracking in the reading condition may have
been shifted by the artifacts remaining in sensor data. Invasive electro-
physiological recordings are therefore warranted to identify the exact
cortical network involved in tracking of self-produced speech, and spe-
cifically, to determine the relative contribution of STAC and parietal
operculum. As a last limitation, this study involved a large number of
statistical comparisons and hence, an inflated risk of identifying false
positives. Therefore, further replication studies are warranted to confirm
our main findings.

Despite these limitations that warrant taking the results of this study
with some caution, we demonstrate that the cortical tracking of speech
observed at<1 Hz during listen and read is rather similar in terms of brain
areas and tracking level. Furthermore, the results obtained at 4–8 Hz
during read are in line with those previously reported by Ruspantini et al.
(2012) during syllable production. These data therefore suggest the ex-
istence of common cortical tracking of speech phenomena during
self-generated speech production accompanying reading aloud and
perception while listening to somebody reading a text aloud. Still, the
generalization of these findings to production and perception of natu-
ralistic speech (e.g., during natural conversation) needs to be done with
caution and warrants further investigations. Indeed, as already stressed
in the Introduction, reading aloud differs in several aspects (e.g, rhyth-
micity, prosody, etc.) from naturalistic speech (Alexandrou et al., 2018b).
Further studies should also integrate time-locked recordings of
speech-related peripheral signals (e.g., surface EMG of some facial
muscles, lip movement kinematics through accelerometers or
video-taping) that would contribute, e.g., to artifact removal and

detection of speech production errors. They should also include a
comprehensive behavioural assessment of speech listening and produc-
tion tasks such as, e.g., task difficulty, or assessment of speech compre-
hension during listening. Such data would indeed contribute to more
advanced electrophysiological data analyses than those done in the
present study. Still, they would need to be carefully selected as scores to
behavioral assessments such as, e.g., visual analogue scales for speech
intelligibility or answers to questions typically tend to plateau in healthy
subjects during listening in quiet auditory scenes (Vander Ghinst et al.,
2019, 2016b).

Notwithstanding all these methodological considerations, this study
represents a first step towards the understanding of the neural bases and
functional aspects of the cortical tracking of speech during a form of
speech production.

4.4. Conclusions

This study brings insights into how the human brain tracks the slow-
temporal features of the auditory feedback during self-generation of
speech. That is, while reading aloud, the reader’s brain tracks the slow
temporal structure of the self-generated speech. Also, the auditory cortex
tracks phrases/sentences whereas the parietal operculum tracks words
and syllables. Finally, data also suggests that both tracking mainly engage
the feedback monitoring system, but with increased involvement of the
internal speech monitoring system for syllable tracking at neocortical
areas distinct from those recruited during speech perception.
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