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Abstract: Mechanically strong all-cellulose composites are very attractive in the terms of fully
bio-based and bio-degradable materials. Unidirectional flax-based all-cellulose composites are
prepared via facile room-temperature impregnation with an ionic liquid, 1-ethyl-3-methyl imidazolium
acetate. To determine the optimal processing conditions, the kinetics of flax dissolution in this solvent
is first studied using optical microscopy. Composite morphology, crystallinity, density, the volume
fraction of cellulose II and tensile properties are investigated, indicating that flax dissolution should
be within certain limits. On the one hand, the amount of cellulose II formed through dissolution and
coagulation should be high enough to “fuse” flax fibers, resulting in a density increase. On the other
hand, only the surface layer of the fibers should be dissolved to maintain the strength provided by the
inner secondary layer and avoid a detrimental decrease in crystallinity. The highest Young’s modulus
and strength, 10.1 GPa and 151.3 MPa, respectively, are obtained with a crystallinity of 43% and 20
vol% of cellulose II.

Keywords: natural fibers; ionic liquid; composites; mechanical properties; structure—
property correlations

1. Introduction

An increasing demand for new eco-friendly materials has led to a significant development in
the field of bio-based and bio-degradable composites as sustainable alternatives to petroleum-based
materials. Natural fibers are renewable and are widely used as fillers and reinforcing matter in polymer
composites. However, in most cases, the composite matrix is still based on oil-derived polymers. A
special class of composites is all-cellulose composites (ACCs), which are composed of a cellulose matrix
reinforced with cellulose fibers [1]. Based on the principle of all-polymer composites, ACCs overcome
the problem of a weak fiber/matrix adhesion when fibers and matrix are made of different substances.
Moreover, all-cellulose composites are 100% bio-based and bio-degradable [2—4].

Traditional polymer and all-polymer composites are usually produced by melt processing.
Cellulose, as non-meltable polymer due to its extensive intramolecular and intermolecular hydrogen
bonds, requires alternative processing techniques [3,5]. ACCs are generally manufactured either
by the partial dissolution of the cellulose fibers” surface to “splice” the fibers together upon
coagulation (one-step approach) or by dispersing the cellulose fibers in a cellulose solution (two-step
approach) [1,6-8]. In the first approach, the major continuous phase is cellulose fibers, whereas in
the second approach, the composite body consists of a cellulose Il matrix. In both cases, the cellulose
solvent is removed by washing (typically in water) before the sample is dried.
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To date, most efforts concerning the production of ACCs have followed the first approach. These
ACCs were made using different cellulose solvents, dissolution times, temperatures and pressures
(during drying) [9-12]. The influence of the dissolution time on the structure and properties of ACCs
is not well established yet. For example, the aligned ramie fibers were immersed in lithium chloride/N,
N-dimethylacetamide (LiCl/DMACc) for 1 to 12 h; exceptional longitudinal tensile properties (460
MPa tensile strength and 28 GPa Young’s modulus) were obtained after 2 h immersion [12]. Ramie
is one of the strongest natural fibers with a 500—1000 MPa tensile strength and 20-60 GPa Young's
modulus for a single fiber [13,14]. When a conventional filter paper was impregnated with the same
solvent, much more time, 12 h, was needed to get the strongest (within that study) all-cellulose
composites with a tensile strength of 211 MPa and Young’s modulus of 9 GPa. However, when a
filter paper was impregnated with 1-butyl-3-methylimidazolium chloride, 2.5 h were needed to reach
the maximum values of around 90 MPa and 5 GPa for the tensile strength and Young’s modulus,
respectively [15]. It was also demonstrated that the structural integrity of the cell wall of natural fiber
can be severely affected by partial dissolution, which is detrimental for the mechanical properties
of natural fiber-based ACCs [16]. It is known that the dissolution of natural fibers is influenced by
fiber type, morphology and composition, as well as solvent type and temperature [17]. Therefore, the
understanding of the dissolution kinetics of a given fiber in a certain cellulose solvent and correlation
with fiber morphology are important to select optimal processing conditions for making ACCs with
the best possible mechanical properties.

In terms of cellulose solvent options, LiCl/DMAc, NaOH-water and imidazolium-based ionic
liquids (ILs) are the solvents most commonly used to prepare ACCs (see, for example, [4,12,18]). In
particular, ILs attracted attention as cellulose solvents due to their high dissolution power, low vapor
pressure and high thermal stability [19]. One of the advantages of ILs is that some are capable of
dissolving cellulose even at room temperature, which is the case for 1-ethyl-3-methylimidazolium
acetate ((EMIM][OAc]). However, some drawbacks of imidazolium-based ionic liquids should be taken
into account if they are to be used for cellulose processing: for example, in the presence of impurities
in the solvent or lignin in the pulp, side reactions may occur at temperatures around 100 °C [20,21].
Table 1 lists ACCs made from different sources of cellulose and ILs. The majority of studies involve
heating the IL, even [EMIM][OAc], when manufacturing ACCs, most probably supposing that the
decrease in solvent viscosity should reduce the dissolution time (see Table 1).

Table 1. Summary of all-cellulose composites (ACCs) manufactured using the imidazolium-based ionic
liquids 1-ethyl-3-methylimidazolium acetate [EMIM][OAc], 1-butyl-3-methylimidazolium chloride
[BMIM]CI and 1-butyl-3-methylimidazolium acetate [BMIM][OAc].

IL Raw Materials Impregnation Condition Method Ref.

Cotton fabric 100 °C (30 min) and 150 °C (hot press, 30 min)

(BMIMICI Hinoki lumber 100 °C (30 min) and 210 °C (hot press, 30 min) 2]
Jute fabric °oC (7_

[BMIM]Cl Filter paper 110 °C (2-8 h) [23]

[BMIM]Cl Microfibrillated cellulose 80 °C (20, 40, 80 and 160 min) [15]

[BMIM]CI Lyocell fabric 110°C (3 h) [9]

[BMIM]Cl Lyocell fabric 110 °C (hot press, 0.5-4 h) One-step [11]

[BMIM][OAC] Cordenka textile 95 °C (hot press, 60 min) [24]
Linen textile ° ;

[BMIM][OAC] Rayon textile 110 °C (hot press, 80 min) [25]

[EMIM][OAC] Paper 95 °C (10 s) and 95 °C (hot press, 0.5-6.5 h) [26]

[EMIM][OAC] Birch wood plies 95 °C (30 min) [27]

[EMIM][OAC] Silk/hemp/cotton thread 60 °C (5 min) [28]

[BMIM]CI Lyocell nonwoven mats 103 °C (1 min) [16]

[EMIM][OAc] ~ Sordenka fabric 80 °C (hot press, 0.5-1 h) Twostep 1y

Flax nonwoven mats
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As a technical natural fiber and one of the strongest plant fibers, flax has been considered as
a promising alternative to classical reinforcing glass fibers. The mechanical properties of flax fiber
reported in the literature are 600-2000 MPa in terms of tensile strength, around 3% in terms of fracture
strain, and 12-100 GPa in terms of the Young’s modulus [29,30]. To date, only isotropic textile- and
non-woven mat flax-based ACCs have been studied [16,25]. Roughly, the reported properties of these
ACCs are up to 80 MPa and 5 GPa in terms of strength and the Young’s modulus, respectively, which
are only around one tenth of the corresponding values of single flax fibers.

In this work, room-temperature IL [EMIM][OAc] was used as solvent to prepare flax-based
unidirectional ACCs by a selective dissolution method. The goal was to optimize the processing
conditions to obtain ACCs with the best possible mechanical properties. We hypothesize that the too
“profound” dissolution of a flax fiber, involving the destruction of the fiber’s secondary wall, can be
detrimental for the mechanical properties of ACCs. To avoid this, we used optical microscopy to first
study the kinetics of flax fiber dissolution in [EMIM][OACc] at different temperatures. Then, fibers were
aligned and impregnated with [EMIM][OAc] under various conditions. Composite morphology and
crystallinity were correlated with tensile mechanical properties and compared with those of other
flax-based composites known from the literature.

2. Materials and Methods

2.1. Materials

Flax roving yarns with low twist degrees were obtained from the plant stem. A commercially
available room temperature ionic liquid [EMIM][OAC] (purity > 95%) was purchased from IoLiTec.
The moisture content was 0.27%, as determined by Karl Fischer titration. All materials were used
as received.

2.2. Methods

2.2.1. Chemical Composition of Fibers

The composition (carbohydrates and total lignin) of flax fibers was determined according to
the NREL/TP-510-42618 norm. The amount of carbohydrates was detected by high performance
anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) using a Dionex
ICS-300 system. Cellulose and hemicellulose contents were calculated according to the amount of
monosaccharides following the Janson formula [31]. The acid-soluble lignin was determined using a
Shimadzu UV 2550 spectrophotometer at a wavelength of 205 nm using an absorption coefficient of
110 L-g~t-em~!. Additionally, the moisture content in as-received flax was determined using vacuum
oven drying until a constant weight was achieved at 60 °C for 72 h.

2.2.2. Optical Microscope Observation of Fiber Evolution in Ionic Liquid

One elementary flax fiber was placed between two glass plates (the distance in between was
around 140 um) with the ends fixed by tape and solvent added. The distance between the two glass
slides, fixed by spacers, was much larger than the fiber’s thickness. The evolution of the fiber’s
diameter was recorded by a DM4500P (Leica) optical microscope, in transmission mode, equipped
with a Linkam TMS 91 hot stage to control temperature and a CCD camera (Metallux 3, Leitz, Wetzlar,
Germany). Images were taken at various times. The relative diameter was calculated as Di/Dy, where
Dy and Dy are the initial diameter of the fiber at time 0 and diameter of the fiber at time t, respectively.

2.2.3. ACC Preparation

Flax yarns were unidirectionally aligned in two layers (around 145 yarns, 3 g in total) on a
Teflon mold and fixed at both ends to prevent shrinkage and distortion. The ACC manufacturing
method is illustrated in Figure 1. Fibers were impregnated with 20 mL of [EMIM][OACc], kept under
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2.2.5. Scanning Electron Mlcroscopy (SEM)
2.2.5. Scanning Electron Microscopy (SEM)
The morphology of the initial flax and of the ACCs was observed using a scanning electron
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examination, the surface and cross section of the specimen were coated with a thin layer of gold

2.2.6. X-ray Diffraction (XRD)

2.2.6. X-ray Diffraction (XRD)
XRD patterns of flax fiber and ACCs were collected on an X-ray diffractometer (a X'Pert Pro MRD,
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CRI = 100 x (1 — Stkg/ Stotal) M)

The background-corrected profile was fitted with pseudo-Voigt functions for (i) 1-10 (II), 1-10
(I) and 110 (I); (ii) 102/012 (I) and 110 (II); and (iii) 200 (I) and 020 (II), where the parenthesized
numbers denote the crystalline phases of cellulose. The latter two peaks were not deconvoluted into
the individual peaks because the fitting only aims to obtain intensities of 1-10 peaks for cellulose I
and cellulose II. The software LMFIT [35] was used for the fitting. As the mass absorption coefficients
are identical for crystalline polymorphs, quantitative phase analysis was performed using the single
peaks of cellulose polymorphs [36]. The intensities for the 1-10 lattice plane of cellulose I (I1_1o(1)) and
cellulose II (I1-10()) can be expressed as a function of the structure factor, the volume of unit cell, and
the volume fraction of each phase in the total cellulose crystal, as follows:

K 2
Ii_10(a) = 7, )2|F1—10(a)) VUa (2
o

where K is a constant for the instrument and sample, « is either cellulose I or II crystal, V) is unit cell
volume, F1_1¢q) is the structure factor and v is the volume fraction of crystalline phase «.
Thus,
2.27 I1_1p(2)
= ®)

01 I _1001)

(%]

where the coefficient 2.27 was calculated from the unit cell volume and the structure factor for the 1-10
lattice of cellulose I [37] and cellulose II [38]. This equation was used to calculate the volume fraction
of cellulose II over total crystalline cellulose as follows:

02
U1+ 02

Celly vol % = (4)

2.2.7. Tensile Testing

The determination of the linear density (titer) and tenacity of a single flax fibers from as-received
flax yarn were performed by using a Vibroskop 400 and Vibrodyn 400 (Lenzing Instruments GmbH
& Co KG, Austria) at 23 °C and 50% relative humidity (RH) The settings for the Vibrodyn 400 were
gauge length: 20 mm and strain rate: 10 mm/min. Ten elementary fibers were measured to gain the
mean values of titer, tenacity and elongation. The elastic modulus of the fibers was calculated from the
slope of the entire elastic region of the stress—strain curves by using a MATLAB script according to
ASTM standard D2256/D2256M.

The mechanical properties of flax-based ACCs were studied using an Instron 4204 Universal
Tensile Tester (INSTRON, Buckinghamshire, UK). At least five specimens (50 X 5 mm, length and width,
respectively) with known thickness of each formulation were analyzed. Samples were conditioned for
24 h in a controlled environment of 50% RH and 23 °C. The measurement was carried out at a gauge
length of 20 mm and an extension rate of 10 mm/min with a load of 1 kN.

3. Results and Discussion

3.1. Analysis of Flax Fibers

It is known that the cell wall of an elementary flax fiber is composed of hierarchically organized
layers (see Figure 2a). Two outer layers (primary and S1 layers) contain less ordered and poorly oriented
cellulose. To the contrary, the highly ordered and densely packed inner 52 layer plays an important role
in the mechanical performance of flax fibers [39]. The scanning electron micrograph of the as-received
flax fibers is shown in Figure 2b; the average diameter of an elementary flax fiber is around 20 um.
The mechanical properties and composition of the flax used in this work are summarized in Table 2; a
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To evaluate the obtained unidirectional flax-based ACCs, their mechanical properties were

compared to isotropic flax-based ACCs [16,25] and unidirectional flax-reinforced polymer-based
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To evaluate the obtained unidirectional flax-based ACCs, their mechanical properties were
wmRAresoteisaisrpiceRRehased ACCs [16,25] and unidirectional flax-reinforced polymerqpasees
composites [48-52]. As shown in Table 3, the tensile strength of the obtained ACC not only exceeds that
abispivsipés 3BT A ashrpatted] bblealsolef witesiidingtitiof dhélab taimé draddG taotlon jyodxteetis
dhiat (VI 3pirepixyfland\pdly mopypautdihsbd tpalyomef aitepositédirectional flax reinforced starch-,
polylbuéispeif{® hrkihapivey pang qrblgpod plrtenbtbiased flakyhasedoApasitae compared with those
of otHérefipedifisad evlaterizlbpiftpertisfof thd ploiyimed flaxapasttbs) Gals aveadmpdredier thalyoserst
(@tigerrfl %)-bddvel spetifialstidtmg thinflresirpolyerfeonotibsite) © M Ragiglemd) p thithpspenificsifoghute
8). dfberspe i €3t (py tnvaludheapgerfeotied F tthEOOBHIRAG / fak)baded sp&ifiam sdphidrtouthdde
S Rofigemtipnihp gropertiesed the tebialined dlacrbpsesdite @adaew ampetior dodhddei ohigmivghtsotte
polsntiet-bh AdGn pevihlsedh dt compekitep aradieredion 4kt ifoess-dtishighglahtsdighpotetaid] of wilteds
pindnced situchoml-temghtasuseuived” stiffness-driven” light-weight materials, where minimum

structural weight is required.
Table 3. Comparison of the mechanical properties of unidirectional (UD) flax-reinforced polymer
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i Hsodely isotropic (ISO) flax-based ACCs and the strongest unidirectional flax-based ACC
obtained in this study.
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4. Conclusions
4. Conclusions

All-cellulose comp051tes based on unidirectional oriented flax f1bers were prepared V1a

imp T LHULY Bfin LRSS e%egggf%tﬁ%*e H)fr‘%ﬁlzlfﬁf“ MR 69kc31ai<n fhszs SRR SE A
CBIRIRORIEG WiEP SR SO EBIPSR i, i LEMIQS I Pt sleet s eRtimg
cond1t1ons for the preparation of an ACC with the highest mechanical properties, the kinetics of
elementary fiber dissolution in this solvent were first studied at various temperatures. The results
showed that at temperatures higher than 40 °C the dissolution is too quick, involving the destruction
of the fiber secondary wall, the latter being the main component in flax providing the mechanical
reinforcement. The performance of the ACC was demonstrated to depend on a compromise between
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elementary fiber dissolution in this solvent were first studied at various temperatures. The results
showed that at temperatures higher than 40 °C the dissolution is too quick, involving the destruction
of the fiber secondary wall, the latter being the main component in flax providing the mechanical
reinforcement. The performance of the ACC was demonstrated to depend on a compromise between
the formation of sufficient matrix“gluing” fibers together and filling voids, resulting in a density
increaseon the one hand, and the non-dissolution of the secondary wall and the restriction of the
formation of lower crystallinity and mechanically weaker cellulose II on the other hand. The best
values were obtained for the composite with 45 min impregnation, resulting in a mean value for
maximal tensile strength of 151.3 MPa and a Young’s modulus of 10.1 GPa. The study revealed the
importance of the understanding of the evolution of natural fibers in cellulose solvents, resulting
in finding a suitable strategy for making high-performance ACCs and taking full advantage of the
excellent mechanical properties of the cellulose fiber itself. The use of solvent at room temperature is
not energy-consuming, making the process economically attractive. The values are better than those
for many polymer composites reinforced with flax fibers, providing a promising way of making fully
bio-based materials with excellent mechanical properties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/5/1010/s1,
Figure S1: Representative stress-strain curve of a single flax fiber, Figure S2: Arrhenius plot of dissolution rate as a
function of inverse temperature, Figure S3: Representative stress-strain curve of flax-based ACCs after 45 min
impregnation tested in transverse direction, Table S1: Properties of flax based ACCs.
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