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We investigate theoretically the noise and the full counting statistics of electrons that are emitted from a
superconductor into two spatially separated quantum dots by the splitting of Cooper pairs and further on
collected in two normal-state electrodes. With negatively biased drain electrodes and a large superconducting
gap, the dynamics of the Cooper pair splitter can be described by a Markovian quantum master equation. Using
techniques from full counting statistics, we evaluate the electrical currents, their noise power spectra, and the
power-power correlations in the output leads. The current fluctuations can be attributed to the competition
between Cooper pair splitting and elastic cotunneling between the quantum dots via the superconductor. In
one regime, these processes can be clearly distinguished in the cross-correlation spectrum with peaks and dips
appearing at characteristic frequencies associated with elastic cotunneling and Cooper pair splitting, respectively.
We corroborate this interpretation by analyzing the charge transport fluctuations in the time domain, specifically
by investigating the g(2) function of the output currents. Our work identifies several experimental signatures of the
fundamental transport processes involved in Cooper pair splitting and provides specific means to quantify their
relative strengths. As such, our results may help guide and interpret future experiments on current fluctuations
in Cooper pair splitters.

DOI: 10.1103/PhysRevB.101.205422

I. INTRODUCTION

Superconductors can serve as sources of entanglement in
solid-state quantum circuits [1,2]. Electrons in the supercon-
ductor are paired up in spin-entangled states and by splitting
these Cooper pairs, entanglement between distant electrons
may be achieved. Specifically, electrons from a Cooper pair
may tunnel into different normal-state electrodes, while pre-
serving the entanglement of their spins. The process can
be enhanced by using quantum dots with strong Coulomb
interactions, which prevent electron pairs from tunneling into
the same output lead, see Fig. 1. To certify the entanglement
of the split Cooper pairs, it has been suggested that Bell
inequalities can be formulated for the cross correlations of
the output currents, using ferromagnetic leads as spin filters
[3–8].

Following the theoretical proposals to generate nonlocal
entanglement using Cooper pair splitters [1,2], several ex-
periments have realized these ideas in practice. Cooper pair
splitters have been implemented in a variety of supercon-
ductor hybrid systems [9–12], some of which employ InAs
nanowires [13–17], carbon nanotubes [18–22], or graphene-
based nanostructures [23,24]. The Cooper pair splitters can
be characterized by measuring the conductance [14–23] or
the noise [13], and the splitting efficiency is in some cases
approaching unity [20,24], with one of the main compet-
ing processes being elastic cotunneling between the dots
[15,23]. With this experimental progress, one may hope
that Cooper pair splitters can soon be integrated into larger
quantum circuits, aiming for solid-state quantum information
processing.

On the theory side, Cooper pair splitters can be described
using a variety of techniques depending on the specific device
architecture and the operating conditions. For noninteracting

FIG. 1. Cooper pair splitter and average current. (a) Cooper
pairs from a superconducting lead are split into two spin-entangled
electrons that tunnel into separate quantum dots before reaching
the output drains. (b) Average current from the superconductor into
the drain electrodes as a function of the quantum dot levels. (c) The
average current as a function of the sum ε = (εL + εR )/h̄, and the de-
tuning δ = (εL − εR )/h̄, of the quantum dot levels corresponding to
the three cuts in the left panel. The results are obtained from Eq. (17)
with the parameters γCPS = γEC = γ , γL = 1.5γ , γR = 0.5γ .
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systems, tight-binding models [25,26] or scattering theory
[27] provide a convenient theoretical framework. Interactions
can be included using Green function techniques [28–32],
quantum master equations [5,33–38], or the real-time dia-
grammatic approach to quantum transport [39–43]. In most
cases, these methods enable numerical calculations of the
average currents and the low-frequency noise in the output
leads. On the other hand, analytic results for the current
fluctuations in Cooper pair splitters are scarce.

In this work we investigate theoretically the current fluc-
tuations in a Cooper pair splitter using techniques from full
counting statistics [44–50]. In a recent article some of us
considered the distribution of waiting times between emit-
ted electrons, and we showed that it contains a wealth of
information about the Cooper pair splitter, for instance the
characteristic timescales that govern the underlying tunneling
processes [51]. Measurements of electron waiting times, how-
ever, require real-time detection of the individual tunneling
events [52–54]. By contrast, conventional quantum transport
experiments typically measure the electric currents and their
fluctuations [9–24], which are thus our main focus here. In
particular, we consider the noise power spectra of the currents
in the output leads [55–59] and their power-power correla-
tions, which we use to analyze the physical processes involved
in the splitting of Cooper pairs. We corroborate our findings
by considering the g(2) function of the output currents [60,61],
which provides an alternative view on the charge transport in
the time domain. While earlier works have analyzed the shot
noise of Cooper pair splitters using numerical approaches,
we here employ projection operator methods that have been
developed in the context of full counting statistics [47–50]
and which allow us to carry out all calculations analytically.
We are hereby able to develop a detailed understanding of the
process of Cooper pair splitting and the associated fluctua-
tions, which is relevant for future experiments on Cooper pair
splitters.

The rest of the paper is organized as follows. In Sec. II
we introduce the full Hamiltonian of the Cooper pair split-
ter, and we discuss how the combined system of a large-
gap superconductor coupled to the quantum dots can be
described by an effective Hamiltonian. In Sec. III we derive
a quantum master equation for the dynamics of electrons in
the quantum dots, which is valid with large negative biases
on the drains. By dressing the quantum master equation
with counting fields, we gain access to the full statistics of
electrons that have tunneled into the drains and the corre-
sponding current fluctuations. In Sec. IV we calculate the
average currents and compare our results to earlier works
before moving on to the noise power spectra of the out-
put currents in Sec. V. Here we first show how the zero-
frequency noise allows for a simple and transparent interpre-
tation of the charge transport in terms of contributions from
elastic cotunneling between the quantum dots and the split-
ting of Cooper pairs, respectively. We then analyze the full
frequency-dependent noise spectra and find that characteristic
frequencies associated with Cooper pair splitting and elastic
cotunneling, respectively, can be clearly identified in the
finite-frequency noise spectra, thus providing experimental
signatures of the two types of processes and their relative
strengths. In Sec. VI we consider higher-order cumulants

of the currents. Our quantum master equation provides access
to the full counting statistics of transferred electrons, and we
here discuss the fourth cumulant of the currents, including
the power-power correlations in the output leads. In Sec. VII
we turn to time-domain observables, and we show how our
preceding analysis can be supported by investigations of the
g(2) function of the output currents. Finally, in Sec. VIII we
give our conclusions, while technical details are provided in
the Appendices.

II. COOPER PAIR SPLITTER

Figure 1 shows the Cooper pair splitter consisting of two
quantum dots in proximity to a superconductor that acts as a
source of Cooper pairs. Strong Coulomb interactions on the
quantum dots ensure that split Cooper pairs tunnel into differ-
ent dots and further on into the separate normal-metal leads
that act as electronic drains. The eigenstates of the uncoupled
quantum dots are given by the occupation of each dot includ-
ing the spin degree of freedom. With a large superconducting
gap, the proximity to the superconductor coherently couples
the occupation states with the same particle parity, that is,
an even or an odd number of particles. The even states with
zero or two electrons are coupled by the process of Cooper
pair splitting, where two electrons enter the quantum dots
from the superconductor or vice versa. The odd states with
just a single electron on one of the dots are coupled by the
process of elastic cotunneling, where an electron is transferred
from one dot to the other via the superconductor. Under these
conditions, the quantum dots and the superconductor can be
described by an effective Hamiltonian as we discuss below
[33,34].

We start by specifying the full Hamiltonian

Ĥ = ĤQD + ĤSC + ĤN + ĤTS + ĤTN , (1)

which describes the quantum dots, the superconductor, and the
normal-metal leads, given by the first three terms, as well as
the coupling between them given by the two tunneling Hamil-
tonians, ĤTS and ĤTN , which we detail below. The Hamiltonian
of the dots reads

ĤQD =
∑
�σ

ε� d̂†
�σ d̂�σ +

∑
�

U�n̂�↑n̂�↓, (2)

where we have defined the operators d̂†
�σ and d̂�σ that create

and annihilate electrons with energy ε� and spin σ in the left
or right quantum dot, � = L, R. Here the on-site interaction on
the dots is denoted by U�, and n̂�σ ≡ d̂†

�σ d̂�σ counts electrons
on the dots with spin σ . The superconductor is described by
the BCS Hamiltonian

ĤSC =
∑
qσ

εq â†
qσ âqσ −

(∑
q

�â†
q↑â†

−q↓ + H.c.

)
, (3)

where the operators â†
qσ and âqσ create and annihilate particles

with momentum q and single-particle energy εq in the super-
conductor with the superconducting order parameter �. The
normal-state leads are described by the Hamiltonian

ĤN =
∑
�kσ

ε
�k ĉ†

�kσ
ĉ
�kσ

, (4)
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while the coupling between the quantum dots and the external
reservoirs are given by the tunneling Hamiltonians

ĤTS =
∑
�qσ

(tS�qâ†
qσ d̂�σ + H.c.) (5)

and

ĤTN =
∑
�kσ

(t
�k ĉ†

�kσ
d̂�σ + H.c.), (6)

where tS�q and t�k are the tunneling amplitudes.
In the following we consider strong Coulomb interactions

on the quantum dots, such that each of them can be occupied
by maximally one electron at a time. With a large supercon-
ducting gap, the combined system of the quantum dots and
the superconductor can then be described by the effective
Hamiltonian [33,34]

ĤS =
∑
�σ

ε� d̂†
�σ d̂�σ − h̄γEC

∑
σ

(d̂†
Lσ d̂Rσ + H.c.)

− h̄γCPS√
2

(d̂†
L↓d̂†

R↑ − d̂†
L↑d̂†

R↓ + H.c.), (7)

where h̄γEC and h̄γCPS are the amplitudes for elastic cotun-
neling and Cooper pair splitting. A detailed derivation of this
Hamiltonian is provided in Appendix A.

In summary, we use the following operating conditions:

kBT, ε�, h̄γEC, h̄γCPS, h̄γ� � |eV�| < � < U�, (8)

where V� are the negative voltages applied to the drain elec-
trodes, the temperature of the environment is denoted by T ,
and γ� are the tunneling rates from the quantum dots to the
drains, which we introduce below. In this regime we can trace
out the normal-state electrodes and obtain a quantum master
equation for the coupled quantum dots as shown in Appendix
B.

III. QUANTUM MASTER EQUATION

Under the conditions specified above, the charge transport
is unidirectional from the superconductor to the normal-state
electrodes via the quantum dots. The system dynamics can
then be described by a Markovian quantum master equation
for the reduced density matrix ρ̂, defined in the Hilbert space
of ĤS , reading [62]

d

dt
ρ̂ = Lρ̂ = − i

h̄
[ĤS, ρ̂] + D[ρ̂]. (9)

The Liouvillian L is the sum of the coherent evolution of the
system itself, given by the commutator of the Hamiltonian ĤS

and the density matrix, and the dissipator

D[ρ̂] =
∑

σ,�=L,R

γ�

(
d̂�σ ρ̂d̂†

�σ − 1

2
{ρ̂, d̂†

�σ d̂�σ }
)

, (10)

which describes the incoherent tunneling of electrons with
spin σ =↑,↓ from the left (right) quantum dot to the left
(right) electrode at the rate γ�, � = L, R.

To evaluate the charge transport statistics, we resolve the
density matrix with respect to the number of electrons that
have tunneled into each of the normal-state leads during the
time span [0, t] [63,64]. Thus we introduce the n-resolved

density matrix ρ̂(n), where the vector n = (nL, nR) contains
the number of transferred electrons. By tracing over the sys-
tem degrees of freedom, we obtain the full counting statistics
of transferred charge as

P(n, t ) = Tr[ρ̂(n, t )]. (11)

The unresolved density matrix is recovered as ρ̂(t ) =∑
n ρ̂(n, t ). Moreover, it is convenient to introduce a vector

of counting fields χ = (χL, χR) that couple to the number of
transferred charges by defining

ρ̂(χ, t ) =
∑

n

ρ̂(n, t )ein·χ, (12)

whose equation of motion follows from Eq. (9) and reads

d

dt
ρ̂(χ, t ) = L(χ)ρ̂(χ, t )

=
[
L +

∑
�=L,R

(eiχ� − 1)J�

]
ρ̂(χ, t ).

(13)

Here we have identified the jump operators that describe the
transfer of an electron into lead � as

J�ρ̂ = γ�

∑
σ

d̂�σ ρ̂d̂†
�σ . (14)

Equation (13) provides us with a complete description of
the charge transfer statistics on all relevant timescales, and
it allows us to evaluate quantities such as the distribution of
electron waiting times [51,65,66], the noise power spectra of
the currents [55–59], and the full counting statistics of the
transferred charge [47–50]. In the following sections we use
Eq. (13) to investigate the current fluctuations in the Cooper
pair splitter.

IV. AVERAGE CURRENT

We start by considering the mean current flowing from
the superconductor into the drain electrodes. Throughout
this work we consider particle currents instead of electrical
currents, since it allows us to omit powers of the electron
charge. Due to charge conservation, the current from the
superconductor can be written as

〈IS〉 = 〈IL〉 + 〈IR〉 (15)

in terms of the currents running into the normal-state drains
〈I�〉, � = L, R, which can be expressed as

〈I�〉 = Tr[J�ρ̂S], (16)

where the stationary state ρ̂S is given by the normalized
solution to Lρ̂S = 0. The current from the superconductor
then becomes

〈IS〉 = γ̄ 2
CPSγ�, (17)

where we have introduced the average rate

γ� = (γL + γR)/2, (18)

and defined the renormalized couplings

γ̄ 2
CPS = 4γ 2

CPS

ε2 + γ 2
� + 4γ 2

CPS/η
(19)
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and

γ̄ 2
EC = 4γ 2

EC

δ2 + γ 2
� + 4γ 2

EC

, (20)

where δ = (εL − εR)/h̄ and ε = (εL + εR)/h̄ are the detuning
and the sum of the energy levels, respectively. In addition, we
have introduced the parameter

η = 1 +
(

γL − γR

2γ�

)2

[(γ̄EC)2 − 1], (21)

which reduces to one for a symmetric setup with γL = γR. We
note that the expression for the current recovers the result of
Ref. [33] obtained with γEC = 0 and the energy renormaliza-
tion absorbed into the dot levels as discussed at the end of
Appendix A. In addition, for γCPS � γ� , we reproduce the
result of Ref. [2] in that limit.

The average current is shown in Fig. 1(b) as a function of
the quantum dot energies. The current is maximal along the
line ε = 0, where the doubly occupied state is on resonance
with the empty state, and Cooper pair splitting is energeti-
cally favorable. Along this resonance line, the current is only
weakly dependent on the detuning of the energy levels δ, as
shown in Fig. 1(c). Moreover, for a symmetric setup with
γL = γR, the elastic cotunneling processes do not influence the
average current, which becomes independent of the detuning
(not shown). In Fig. 1(c) we also show the average current
away from the resonance condition ε = 0, and the process of
Cooper pair splitting gets suppressed. The peak in the current
is Lorentzian with a broadening given by the coupling to the
external electrodes. We also note that the elastic cotunneling
processes are enhanced when the quantum dot levels are on
resonance, meaning that the detuning vanishes, δ = 0.

V. NOISE POWER SPECTRUM

We next investigate the fluctuations of the current. To this
end we consider the noise power spectrum of the tunnel

currents between the quantum dots and the drains. The noise
power spectrum reads [67]

S��′ (ω) = 1

2

∫ ∞

−∞
dteiωt 〈{δÎ�(t ), δÎ�′ (0)}〉, (22)

where the operator δÎ�(t ) = Î�(t ) − 〈Î�(t )〉, � = L, R, mea-
sures the deviation of the tunnel current from its average
value, and curly brackets denote an anticommutator. The
autocorrelation spectrum S��(ω) is always real and positive.
By contrast, the cross correlations S� �=�′ (ω) can take complex
values at finite frequencies, but we only consider the real part,
and from now on we let S� �=�′ (ω) denote the real part. Below
we do not need to specify the current operators. Instead,
MacDonald’s formula [68] allows us to relate the noise power
spectrum to the quantum master equation (13) and express it
as [49,55,65]

S��′ (ω) = δ��′Tr[J�ρ̂S] − Re{Tr[J�R(ω)J�′ ρ̂S] + (� ↔ �′)},
(23)

where the pseudoinverse R(ω) is defined as [48–50,55]

R(ω) = Q(L + iω)−1Q, (24)

in terms of the orthogonal projectors Q = 1 − P and P[·] =
ρ̂STr[·]. The pseudoinverse is well defined even for ω = 0,
since the inversion is performed only in the subspace spanned
by Q = 1 − P , where L is regular, since the null space has
been projected away. Using the matrix representation of the
Liouvillian in Appendix C, we can then evaluate the noise
spectrum. Details on how to evaluate the pseudoinverse can
be found on page 7 of Ref. [50].

Interestingly, the noise power spectrum can be determined
analytically. Specifically, for a symmetric setup with γL =
γR = γN , we find for the Fano factor F��′ (ω) = S��′ (ω)/IN , the
expression

F��′ (ω) = δ��′ − INγN
(
γ 2

N + ω2
CPS

)(5γ 2
N + ω2

CPS + ω2

h(ωCPS, ω)
− (1 − δ��′ )

2γ 2
CPS

(
γ 2

N + ω2
) + (−1)δ��′

[
γEC

γCPS

]2
γ 2

N + ω2
EC − 3ω2

h(ωEC, ω)

)
, (25)

having defined the average current IN ≡ 〈IL〉 = 〈IR〉 = 〈IS〉/2

and the characteristic frequencies ωCPS =
√

4γ 2
CPS + ε2 and

ωEC =
√

4γ 2
EC + δ2, as well as the function

h(ω0, ω) = (
γ 2

N + ω2
)3 + 2

(
γ 4

N − ω4
)
ω2

0 + (
γ 2

N + ω2
)
ω4

0.

(26)

With this expression in hand, we now discuss the information
about the charge transport that we can extract.

To begin with, we consider the zero-frequency component
of the current correlations. The zero-frequency noise of a
Cooper pair splitter has previously been calculated numeri-
cally in Ref. [5]. Here we obtain a compact expression for the
zero-frequency noise reading

F��′ = 1 +
(

δ��′ − 1

2

)
γ̄ 2

EC − IN

γN

(
1 + 2INγN

γ 2
CPS

)
, (27)

which provides an interesting interpretation of the charge
transport. In the absence of elastic cotunneling and with large
tunneling rates to the drains, only the first term survives,
and the Fano factors equal unity. In this case, the separate
flows of electrons into each drain resemble a Poisson process.
However, the currents are correlated, since electrons are in-
jected pairwise from the superconductor as split Cooper pairs.
For this reason, the Fano factor of the cross correlations is
positive and not zero as one would expect for two uncorrelated
processes.

This picture gradually breaks down as elastic cotunneling
is included, and the second term becomes nonzero. Elastic
cotunneling reduces the correlations between the currents in
the drains, since electrons are allowed to transfer between the
quantum dots. In this way, the separate flows of electrons into
the drains get mixed, which both reduces their correlations
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FIG. 2. Fano factor of the autocorrelations. (a) Fano factor as a function of the detuning δ and the total energy ε of the quantum dot levels
with γL = γR = γCPS = γEC ≡ γ . (b) Fano factor along the cuts indicated in the left panel. (c) Fano factor as a function of γL = γR ≡ γN with
γCPS = γEC ≡ γ and εL = −εR = 5h̄γ (black line) and εL = εR = 5h̄γ (blue line).

and increases the fluctuations in each drain. Furthermore, as
the coupling to the drain electrodes is lowered, also the third
term becomes important, and it reduces both the auto- and
the cross correlations. In this case, the lowered coupling to
the leads introduces a finite dwell time of electrons on the
quantum dots, which reduces the fluctuations in the leads and
the correlations between the currents.

To gain further insight into the current fluctuations, we
show in Figs. 2 and 3 the Fano factors of the auto- and cross
correlations, respectively. In Fig. 2(a) the splitting of Cooper
pairs is favorable along the resonance line ε = 0, and the Fano
factor is suppressed well below one due to the tunnel barriers
between the quantum dots and the drains. By contrast, along
the other resonance line δ = 0, where elastic cotunneling is
enhanced, the fluctuations are increased, since the separate
flows of electrons get mixed. These effects are also illustrated
in Fig. 2(b), where we show the Fano factor along the cuts in
the left panel, which both cross one of the resonance lines. In
Fig. 2(c) we show the Fano factor as a function of the coupling
to the drain electrodes. In the blue-shaded region, electrons
immediately leave the quantum dots via the drains because

of the large coupling, and the Fano factor approaches unity,
signaling that the injection of split Cooper pairs becomes a
Poisson process. In the brown-shaded region, the coupling is
very low, and the Fano factor now depends strongly on the
energy levels of the quantum dots. For ε = 0 (black line),
Cooper pair splitting is favorable, and the occupations of
the quantum dots oscillate between being empty and doubly
occupied. In that case, the quantum dots are occupied half
of the time, and the Fano factor is suppressed accordingly.
For δ = 0 (blue line), elastic cotunneling is enhanced, and the
fluctuations are increased due to the mixing of the separate
flows of electrons. In between these parameter regimes, the
Fano factor develops a more complicated structure, since all
possible processes are combined.

In Fig. 3 we turn to the Fano factor of the cross correlations.
In Fig. 3(a) we observe a large degree of correlation away
from the resonance lines. In that case, neither Cooper pair
splitting nor elastic cotunneling are favorable. Still, once a
split Cooper pair is injected into the quantum dots and one
electron tunnels out via a drain electrode, the other electron
likely leaves via the other drain electrode, leading to the

(c)
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FIG. 3. Fano factor of the cross correlations. (a) Fano factor as a function of the detuning δ and the total energy ε of the quantum dot levels
with γL = γR = γCPS = γEC ≡ γ . (b) Fano factor along the cuts indicated in the left panel. (c) Fano factor as a function of γL = γR ≡ γN with
εL = εR = 0, γCPS ≡ γ , and γEC = 0.1γ (blue line), 1γ (red line), and 10γ (black line).
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FIG. 4. Finite-frequency noise. (a) Fano factor of the cross correlations as a function of the frequency and the total energy of the quantum
dots. The other parameters are γL = γR ≡ 0.5γ , γCPS = 4γ , γEC = 2γ , and δ = 0. (b) Auto- (gray) and cross (blue) correlations as functions
of the frequency for εL = εR = 0 and γL = γR ≡ 0.5γ , γCPS = 4γ , γEC = 2γ (solid), given by the cut in the left panel, and γL = γR ≡ γ ,
γCPS = γEC = 0.1γ (dotted). In both panels we indicate ωCPS and ωEC.

large correlations. However, despite the large correlations, the
actual currents are of course small, since the system is op-
erated away from any of the important resonance conditions.
In Fig. 3(b) we consider the cross correlations along the two
resonance lines, δ = 0 (black line) and ε = 0 (red line), where
either elastic cotunneling or Cooper pair splitting is favorable.
Elastic cotunneling reduces the cross correlations, since it
mixes the separate flows of electrons. They also get reduced,
if Cooper pair splitting is on resonance, and electrons quickly
oscillate back and forth between the superconductor and the
quantum dots. When the two processes are combined, we
even observe negative cross correlations between the output
currents as seen in the figure.

Finally, in Fig. 3(c) we consider the cross correlations as
a function of the coupling to the drain electrodes, and again
we can identify three distinct regimes. For low couplings in
the brown-shaded region, the tunneling events into the drains
are rare and uncorrelated. By contrast, in the blue-shaded
region, where the coupling is large, split Cooper pairs are
immediately evacuated from the quantum dots via the drains,
leading to strong correlations. In between these parameter
regimes, the cross correlations are more complicated as dis-
cussed above.

Next, we consider the full frequency-dependent noise spec-
tra given by Eq. (25) and displayed in Fig. 4. In Fig. 4(a) we
show the Fano factor of the cross correlations as a function of
the observation frequency and the total energy of the quantum
dots. Of particular interest are the dips and peaks in the cross
correlations that appear at the characteristic frequencies ωCPS

and ωEC, associated with Cooper pair splitting and elastic
cotunneling, respectively, thus providing a direct experimental
method to distinguish the two types of processes. The figure
also illustrates how ωCPS depends on the total energy, while
ωEC remains constant. In Fig. 4(b) we show both the auto-
and cross-correlation spectra along the resonance line indi-
cated in the left panel, and here we again see how the cross
correlations allow us to distinguish Cooper pair splitting from
elastic cotunneling. By contrast, the two types of processes
both lead to dips in the autocorrelation spectrum. We also
see how a large coupling to the drain electrodes washes out

these features, which might also not be robust against external
decoherence and dephasing mechanisms that are not included
here.

VI. POWER-POWER CORRELATIONS

Until now we have focused on the average current and the
noise power spectra, which at zero frequency correspond to
the first and second cumulants of the currents. However, with
the counting fields included in our quantum master equation,
we can in principle access any cumulant of the full counting
statistics. To this end, we formally solve the quantum master
equation (13) as ρ̂(χ, t ) = eL(χ)t ρ̂S , assuming that the system
has reached its stationary state at the time t = 0, when the
counting of particles begins. We also define the cumulant
generating function for the charge transfer statistics as

S(χ, t ) = ln

[∑
n

P(n, t )ein·χ
]

= ln Tr[eL(χ)t ρ̂S]. (28)

We then see that the scaled cumulant generating function

�(χ) = lim
t→∞

S(χ, t )

t
= max

i
{λi(χ)}, (29)

for long observation times is given by the eigenvalue of L(χ)
with the largest real part. For small values of the counting
fields, this is the eigenvalue that develops adiabatically from
the zero eigenvalue corresponding to the stationary state. All
other eigenvalues have negative real parts, causing the system
to relax to its stationary state.

All zero-frequency cumulants of the (particle) current can
now be obtained by differentiating the cumulant generating
function with respect to the counting fields as〈〈

In
� Im

�′
〉〉 = ∂n

χ�
∂m
χ�′

�(χ)|χ=0, (30)

where double brackets denote cumulant averages. The first
and second cumulants are the average currents and the zero-
frequency noise, respectively. Here we focus on the power-
power correlations in the drains 〈〈I2

� I2
�′ 〉〉, i.e., the correlations

between the squared currents in the output leads. Such cor-
relations have not received much attention in the past, but
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FIG. 5. Power-power correlations. (a) Fano factor of the power-power autocorrelations as a function of the detuning δ and the total energy
ε of the quantum dot levels with γL = γR = γCPS = γEC ≡ γ . (b) Fano factor of the cross correlations for the same parameters. (c) Auto- and
cross correlations along the cuts indicated in the left panels, where δ = 0.

they can in principle be measured, and they can be evaluated
using our quantum master equation dressed with counting
fields. Technically, we have to evaluate the derivatives of the
eigenvalue of L(χ) with the largest real part according to
Eq. (29). However, due to the large matrix size of L(χ), we
cannot directly evaluate its eigenvalues as functions of the
counting fields. Instead, we find the derivatives of the largest
eigenvalue using perturbation theory in the counting fields
as discussed in Refs. [48–50]. The method takes the zero
eigenvalue and the stationary state as the starting point and
then calculates corrections to the eigenvalue order-by-order
in the counting fields to obtain cumulants of any order. The
details of this perturbation scheme are outlined in Appendix
D, and below we just quote the final results.

For the autocorrelations of the power (or the fourth cumu-
lant of the currents) we find

〈〈
I4
�

〉〉 = 〈〈
I2
�

〉〉 − 12Tr[J�R{1 + 2I�(1 + RI�)R
+S�R}J�ρ̂S], (31)

where I� = 〈I�〉 − J� and S� = 〈〈I2
� 〉〉 − J� in terms of the

zero-frequency noise 〈〈I2
� 〉〉 = S��(0), and R = R(0) is the

pseudoinverse in Eq. (24) evaluated at ω = 0. [We note that
the perturbation scheme also yields the noise power spectrum
in Eq. (23) for ω = 0.] For the power-power correlations we
arrive at the more complicated expression

〈〈
I2
� I2

�′
〉〉 = Tr[J�R{(1 + 2I�R)(1 + 2I�′R)I�′

+ 4I�′R(I�′RI� + I�RI�′ ) + 4〈〈I�I�′ 〉〉RI�′

+ 2S�′RI�}ρ̂S] + (� ↔ �′). (32)

We can now evaluate these formulas based on the Liouvillian
L and the jump operators in Eq. (14). The resulting expres-
sions are lengthy, and here we only present analytical results
in certain limits together with figures.

For a symmetric Cooper pair splitter, where the amplitude
for Cooper pair splitting is much smaller than the total en-
ergy of the quantum dots, the average current is suppressed,
and the Fano factor F (4)

��′ = 〈〈I2
� I2

�′ 〉〉/IN for the power-power

correlations simplify to the expression

F (4)
��′ = 1 +

(
4δ��′ − 1

2

)
γ̄ 2

EC + O

⎛
⎝ γCPS√

γ 2
N + ε2

⎞
⎠, (33)

where the higher-order terms are different for the auto- and
the cross correlation and depend on all parameters. Just as for
the current-current correlations in Eq. (27) in that limit, we see
that the autocorrelations are Poissonian, if elastic cotunneling
is negligible. At the same time, the cross correlations remain
positive, since the two separate flows of electrons originate
from the same random splitting of Cooper pairs. In this
context, elastic cotunneling reduces the cross correlations by
mixing the two flows, and it also strongly increases the auto-
correlations of the power fluctuations. More generally, we find
that F (4)

�� = F (4)
��′ , if γEC �

√
γ 2

N + δ2, such that cotunneling is
negligible.

In Fig. 5 we show the Fano factors of the auto- and
cross correlations of the power fluctuations as functions of
the detuning and the total energy of the quantum dot levels.
The fluctuations in each lead are generally large as we move
along the resonance line δ = 0, where elastic cotunneling is
favorable. However, the fourth cumulant of the current gets
reduced, and even becomes negative, as also Cooper pair
splitting comes into resonance. The cross correlations also
get reduced, even if the average current is large on resonance,
since the elastic cotunneling processes mix the separate flows
of electrons and thereby destroy the correlations.

VII. TIME-DOMAIN OBSERVABLES

Having investigated the current fluctuations in the fre-
quency domain, we now change perspective and instead
analyze the charge transport statistics in the time domain.
In a recent work we considered the distribution of waiting
times between tunneling events into the drains [51]. As an
alternative we here consider the g(2) function of the output
currents. Based on our quantum master equation, the g(2)
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FIG. 6. Time-domain observables. (a) The g(2)-correlation function of the output currents as a function of the time and the amplitudes for
Cooper pair splitting and elastic cotunneling being equal, γCPS = γEC. The other parameters are δ = ε = 0 and γN = γ . (b) Autocorrelation
function g(2)(τ ) for γCPS = 0.5γ and γEC = 0 (blue), γCPS = 5γ and γEC = 0 (yellow), and γCPS = 5γ and γEC = 5γ (red). (c) Cross-correlation
function g(2)

LR(τ ) for the same parameters as in the middle panel.

function can be obtained as [60]

g(2)
��′ (τ ) = Tr[J�eLτJ�′ ρ̂S] + Tr[J�′eLτJ�ρ̂S]

2〈I�〉〈I�′ 〉 , (34)

where τ is the time between tunneling events described by
the jump operators J� and J�′ . Here we consider a sym-
metrized g(2) function, although this makes no difference for
the symmetric setup we consider below. The g(2) function is
the probability that an electron tunnels into lead � (or �′)
at the time τ after an electron has tunneled into lead �′ (or
�), normalized with respect to the unconditional probability.
Evaluating this expression for a symmetric setup, we find for
the g(2) functions

g(2)
��′ (τ ) = 1 − e−γN τ

[(
cos

[ωCPSτ

2

]
+ γN

ωCPS
sin

[ωCPSτ

2

])2

− gx (1 − δ��′ ) + (−1)δ��′ gx

(
2γEC sin

[
ωECτ

2

]
ωEC

)2]
,

(35)

where we have defined the parameter gx = (γ 2
N +

ω2
CPS)/(2γCPS)2.

We start by analyzing the g(2) function of the individual
currents. Here we first notice that g(2)

ll (0) = 0, which is a
direct manifestation of the strong Coulomb interactions that
prevent two electrons from being emitted from the same dot
simultaneously. Furthermore, we find that g(2)

ll (0) < g(2)
ll (τ )

for τ > 0, implying that the electron emission from each
quantum dot is always antibunched, even if the emission
statistics may be super-Poissonian [60].

In the first two panels of Fig. 6 we show the g(2) function
of the individual currents and observe an oscillatory pattern
that is washed out as the coupling to the drain electrodes
is increased. In particular, if the coupling is much larger
than the characteristic frequency associated with Cooper pair
splitting γN � ωCPS, and the frequency associated with elastic

cotunneling is small, ωEC � 0, we find

g(2)
�� (τ ) � 1 − e−γN τ

(
1 + γNτ

2

)2
, (36)

which increases monotonously with time. In the other ex-
treme, where the coupling is smaller than the frequency of
Cooper pair splitting ωCPS � γN , an oscillatory pattern with
frequency ωCPS appears due to the coherent oscillations be-
tween the quantum dots and the superconductor. Similarly, for
ωEC � γN , elastic cotunneling leads to oscillations, however,
with frequency ωEC.

In Fig. 6(c) we turn to the g(2) function of the cross
correlations. In this case we find at short times

g(2)
� �=�′ (0) = 1 + γ 2

N + ω2
CPS

4γ 2
CPS

, (37)

showing that the probability for simultaneous emissions into
the left and right drain electrodes increases with the coupling
to the leads γN and the total energy |ε|. By contrast, as one
might expect, elastic cotunneling has no effect on g(2)

��′ (τ ) on
short timescales τ � 1/ωEC. In the case where the coupling
to the leads is large γN � ωCPS, and the frequency of elastic
cotunneling is small ωEC � 0, we find

g(2)
l �=l ′ (τ ) � 1 − e−γN τ

[(
1 + γNτ

2

)2
− gx

]
. (38)

Finally, we note that the g(2)-correlation functions can be
directly related to the noise spectra in Eq. (25) as [60]

F��′ (ω) = δ��′ + IN

∫ ∞

−∞
dτeiωτ

[
g(2)

��′ (|τ |) − 1
]
. (39)

On the other hand, the charge transport is a nonrenewal
process, since the system does not return to the same state
after each emission event. For this reason, there is no direct
connection between the g(2) functions and the distribution of
waiting times, and they contain different information about
the charge transport statistics [61].
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VIII. CONCLUSIONS

We have theoretically investigated the noise and the full
counting statistics of electrons emitted from a Cooper pair
splitter. Working with negatively biased drain electrodes and
a large superconducting gap, the Cooper pair splitter can
be described by a Markovian quantum master equation for
the dynamics of electrons inside the quantum dots. Using
methods from full counting statistics, we have then calculated
not only the average current and the shot noise, but also the
full frequency-dependent noise spectra, higher-order power-
power correlations, as well as the g(2)-correlation functions of
the output currents. Based on our analytical results for these
observables, we have presented a detailed investigation of
the fundamental tunneling processes in Cooper pair splitters.
Specifically, we have shown how the competing processes of
Cooper pair splitting and elastic cotunneling are manifested
in the low-frequency fluctuations of the currents and their
cross correlations. If the coupling to the normal-state leads
is weak, the two types of processes show up as dips and
peaks in the finite-frequency noise spectrum of the cross
correlations. These results are corroborated by an analysis of
the g(2)-correlation functions in the time domain. Our work
identifies several experimental signatures of the fundamental
transport processes in Cooper pair splitters, and we expect that
our results may help guide and interpret future experiments on
Cooper pair splitting.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this Appendix we derive the effective Hamiltonian in
Eq. (7), assuming a large superconducting gap and strong
Coulomb interactions on the quantum dots. In this case, the
quantum dots cannot be doubly occupied, and we can discard
the double-occupied states in the density matrix and omit the
double-occupancy contribution in Eq. (2).

We start by considering the von Neumann equation for the
density matrix of the full system

ih̄
d

dt
ρ̂H (t ) = [Ĥ, ρ̂H (t )]. (A1)

Here Ĥ = Ĥ0 + ĤTS is the time-independent Hamiltonian,
with ĤTS the Hamiltonian describing the tunneling between
the quantum dots and the superconductor, and Ĥ0 is the
remaining part of the Hamiltonian. By Laplace transforming

the density matrix as

ρ̂H (E ) =
∫ ∞

t0

dt ρ̂H (t )ei(E+iη)(t−t0 )/h̄, (A2)

we can formally rewrite the von Neumann equation as

(E + iη)ρ̂H (E ) − ih̄ρ̂H (t0) = L0ρ̂H (E ) + LTS ρ̂H (E ), (A3)

having defined L0/TS [·] = [Ĥ0/TS , ·]. We can write the solution
as the geometric series

ρ̂H (E ) = [W0(E ) + W0(E )LTSW0(E )

+ W0(E )LTSW0(E )LTSW0(E ) + · · · ]ih̄ρ̂H (t0),
(A4)

where W0(E ) = [E − L0 + iη]−1. The superconductor is in
thermal equilibrium ρ̂H (E ) � ρ̂0̃ (E ) ⊗ ρ̂

eq
SC, hence by tracing

out the superconductor we get to second order in LTS ,

ρ̂0̃ (E ) ≈ {
W0̃ (E ) + W0̃ (E )TrSC

[
�Sρ̂

eq
SC

]
W0̃ (E )

}
ih̄ρ̂0̃ (t0),

(A5)
where Ĥ0̃ = Ĥ0 − ĤSC in W0̃, �S = LTSW0(E )LTS , and we
have used that terms with an odd number of LTS vanish and
that higher-order terms are suppressed in the large gap limit
due to W0(E ). Similarly, upon expanding ρ̂0̃ (E ) = (E + iη −
L0̃ − �S )−1ih̄ρ̂0̃ (t0) to first order in �S , we recognize that [70]
�S = TrSC[�Sρ̂

eq
SC].

Next, we introduce the Bogoliubov transformation γ̂†
q =

(γ̂ †
q↑, γ̂−q↓) = â†

qU†
q, where â†

q = (â†
q↑, â−q↓) and

U†
q =

(
u∗

q vq

−v∗
q uq

)
(A6)

is a unitary matrix with uq = (1 + εq/Eq)1/2/
√

2 and vq =
(1 − εq/Eq)1/2/

√
2eiθS where Eq =

√
ε2

q + |�|2 and θS is the

phase of the superconductor. With this transformation we
get ĤSC = ∑

qσ Eqγ̂
†
qσ γ̂qσ (plus a constant, which does not

contribute to the von Neumann equation), and the tunneling
Hamiltonian (5) becomes

ĤTS =
∑

ξ=±,�qσ

ξ t ξ

S�q

(
uξ

q γ̂
ξ
qσ + σv(−ξ )

q γ̂
(−ξ )
−q−σ

)
d̂ξ

�σ , (A7)

where we have defined t (+)−
S�q = t ( )∗

S�q , u(+)−
q = u( )∗

q , v(+)−
q =

v( )∗
q , γ̂ +(−)

qσ = γ̂ †( )
qσ , d̂ (+)−

�σ = d̂ ( )†
�σ . We can furthermore write

LTS in the compact form [70]

LTS =
∑

ξ,θ=±,�qσ

ξ t ξ

S�q

(
uξ

q�
ξθ
qσ + σv(−ξ )

q �
(−ξ )θ
−q−σ

)
Dξθ

�σ , (A8)

where θ = ± determines if the operator acts to the left (+) or
right (−), for instance

�ξ+
qσ Ô = γ̂ ξ

qσ Ô, �ξ−
qσ Ô = Ôγ̂ ξ

qσ , (A9)

and

Dξ+
�σ Ô = d̂ξ

�σ Ô, Dξ−
�σ Ô = Ôd̂ξ

�σ , (A10)
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where Ô is an operator. With these transformations we readily
obtain

�S =
∑

ξθ�qσ

∑
ξ ′θ ′�′q′σ ′

ξξ ′t ξ

S�qt ξ ′
S�′q′D

ξ ′θ ′
�′σ ′

(
uξ ′

q′�
ξ ′θ ′
q′σ ′

+ σ ′v(−ξ ′ )
q′ �

(−ξ ′ )θ ′
−q′−σ ′

)
W0(E )Dξθ

�σ

(
uξ

q�
ξθ
qσ + σv(−ξ )

q �
(−ξ )θ
−q−σ

)
,

(A11)

where we have used the commutation relation �χθDχ ′θ ′ =
−θθ ′Dχ ′θ ′

�χθ (suppressing the subscripts). Having expressed
the tunneling Hamiltonian in terms of the Bogoliubov trans-
formation that diagonalizes the superconducting Hamiltonian,
we have

�ξθ
qσ L0 = (L0 − ξEq)�ξθ

qσ , (A12)

and thus

�S = −
∑

ξξ ′θθ ′t ξ

S�qt ξ ′
S�′q′D

ξ ′θ ′
�′σ ′

(
W0(E + ξ ′Eq′ )Dξθ

�σ uξ ′
q′�

ξ ′θ ′
q′σ ′

+W0(E − ξ ′Eq′ )Dξθ

�σ σ ′v(−ξ ′ )
q′ �

(−ξ ′ )θ ′
−q′−σ ′

)
× (

uξ
q�

ξθ
qσ + σv(−ξ )

q �
(−ξ )θ
−q−σ

)
, (A13)

where we have left the summation indices implicit. Upon
tracing out the superconductor, we find

�S =
∑

ξθθ ′��′σ

θθ ′(D(−ξ )θ ′
�′σ I (1)

ξθ��′ + σDξθ ′
�′−σ I (2)

ξθ��′
)
Dξθ

�σ , (A14)

where we have defined

I (1)
ξθ��′ =

∑
q

t ξ

S�qt (−ξ )
S�′q [|uq|2 f (−ξθ )(Eq)W0̃ (E − ξEq)

+ |vq|2 f (ξθ )(Eq)W0̃ (E + ξEq)] (A15)

and

I (2)
ξθ��′ =

∑
q

t ξ

S�qt ξ

S�′−quξ
qv

(−ξ )
q [ f (−ξθ )(Eq)W0̃ (E − ξEq)

− f (ξθ )(Eq)W0̃ (E + ξEq)], (A16)

and we have used that TrSC[�ξ ′θ ′
q′σ ′�

ξ θ

q σ
ρ̂

eq
SC] =

δqq′δσσ ′δξ,−ξ ′ f (−ξθ )(Eq), f + = f , and f − = 1 − f with f
being the Fermi-Dirac distribution, and εq = ε−q. In the limit
of large superconducting gap at long times, W0̃ (E ± ξEq) is
dominated by the constant factor ±ξE−1

q , whereby

I (1)
ξθ��′ � −

∑
q

t ξ

S�qt (−ξ )
S�′q ξE−1

q [|uq|2 f (−ξθ )(Eq ) − |vq|2 f (ξθ )(Eq )]

(A17)
and

I (2)
ξθ��′ � I (2)

ξ��′ = −
∑

q

t ξ

S�qt ξ

S�′−quξ
qv

(−ξ )
q ξE−1

q . (A18)

Using that I (1)
(−ξ )θ�′� = −I (1)

ξ (−θ )��′ and I (2)
ξ�′� = I (2)

ξ��′ we find upon

performing the sum over θ and θ ′ in Eq. (A14) �S[·] =
[Ĥ�S , ·], where

Ĥ�S =
∑
ξ��′σ

(
I (1)
ξ+��′ d̂

(−ξ )
�′σ d̂ξ

�σ + σ I (2)
ξ��′ d̂

ξ

�′−σ d̂ξ

�′σ

)
. (A19)

Carrying out the remaining sums, one obtains the terms in
Eq. (7), where we have defined the amplitudes h̄γCPS =

−√
2(I (2)

−LR + I (2)
−RL ) and h̄γEC = I (1)

−+LR − I (1)
++RL , correspond-

ing to Cooper pair splitting and elastic cotunneling, respec-
tively, absorbed the constant self-energy into a redefinition of
the quantum dot levels, and omitted the term corresponding
to a Cooper pair occupying a single dot, which is prevented
in the large-U limit. The momentum integrals from I (1)

ξθ��′ and

I (2)
ξ��′ are calculated explicitly in Ref. [33] assuming pointlike

contacts between each dot and the superconductor (with zero
temperature), separated by the distance δr.

APPENDIX B: QUANTUM MASTER EQUATION

In this Appendix we derive the quantum master equation
(9) with the dissipator given by Eq. (10). A microscopic
approach for quantum transport in normal-state structures in
the high-bias limit has been devised by Gurvitz and Prager
[71–73] and later on extended to Cooper pair splitters in
Ref. [33]. The method uses an occupation-number represen-
tation of the many-body wave function, which is time evolved
under the Schrödinger equation. As an alternative and poten-
tially more compact approach, we here derive the quantum
master equation starting from the von Neumann equation for
ρ̂0̃ (cf. Appendix A). The geometric series form of the von
Neumann equation as in Eq. (A4) can also be obtained by
iterating as

ρ̂0̃ (E ) = W0̄ (E )
[
LTN ρ̂0̃ (E ) + ih̄ρ̂0̃ (t0)

]
= W0̄ (E )

{
LTN W0̄ (E )

[
LTN ρ̂0̃ (E ) + ih̄ρ0̃ (t0)

]
+ ih̄ρ̂0̃ (t0)

}
= · · · , (B1)

where Ĥ0̄ = ĤS + ĤN in W0̄. We now inspect the operator

�N ≡ LTN W0̄ (E )LTN , (B2)

which appears after the first iteration. To this end, we express
the tunneling Hamiltonian in the compact form

ĤTN =
∑

ξ=±,�kσ

ξ t ξ

�k ĉξ

�kσ
d̂ξ

�σ , (B3)

where we have defined ĉ+(−)
�kσ

= ĉ†( )
�kσ

, d̂+(−)
�σ = d̂ ( )†

�σ , and t+
�k =

t�k , t−
�k = t∗

�k . We also have

LTN =
∑

ξ,θ=±,�kσ

ξ t ξ

�kC
ξθ

�kσ
Dξθ

�σ , (B4)

in terms of superoperators as in Appendix A. With these
definitions we readily obtain

�N =
∑

ξθ�kσ

∑
ξ ′θ ′�′k′σ ′

ξξ ′t ξ

�kt ξ ′
�′k′D

ξ ′θ ′
�′σ ′C

ξ ′θ ′
�′k′σ ′W0̄ (E )Dξθ

�σCξθ

�kσ
,

(B5)

having used the commutation relation Cξθ Dξ ′θ ′ =
−θθ ′Dξ ′θ ′

Cξθ , omitting the subscripts here.
The electrons in the normal-state reservoirs are noninter-

acting, such that

Cξθ

�kσ
L0̄ = (L0̄ − ξε�k )Cξθ

�kσ
, (B6)
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and thus

�N = −
∑

t ξ

�kt ξ ′
�′k′D

ξ ′θ ′
�′σ ′W0̄ (E + ξ ′ε�′k′ )Dξθ

�σCξ ′θ ′
�′k′σ ′C

ξθ

�kσ
ξξ ′θθ ′,

(B7)

where we have left out the summation indices in the sum.
The environment is not affected by the subsystem of interest
ρ̂0̃ (E ) � ρ̂(E ) ⊗ ρ̂

eq
N , allowing us to trace out the environmen-

tal degrees of freedom as

�̂ρ =
∑

ξθθ ′�kσ

θθ ′t ξ

�kt−ξ

�k D(−ξ )θ ′
�σ WS (E − ξε�k )Dξθ

�σ ρ̂(E )

× f (−ξθ )
� (ε�k ), (B8)

where ĤS in WS is given in Eq. (7), we have defined

�̂ρ = TrN {�N ρ̂0̃ (E )} and used that TrN {Cξ ′θ ′
�′k′σ ′C

ξθ

�kσ
ρ̂

eq
N } =

δ��′δkk′δσσ ′δξ,−ξ ′ f (−ξθ )
� (ε�k ), where f +

� = f� is the Fermi-
Dirac distribution, and f −

� = 1 − f�. Formally, inserting com-
pleteness relations in terms of the eigenstates of ĤS =∑

a εa|a〉〈a| we find

�̂ρ =
∑

ξθθ ′�σ

∑
aa′

θθ ′D(−ξ )θ ′
�σ |a〉〈a|[Dξθ

�σ ρ̂(E )
]|a′〉〈a′|Iδδ′ξθaa′ ,

(B9)
where the integral

I�ξθaa′ =
∫

dε
ν�(ε)|t�(ε)|2 f (−ξθ )

� (ε)

E − ξε + iη − (εa − εa′ )
(B10)

contains the density of states ν� of lead �.
We now assume that large negative voltages are applied

to the normal-state electrodes, so that they are completely
empty f (−ξθ )

� (ε) = δ−ξθ,−. In addition, we assume that the
lead coupling

γ� ≡ 2π

h̄
ν�|t�|2 (B11)

is constant for the relevant energies. Hence,

I�ξθaa′ = −ih̄γ�δ−ξθ,−/2 ≡ −ih̄I�ξθ /2. (B12)

Since I�ξθ does not depend on a and a′ we can remove the
completeness relations from Eq. (B9) and write

�̂ρ = − ih̄

2

∑
ξθθ ′�σ

θθ ′D(−ξ )θ ′
�σ Dξθ

�σ I�ξθ ρ̂(E ). (B13)

Considering next the following iterations in Eq. (B1), we
see that terms with an odd number of LTN vanish, once we
trace out the environment. On the other hand, for terms with
an even number of LTN , we see that as we commute all the C’s
to the right, the leftmost C will give rise to the substitution
E → E + ξε, in all the W0̄’s. Hence, the approximations used
above lead to integrals over ε, as in Eq. (B10), involving
products of simple fractions with poles in the same complex
half-plane. For this reason, these integrals vanish [71]. As a
result, the iteration loop terminates, and upon tracing out the
environment, we can write Eq. (B1) as

(E + iη − LS )ρ̂(E ) = ih̄Dρ̂(E ) + ih̄ρ̂(t0), (B14)

where we have defined the superoperator

D = −1

2

∑
ξθθ ′�σ

θθ ′D(−ξ )θ ′
�σ Dξθ

�σ I�ξθ . (B15)

Finally, by transforming this expression back to the time
domain, we arrive at Eqs. (9) and (10) by letting the dissipator
D act on the reduced density matrix.

APPENDIX C: MATRIX REPRESENTATION

To carry out our calculations, we need a matrix representa-
tion of the Liouvillian. In the basis

{ρ(0)(0), ρ(L↑)(L↑), ρ(L↓)(L↓), ρ(R↑)(R↑), ρ(R↓)(R↓), ρ(S)(S), ρ(0)(S),

ρ(S)(0), ρ(L↑)(R↑), ρ(R↑)(L↑), ρ(L↓)(R↓), ρ(R↓)(L↓)}, (C1)

where ρψψ ′ = 〈ψ |ρ̂|ψ ′〉 and |ψ〉, |ψ ′〉 ∈ {|0〉, |�σ 〉 =
d̂†

�σ |0〉, |S〉 = 1√
2
(d̂†

L↓d̂†
R↑ − d̂†

L↑d̂†
R↓)|0〉}, the Liouvillian

reads

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γLeiχL γLeiχL γReiχR γReiχR 0 −iγCPS iγCPS 0 0 0 0

0 −γL 0 0 0 γR
2 eiχR 0 0 −iγEC iγEC 0 0

0 0 −γL 0 0 γR
2 eiχR 0 0 0 0 −iγEC iγEC

0 0 0 −γR 0 γL
2 eiχL 0 0 iγEC −iγEC 0 0

0 0 0 0 −γR
γL
2 eiχL 0 0 0 0 iγEC −iγEC

0 0 0 0 0 −(γL + γR ) iγCPS −iγCPS 0 0 0 0

−iγCPS 0 0 0 0 iγCPS iε − γL+γR
2 0 0 0 0 0

iγCPS 0 0 0 0 −iγCPS 0 −iε − γL+γR
2 0 0 0 0

0 −iγEC 0 iγEC 0 0 0 0 −iδ − γL+γR
2 0 0 0

0 iγEC 0 −iγEC 0 0 0 0 0 iδ − γL+γR
2 0 0

0 0 −iγEC 0 iγEC 0 0 0 0 0 −iδ − γL+γR
2 0

0 0 iγEC 0 −iγEC 0 0 0 0 0 0 iδ − γL+γR
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C2)

where we have introduced the counting fields χL and
χR that couple to transitions into the left and right
leads.

APPENDIX D: POWER-POWER CORRELATIONS

To evaluate the cumulants of the full counting statistics, we
need to find the derivatives of the eigenvalue λ0(χ) of L(χ)
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with the largest real part. For χ = 0, this is the zero-eigenvalue
λ0(0) = 0, corresponding to the stationary state ρ̂S , defined
as the normalized solution to Lρ̂S = 0, which constitutes our
unperturbed problem.

We now follow Refs. [48–50] and calculate λ0(χ) perturba-
tively in the counting fields, χ = (χL, χR). Our starting point
is the perturbed eigenvalue problem

L(χ)ρ̂S (χ) = [L + L′(χ)]ρ̂S (χ) = λ0(χ)ρ̂S (χ), (D1)

where L′(χ) is the perturbation due to the counting fields.
Following the steps of Refs. [48–50], we find

λ0(χ) = Tr{L′(χ)ρ̂S (χ)} (D2)

and

ρ̂S (χ) = ρ̂S + R[λ0(χ) − L′(χ)]ρ̂S (χ), (D3)

where R = R(0) is the pseudoinverse in Eq. (24) evaluated at
ω = 0. Next, we expand all quantities as

λ0(χ) =
∞∑

n,m=0

(iχL )n

n!

(iχR)m

m!

〈〈
In
L Im

R

〉〉
,

ρ̂S (χ) =
∞∑

n,m=0

(iχL )n

n!

(iχR)m

m!
ρ̂

(n,m)
S ,

L′(χ) =
∞∑

n,m=0

(iχL )n

n!

(iχR)m

m!
L(n,m),

(D4)

recalling that the cumulants of the currents are given by
the derivatives of the largest eigenvalue. We also note that
L(0,0) = L′(0) = 0 by definition.

Inserting these expansions into Eqs. (D2) and (D3) and
collecting terms to same order in the counting fields, we obtain
the recursive formulas [49,50]

〈〈
In
L Im

R

〉〉 =
n,m∑

i, j=0

(
n
i

)(
m
j

)
Tr

{
L(i, j)ρ̂

(n−i,m− j)
S

}
(D5)

and

ρ̂
(n,m)
S = R

n,m∑
i, j=0

(
n
i

)(
m
j

)[〈〈
I i
LI j

R

〉〉 − L(i, j)
]
ρ̂

(n−i,m− j)
S . (D6)

From these expressions, we can in principle calculate any
cumulant of the currents. For the Cooper pair splitter, the
calculations are simplified by the fact that L(n,m) = 0, if both
n > 0 and m > 0. As an illustration of the recursive scheme,
we find for some of the corrections to the eigenstate the
following expressions:

ρ̂
(0,1)
S = −RJRρ̂S,

ρ̂
(0,2)
S = −R[2IRR + 1]JRρ̂S,

ρ̂
(1,1)
S = −R[IRRJL + ILRJR]ρ̂S,

ρ̂
(1,2)
S = −R

[
2IRR[IRRJL + ILRJR] + SRRJL

+ ILR[2IRR + 1]JR + 2〈〈ILIR〉〉RJR]ρ̂S, (D7)

where I� = 〈I�〉 − J� and S� = 〈〈I2
� 〉〉 − J� is given in terms of

the noise 〈〈I2
� 〉〉 = Tr[J�ρ̂S] − 2Tr[J�RJ�ρ̂S] = S��(0). Based

on these expressions and Eq. (D5), we obtain Eqs. (31) and
(32) for the power-power correlations.
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