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ABSTRACT A new hybrid multi-objective evolutionary algorithm is developed and deployed in the present
work for the optimal allocation of Electric Vehicle (EV) charging stations. The charging stations must be
positioned on the road in such a way that they are easily accessible to the EV drivers and the electric power
grid is not overloaded. The optimization framework aims at simultaneously reducing the cost, guaranteeing
sufficient grid stability and feasible charging station accessibility. The grid stability is measured by a
composite index consisting of Voltage stability, Reliability, and Power loss (VRP index). A Pareto dominance
based hybrid Chicken Swarm Optimization and Teaching Learning Based Optimization (CSO TLBO)
algorithm is utilized to obtain the Pareto optimal solution. It amalgamates swarm intelligence with teaching-
learning process and inherits the strengths of CSO and TLBO. The two level algorithm has been validated on
the multi-objective benchmark problems as well as EV charging station placement. The performance of the
Pareto dominance based CSOTLBO is compared with that of other state-of-the-art algorithms. Furthermore,
a fuzzy decision making is used to extract the best solution from the non dominated set of solutions. The
combination of CSO and TLBO can yield promising results, which is found to be efficient in dealing with
the practical charging station placement problem.

INDEX TERMS Accessibility index, charging station, chicken swarm optimization, teaching learning
optimization, cost, electric vehicle.

I. INTRODUCTION
Road transportation sector is one of the major emitters of
greenhouse gases [1]. EVs have emerged as an environmen-
tally friendly alternative to traditional Internal Combustion
Engine (ICE) driven vehicles, because they have the potential
to reduce greenhouse gas emissions. However, the large-scale
deployment of EVs may be a major threat to electric power
grid, due to increase and variance in power demand by the
charging stations of EVs. Actually, the degradation of voltage

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

stability and reliability indices, reduced reserve margin, and
increased power losses are the consequences of improper
positioning of EV charging stations in the electric power
distribution network [2]–[4].

In [5], a sketchy overview of the latest drift in charging
infrastructure planning problem was given thereby elabo-
rating modelling approaches, objective functions, and con-
straints of the placement problem. In [6], a comprehensive
survey of the optimization and control aspects of EV fleet
management was provided. In [7], an overview on the compu-
tational scheduling methods for integrating EVs with power
grid is given. In [8], charging station placement problem was
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TABLE 1. Comparison of the proposed formulation of charging station placement with some of the existing formulations.

formulated under a single objective framework with cost as
the objective function. The candidate sites for charging sta-
tions were identified based on service radius, environmental
factors and the optimization problem was attacked by using
Modified Primal-Dual-Interior Point Algorithm (MPDIPA).
In [9], the placement problem was framed with the con-
sidering of the EV flow, voltage deviation, and power loss
as objective functions.A Cross-Entropy (CE) method was
used for obtaining the Pareto front, and Data Envelopment
Analysis (DEA) was applied for the final decision-making.
In [10], the problem was modelled with cost, annualized
traffic flow, and energy losses as objective functions. AMulti-
Objective Evolutionary Algorithm (MOEA) was utilized for
obtaining the Pareto optima, and the final planning scheme
was decided by fuzzy logic. In [11], cost was considered as
the main objective function of the placement problem, and
the placement problem was solved by using Binary Firefly
Algorithm (BFA). In [12], the authors proposed a placement
scheme for public charging stations with cost as the objective
function. A Varonoi diagram based technique was employed
to decide the service region, and Particle SwarmOptimization
(PSO) algorithm was applied to cope with the non-linear
optimization problem. In [13], cost and utilization rate of
chargers were considered as objective functions in problem
modelling.Moreover, a novel Strengthened Pareto Evolution-
ary Algorithm II (SPEA II) was used for obtaining the best
locations for placing the charging stations. In [14], the authors
modelled the placement problem under a multi-objective
framework with cost, real power loss reduction index, reac-
tive power loss reduction index, and voltage profile improve-
ment index as the objective functions. A hybrid GA PSO
algorithm was deployed to handle this problem. In [15],
the authors presented an optimal placement scheme
for charging stations considering stochastic charging.
In [16], [17], the authors provided an optimal planning
scheme for EV charging stations based on voltage sensitivity
indices. In [18], the authors presented an optimal placement
and charging scheme for EV charging stations under contin-
gent conditions in smart distribution grid. In [19], the authors
presented a scenario based planning model of charging

station placement with the network reconfiguration being
taken into account, and solved this problem using a coevo-
lutionary approach. In [20], the authors proposed a multi-
objective framework of charging station placement with the
voltage deviation, power losses, and EV flow. The Multi-
objective Grey Wolf Optimization (MOGWA) was further
developed in their work. In [21], the authors investigated
a robust chance constrained model for the similar charging
station placement problem.

Literature [8]–[21] reveals that the charging station
placement is a complex and demanding problem involving
a number of objective functions and constraints. However,
the reliability of the power grid network is neglected in most
of the formulations of charging station placement. Exclu-
sion of reliability indices while formulating the charging
station placement problem is a major research gap. Hence,
in this paper, we strategically address the charging station
placement problem by giving the due consideration to the
reliability indices simultaneously considering other planning
objectives like cost, power loss, voltage deviation, and acces-
sibility. Table 1 highlights the differences between the pro-
posed formulation of charging station placement problem
and the formulations of charging station placement prob-
lem present in the existing literature. From Table 1 it is
clear that the proposed formulation of charging station prob-
lem is superior to the existing formulations as it has the
capacity of addressing economic factors, security of the
power grid as well as EV driver’s convenience. The cur-
rent study does not focus on the home charging of EVs,
because the authors find public charging infrastructure vital
for large penetration of EVs in metropolitan cities. Moreover,
from [8]–[21], it is clear that researchers have applied a
large variety of meta-heuristics and classical optimization
algorithms for coping with the charging station placement
problem. The existing methodologies in handling the place-
ment problem are summarized and given in Table 2. Heuris-
tics or meta-heuristics can give near-optimal solutions in
lesser time as compared to analytical methods in handling
complex non-linear problems like the charging station place-
ment problem [5]. Hence, the need for developing efficient
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TABLE 2. Methodologies used for solving charging station placement
problem.

and fast meta-heuristics remains. CSO and TLBO are the
two state-of-the-art nature-inspired algorithms successfully
applied by researchers for complex engineering optimiza-
tion problems. In [22], the authors have reviewed dif-
ferent variants, applications of CSO as well as efficacy
of CSO in solving different real-world problems. For exam-
ple, CSO is applied for solving economic load dispatch [23],
fault diagnosis of pumping wells [24], ascent trajectory
optimization [25], train energy saving [26], robot path
planning [27] etc. Similarly, TLBO is successfully used
to cope with parameter optimization of machining pro-
cess [28], transmission expansion planning [29], economic
load dispatch problem [30], optimization of heat exchang-
ers [31], optimal configuration of microgrid [32], optimiza-
tion of space trusses [33], groundwater prediction [34],
energy demand estimation [35], parameter extraction of
photovoltaic models [36], glazing system design [37],
PID controller design [38], wind speed forecasting [39],
energy performance assessment of buildings [40], etc. CSO is
a popular evolutionary algorithm, in which the search space
can be effectively explored. The features of CSO are its
powerful utilization of population and efficient exploration
of search space. However, in some cases, it is observed that
CSO gets stuck in the local optima. Actually, TLBO may be
combined with CSO to combat with this drawback. There-
fore, the synergy of CSO and TLBO can enhance the overall
search capability and avoid premature convergence.

The contribution of our work is threefold:
1. A new multi-objective formulation of charging station

placement problem is proposed. The formulation strate-
gically addresses the charging station placement problem
considering cost, operating parameters of the power grid
as well as EV user’s convenience.

2. A novel Pareto dominance based CSO TLBO algorithm
for the charging station placement problem is proposed.

3. A number of multi-objective benchmark problems and
the problem to locate electric vehicle charging stations
areattacked by CSO TLBO, and the performance of the
proposed algorithm is statistically weighted against the
up-to-date algorithms.

II. PROBLEM FORMULATION
The charging station placement is a multifaceted problem
involving multiple decision variables, objective functions,

FIGURE 1. Schematic overview of charging station placement problem.

and constraints. A schematic overview of the charging sta-
tion placement problem is shown in Fig.1. In the present
work, the charging station placement is formulated as a
multi-variable, multi-objective, and non-linear optimization
problem. One of the salient features of the charging station
placement problem presented here is multi-objective formu-
lation of the problem with cost, VRP index, and accessibility
index as the objective functions. Thus, we consider economic
objectives, driver’s convenience as well as safety limits of
the distribution network parameters in modelling the charg-
ing station placement problem. However, we do not convert
reliability indices and power loss to their equivalent cost,
since conversion of reliability indices and power loss to their
equivalent cost is an approximate method.

A. DECISION VARIABLES
The allocation and sizing of the charging stations are the
activities performed in this placement problem. The charging
service speed provided can be slow or fast. Thus, the posi-
tion, charging speed, and number of chargers are considered
as decision variables. The decision variables are p, Nfastp,
and Nslowp

p = {p1, p2 . . . pm} and p ∈ TS

Nfastp = {Nfastp1 ,Nfastp2 , . . .Nfastpm} and

Nslowp = {Nslowp1 ,Nslowp2 , . . .Nslowpm}

B. OBJECTIVE FUNCTIONS
Large investments associatedwith the establishment of charg-
ing stations give motivation for careful optimization of the
charging infrastructure with respect to the traffic and electric
grid [41]. The three prime factors: cost, VRP index, and
accessibility index must be considered in the formulation
of the charging station placement problem. Therefore, the
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objective function is expressed as

F = min(cos t)+min(VRP index)

+ max(Accessibility index) (1)

The explanation of these three objective functions is pre-
sented below.

1) COST
The optimization is concerned with the minimization of the
overall cost. The installation cost is the monetary investment
associated with the construction of charging stations. The
land cost, building cost, labour cost, and charger cost are all
included in the installation cost. The operation cost is the cost
of the electric power for imparting the service of charging to
the EVs.

The total cost function includes:

Cost = Cinstallation + Coperation (2)

Cinstallation = f (Nfastp,Nslowp)

=

∑
Nfastp × Cfast

+

∑
Nslowp × Cslow (3)

Coperation = f (Nfastp,Nslowp)

= (
∑

Nfastp × CPfast

+

∑
Nslowp × CPslow)

×Pelectricit y (4)

As given in Eqs.(3) and (4),the installation and operating
costs are only dependent on the number of fast and slow
charging stations, and are independent of the location of
charging stations, because of the assumption that the land,
building, labour, charger, and electricity cost are the same for
all the nodes of the entire network.

2) VRP INDEX
The VRP index is recently formulated by Deb et al. [2] with
the voltage stability, reliability, and power loss considered
together. Moreover, both the frequency based and duration
based reliability indices are taken into account. Charging sta-
tions increase the load demand of the power grid, and possibly
result in the deterioration of voltage profile, reliability, and
increase in power loss. Hence, in our work, the impact of EV
charging stations on the power grid is considered by regarding
the minimization of the VRP index as one of the objective
functions. The VRP index and terms associated are

VRP = f (p,Nfastp,Nslowp) = w1V + w2R+ w3P (5)

where V = VSIbase
VSIl

,

R = w21
SAIFIl
SAIFIbase

+w22
SAIDIl
SAIDIbase

+w23
CAIDIl
CAIDIbase

and

P =
Plloss
Pbaseloss

VSIbase =
ND∑
i=1

VSI ibase and

VSI ibase = 2V 2
i V

2
i+1 − 2V 2

i+1(Pi+1ri + Qi+1xi)

− |z|2 (P2i+1 + Q
2
i+1) (6)

P′p = Pp + (
∑

Nfastp × CPfast )

+ (
∑

Nslowp × CPslow) (7)

VSIl =
ND∑
i=1

VSI il and

VSI il = 2V
′2
i V

′2
i+1 − 2V

′2
i+1(P

′

i+1ri + Q
′

i+1xi)

− |z|2 (P
′2
i+1 + Q

′2
i+1) (8)

SAIFIbase =

ND∑
i=1
λiNi

ND∑
i=1

Ni

SAIDIbase =

ND∑
i=1

UiNi

ND∑
i=1

Ni

CAIDIbase =

ND∑
i=1

UiNi

ND∑
i=1
λiNi

(9)

SAIFIl =

ND∑
i=1
λ′iNi

ND∑
i=1

Ni

SAIDIl =

ND∑
i=1

U ′iNi

ND∑
i=1

Ni

CAIDIl =

ND∑
i=1

U ′iNi

ND∑
i=1
λ′iNi

(10)

λ′p =
λp

Pp
× P′p U ′p =

Up
Pp
× P′p (11)

Pbaseloss =

ND∑
i=1

I2i ri Plloss =
ND∑
i=1

I
′2
i ri (12)

3) ACCESSIBILITY INDEX
The charging stations must be easily accessible to the
EV drivers to reduce the driving range anxiety. The placement
of charging stations needs to be optimized with the routes
followed by the EVs and charging point demand. If the
locations of the charging stations are too far away from the
charging demand points, additional charge will be wasted to
travel that distance, and in the worst condition, the battery
may run short of charge. Thus, in our work, the accessibility
index is considered as the third objective function:

Accessibility index = f (p) =
1
|d |

(13)

where d is the distance between the charging demand points
and charging stations.
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For a road network having q charging demand locations
and m charging stations, the computation of the accessi-
bility index is a tedious task. The distance matrix D and
reduced distance matrix DD need to be first calculated. Dis-
tance matrix represents the distance between the charging
demand locations and charging stations. The reduced distance
matrix, DD, identifies the nearest charging stations for each
of the charging demand locations, and gives the distance
between the charging demand locations and its nearest charg-
ing station. D, DD, and d are:

D =


d1c1 d1c2 . . . d1cm
d2c1 d2c2 . . . d2cm
.

.

.

.

.

.

.

.

dqc1 dqc2 . . . dqcm

 (14)

DD =


min(d1c1, d1c2, . . . d1cm)
min(d2c1, d2c2, . . . d2cm)

.

.

.

min(dqc1, dqc2, . . . dqcm)

 (15)

d =
q∑
i=1

DDi (16)

C. CONSTRAINTS
The optimization is carried out with a number of equality and
inequality constraints given by Eqs. (17)-(21).

0 < Nfastp ≤ nfastp (17)

0 < Nslowp ≤ nslowp (18)

Qmin
i ≤ Qi ≤ Qmax

i (19)

Pmin
i ≤ Pi ≤ Pmax

i (20)

Pgi − Pdi − Vi
ND∑
j=1

VjYij cos(δi − δj − θij) = 0

Qgi − Qdi − Vi
ND∑
j=1

VjYij sin(δi − δj − θij) = 021) (21)

The constraints depicted by Eqs. (17) and (18) consider
the maximum and minimum number of fast and slow charg-
ing stations placed at the candidate locations. Eqs. (19)
and (20) are related to the safety limit of the active and
reactive power, respectively. The amount of the generated
power at all the buses must satisfy the load demand and
losses. Thus, the power balance equations given in Eqs. (21)
and (21) are considered as the equality constraints in this
charging station placement problem.

III. OVERVIEW OF MULTI-OBJECTIVE OPTIMIZATION
The result of multi-objective optimization is usually a set
of solutions providing the best trade-off amongst the objec-
tives that are conflicting in nature. The multi-objective

optimization problem yields

Minimize/Maximize(f1(x), f2(x) . . . . . . fk (x)) (22)

subject to
gj(x) ≥ 0
hk (x) = 0
xl ≤ x ≤ xu

 (23)

As we know that finding the best compromise solu-
tion in presence of conflicting objectives is a complex
task. The best compromise solution is found by evaluating
the ranks assigned to the solutions based on the non-
dominance or Pareto optimality concept and the crowding
distance value. In multi-objective optimization problems,
a set of optimal solutions called non-dominated solu-
tion or Pareto optimal solution exist [42], [43]. The bound-
ary defined by the Pareto optimal solutions is called Pareto
front [42], [43].
A solution x1 is said to dominate solution x2,if the follow-

ing two conditions are satisfied [44]

• The solution x1 is no worse than x2 in all objectives,
• The solution x1 is strictly better than x2 in at least one
objective.

There are numerous techniques for finding the Pareto
optimal solution, e.g., Kung’s algorithm [44] and Ding’s
algorithm [44]. In this paper, the method proposed by Mishra
and Harit [44] is utilized to identify the Pareto optimal
solution due to its simplicity, which can be elaborated by
Algorithm 1. The Pareto optimal solution obtained by the
aforementioned algorithm is assigned rank one, put in the
first front, and removed from the set P. The algorithm for
finding the Pareto optimal solution is similar. The second
Pareto front is assigned rank two. The same procedure is
repeated until set P becomes an empty set [42], [43]. For
obtaining a well-spread Pareto front, the concept of crowding
distance is introduced [42], [43]. The crowding distance of a
solution is an estimation of the density of solutions neighbor-
ing that solution. Algorithm 2 follows the solution procedure
according to [42].

IV. OPTIMIZATION ALGORITHMS
Heuristics or meta-heuristics can give near-optimal solutions
in less time as compared to analytical methods for dealing
with complex non-linear problems. Hence, Pareto dominance
based multi-CSO TLBO is employed in this paper to han-
dle the charging station placement problem. TLBO is free
from any algorithm-specific control parameters, and has a
fairly good convergence property. It is expected that when
the grading mechanism of CSO is combined with TLBO,
the rate of utilization of the population can improve, and a
faster convergence towards the optimal solution is favoured.
An overview of these algorithms is given in this section.

A. MULTI-OBJECTIVE CSO
CSOmimics the behaviour of the chicken swarm and the food
searching procedure of the swarm [22], [45]. The group is
divided into the dominant rooster, hens, and chicks on the
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Algorithm 1 Pseudo Code for Finding Pareto Optimal
Solution Put Forwarded by Deb [42]

Sort P in descending order based on f1(x) and store in
set O
Initialize S1=O1
for i=2:size(O)
Compare O(i) with S1
if S1dominates O(i)
Delete O(i) from O
Algorithm 1 continued
end if
if O(i) dominates S1
Delete the solution from S1
end if
if O(i) is non dominated to S1
Update S1=S1U O(i)
end if
if S1= null set
Add immediate solution at immediate solution to S1
end if
end for
Print Pareto optimal solution, S1

Algorithm 2 Pseudo Code of Crowding Distance
Computation
k = |Fn|
While i<k do
Set Fn[i]dist = 0
end
While m<M do
Fn[1]dist = Fn[k]dist = ∞
i=2
i=i+1
end
end

basis of the rank of the chickens. Roosters have the high-
est rank, hens the intermediate, and chicks the lowest. The
random assignment of the mother-child relationship in the
swarm is also a salient feature of the algorithm. After every
G steps, the hierarchal order and mother-child relationship is
updated. The algorithm efficiently uses the biological behav-
iors of hens to follow their group mate rooster and chicks to
follow their mother in the search of food. This algorithm also
assumes that the chickens may try to steal the food found by
others resulting in a competition for food in the group.

In the initialization phase, the general and algorithm-
specific parameters of CSO are defined. In multi-objective
CSO, the division of the population into rooster, hen, and
chick is based on the rank instead of fitness value as in the
single-objective CSO [45]. The rank of all the individuals of
the population is obtained by the idea mentioned in Section 3,
and a hierarchal order is established according to the rank of
the individuals in the population. The mother hen selection is

made randomly. The algorithm assumes that the number of
chicks is smaller than that of hens, and hens are the largest in
the group [22]. There aresome differences in the food search-
ing process of roosters, hens, and chicks. The update or food
searching process of roosters is:

x t+1i,j = x ti,j × (1+ randn(0, σ 2)) (24)

If fi ≤ fkσ 2
= 1 (25)

Else, σ 2
= exp(

(fk − fi)
|fi| + ε

) (26)

where randn (0,σ 2) represents a Gaussian distribution with
the mean and standard deviation equal to 0 and σ 2, respec-
tively. The variable f is the normalized fitness value of the
corresponding x, k is the randomly selected rooster’s index.
ε is a small constant used to avoid division by zero. f is
calculated by the weighted sum method [46].

Hens follow the path of their group roosters in food search-
ing. Additionally, chickens may steal food found by other
chickens. Their update strategy is:

x t+1i,j = x ti,j + S1× rand× (x tr1,j − x
t
i,j)

+ S2× rand× (x tr2,j − x
t
i,j) (27)

S1 = exp(
fi − fr1

abs(fi)+ ε
) (28)

S2 = exp(fr2 − fi) (29)

where rand is a randomly generated number between in [0,1].
r1 ∈ [1,N ] is an index of the rooster, the ith hen’s groupmate.
r2 ∈ [1,N ] is an index of the rooster or hen, a random number
such that r1 6= r2.

The inherent tendency of chicks to follow their mother is
expressed as:

x t+1i,j = x ti,j + FL × (x tm,j − x
t
i,j) (30)

where x tm,j represents the position of the ith chick’s mother.
FL is a parameter signifying that the chick would follow its
mother. FL is generally chosen between 0 and 2.

The pseudo code of multi-objective CSO is given
in Algorithm 3.

B. MULTI-OBJECTIVE TLBO
TLBO is a population-based evolutionary algorithm inspired
from the interactive process of teaching and learn-
ing [47], [48]. In TLBO, learners constitute the popula-
tion. The teacher is an erudite scholar, and he transfers his
knowledge to the learners. The performance of the learners
is dependent of the knowledge and teaching ability of the
teacher. The algorithm is divided into two parts: Teacher
phase, where the students learn from the teacher and Learner
phase, where the students learn from each other by mutual
interaction [47], [48].

In multi-objective TLBO, the learner having the best rank-
ing a randomly generated population is generally assigned
the role of teacher. Each learner learns from the teacher
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as follows:

Zdiff = rand × (Tk − Rtmk ) (31)

Znew = Zold + Zdiff (32)

The learner learns by mutual interaction among them-
selves. For each learner Zi, any learner Zj is arbitrarily chosen
from the learner matrix. The objective function values are
arbitrarily compared for the two selected learners. If the value
of the objective function of Zi is lower than the objective
function of Zj, the ith learner is modified:

Znew = Zold + rand × (Zi − Zj) (33)

Otherwise, the learner is modified as follows:

Znew = Zold + rand × (Zj − Zi) (34)

Algorithm 3 Pseudo Code of Multi-Objective CSO
Initialize the population of chicken having size PN and
define other algorithm specific parameters like G, size
of RN, HN,CN, and MN;
Evaluate the rank of all chickens, t=0, establish the
hierarchal order in the swarm based on rank as well
as mother child relationship;
While (t<gen)
t=t+1;
If(t% G==0)
Establish the hierarchal order in the swarm as well as
mother child relationship;
Else
For i=1:PN
If i==rooster
Update its solution by Eq.(24);
End if
If i==hen
End if
If i==chick
Update its solution by Eq.(30);
End if
Selection based on rank and crowding distance;
End for
End if else

The pseudo code of multi-objective TLBO is given in
Algorithm 4.

C. MULTI-OBJECTIVE CSO TLBO
A multi-objective version of the hybrid CSO-TLBO pre-
sented by Deb et al. [49] is developed in this paper. The
mechanism of grading prevalent in CSO, when combined
with TLBO, can improve the utilization rate of the population
and lead to a faster convergence towards the optimal solution.
The hybridization of CSO and TLBO is expected to reduce
the probability of premature convergence of CSO for compu-
tationally expensive problems. In the hybridization scheme,
TLBO is performed for all the generation, andCSO is invoked

Algorithm 4 Pseudo Code of Multi-Objective TLBO
Set k=1;
Initialize the population size(PN) and generate the ini-
tial population of students randomly;
Compute the rank for all the individuals of the popula-
tion;
while(k<gen)
Teacher Phase
Assign the teacher based on the rank;
for i=1:PN
Modify each learner by Eq.(31), Eq.(32);
Update the new solutions based on rank and crowding
distance;
End of teacher phase
Learner Phase
Choose two learners Ziand Zj, i6=j;
if(fitness of Zi better than Zj)
Replace ith learner by Eq.(33);
Else
Replace ith learner by Eq.(34);
End if else
End for
Update based on rank and crowding distance
k=k+1
End while

periodically depending on the value of INV. It must be noted
that INV is a user defined algorithm-specific parameter of
CSO TLBO that must be tuned properly. The frequency of
introduction of CSO directly depends on INV. The flowchart
and pseudo code of multi-objective CSO TLBO are provided
in Algorithm 5.

Algorithm 5 Pseudo Code of Pareto Dominance Based
Multi-Objective CSO TLBO
Initialize the population size, gen and the other algo-
rithm specific parameters of CSO TLBO
Set t=1
While (t<gen)
Activate TLBO
If (t mod INV)>0
Activate CSO
End if
t=t+1
Selection based on rank and crowding distance
End while

V. FUZZY DECISION MAKING
Selecting the best compromise solution from the set of
Pareto optimal solution is always tricky and difficult. The
final decision making is performed by the fuzzy evaluation
system [50]–[52]. In the fuzzy evaluation framework, each
objective function is represented by a scaled membership
function in the range of 1-10 given by Eq. (35). The range
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of objective function associated with all the membership
functions or scores can be found by the back calculation
in Eq. (35).

µi =


10 OFi ≤ OFmin

i

10×
OFmax

i − OFi
OFmax

i − OFmin
i

OFmin
i ≤ OFi ≤ OFmax

i

1 OFmax
i ≤ OFi

(35)

In a word, the net score for all the Pareto optimal solutions are
evaluated, and the Pareto optimal solution having the highest
score is preferred.

VI. SOLUTION METHODOLOGY OF CHARGING STATION
PLACEMENT PROBLEM
In this paper, multi-objective CSO TLBO is employed to
handle the charging station placement problem elaborated
in Section 2. The systematic step-by-step procedure is as
follows [50]:

Step 1: Initialization
Step 1.1: Initialize algorithm settings. Set the road net-

work, distribution network data, upper and lower limits of
different constraints, and set the different control parameters
of CSO TLBO, such as gen, PN, RN, CN, HN, G, and INV.
Step 1.2: Generate feasible initial population randomly.
The initial feasible population is of the form

popintl = [ApopBpopCpop]
where

Apop =


p11 p12 p13 . . . p1m
p21 p22 p23 . . . p2m
p31 p32 p33 . . . p3m
· · · . . . ·

pN1 pN2 pN3 . . . pNm



Bpop =


Nfastp11 Nfastp12 Nfastp13 . . . Nfastp1m
Nfastp21 Nfastp22 Nfastp23 . . . Nfastp2m
Nfastp31 Nfastp32 Nfastp33 . . . Nfastp3m
. . . . . . .

NfastpPN1
NfastpPN2

NfastpPN3
. . . NfastpPNm



Cpop =


Nslowp11 Nslowp12 Nslowp13 . . . Nslowp1m
Nslowp21 Nslowp22 Nslowp23 . . . Nslowp2m
Nslowp31 Nslowp32 Nslowp33 . . . Nslowp3m

. . . . . . .

NslowpPN1
NslowpPN2

NslowpPN3
. . . NslowpPNm


A randomly generated initial solution is feasible, if it sat-

isfies all the constraints explained in Section 2.3.
Step 1.3: Evaluate the three objective functions cost,

VRP index and accessibility index for the initial population.
Compute the rank and crowding distance by the methodology
elaborated in Section 3. The first Pareto front with rank one
is designated as Tk .

Step 2: Run TLBO.
Step 2.1: Run TLBO, and update the solution based on rank

and crowding distance.

TABLE 3. Algorithm-specific parameters of CSO TLBO.

Step 2.2: If the elements Bpop exceed nfastp, element is
made equal to nfastp. If the elements of Cpop exceed nslowp,
element is made equal to nslowp.
Step 2.3: Check feasibility of the solution. If the solution

is infeasible, repeat Steps 2.1 and 2.2 until a feasible solution
is obtained.

Step 3: Check whether the iteration count t is divisible
by INV. If yes, go to Step 3.1. Otherwise, go to Step 3.5.

Step 3.1: If t is divisible by INV, run CSO.
Step 3.2: Run CSO, and update the solution based on

ranking and crowding distance.
Step 3.3: If the elements Bpop exceed nfastp, element is

made equal to nfastp. If the elements of Cpop exceed nslowp,
element is made equal to nslowp.
Step 3.4: Check feasibility of the solution. If the solution

is infeasible, repeat Steps 3.2 and 3.3until a feasible solution
is obtained.

Step 3.5: Update the iteration count.
Step 4: Check whether the maximum generation count is

reached. If the maximum generation count is reached, obtain
the Pareto front. Otherwise, repeat Step 2 to Step 4.

Step 5: Selection of the best compromise solution from
the set of non dominated solution is made by using the fuzzy
decision making explained in Section 5.

VII. PERFORMANCE OF PARETO DOMINANCE BASED
CSO TLBO ON MULTI-OBJECTIVE BENCHMARK
PROBLEMS
The proposed Pareto dominance based CSO TLBO algorithm
was first tested on some basic multi-objective benchmark
functions. The algorithm-specific parameters of CSO TLBO
were tuned as in Table 3. Moreover, the performance of the
proposed algorithm in attacking the benchmark problems was
compared with NSGA II and other hybrid algorithms like
multi-objective DE PSO, multi-objective cultural PSO, and
its variants. The aforesaid algorithms were statistically com-
pared by on the basis of the hypervolume, which is a metric
proposed by Zitzler [53] used to analyze the distribution of
Pareto optimal solutions. Hypervolume physically signifies
the volume occupied by the non dominated solution set. It is
concluded in [54] that maximizing hypervolume is equivalent
to producing a well distributed Pareto front.

A. COMPARISON OF PARETO DOMINANCE BASED CSO
TLBO WITH DE PSO AND NSGA II
The performance of Pareto dominance based CSO TLBO
algorithm was compared with that of DE PSO and NSGA II
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TABLE 4. Comparison of CSO TLBO with DE PSO and NSGA II based on
normalized hypervolume.

FIGURE 2. Comparison of Friedman ranks of CSO TLBO with DE PSO and
NSGA II for ZDT and DTLZ benchmark functions.

on two objective ZDT [55] and three objective DTLZ [56]
benchmark problems. The three algorithms were statistically
compared by computing hypervolume for a total of 50 inde-
pendent trials. The results of DE PSO and NSGA II were
directly taken from [57]. For a fair comparison, the population
size (PN) and generation (gen) of CSO TLBO were kept the
same as in [57]. Each benchmark problem was examined by
CSO TLBO with the values of PN and gen as 200 and 750,
respectively. The test problems were compared based on the
normalized hypevolume (Table 4). It was observed that CSO
TLBOperformed better thanDE PSO andNSGA II on ZDT4,
DTLZ1, and DTLZ6. The performance of CSO TLBO was
equivalent to that of DE PSO on DTLZ3. For a further anal-
ysis, Friedman rank test was performed (see results in Fig.2).
The CSO TLBO achieved the best rank in comparison to the
other optimization algorithms.

B. COMPARISON OF PARETO DOMINANCE BASED CSO
TLBO WITH CULTURAL PSO AND ITS VARIANTS
The performance of Pareto dominance based CSO TLBO
algorithm was compared with that of cultural PSO and its
variants on two objective ZDT [57] and three objective
DTLZ [56] benchmark problems. The algorithms were statis-
tically compared by computing the hypervolume for 30 inde-
pendent trials. The results of PSO and its variants were

TABLE 5. Comparison of CSO TLBO with PSO and its variants based on
hypervolume.

FIGURE 3. Comparison of Friedman ranks of CSO TLBO with cultural PSO
and its variants for ZDT and DTLZ benchmark functions.

FIGURE 4. Comparison of Friedman ranks of CSO TLBO with CSO and
TLBO for ZDT and DTLZ benchmark functions.

directly taken from [58]. For a fair comparison, the population
size (PN) and generation (gen) of CSO TLBO were kept the
same as in [58]. Each benchmark problem was attacked by
CSO TLBO with the value of PN and number of function
evaluation as 100 and 30,000, respectively. The optimiza-
tion results were compared on the normalized hypervolume
(Table 5). CSOTLBOperformed better than cultural PSO and
cultural QPSO on ZDT1, ZDT2, ZDT3, ZDT6, and DTLZ1.
The ranks of the different algorithms obtained by Friedman
test aregiven in Fig.3, in which the CSO TLBO obtained the
best rank.
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FIGURE 5. Comparison of Friedman ranks of CSO TLBO with NSGA II and
MOEA/D for CEC 2009 benchmark functions.

C. COMPARISON OF PARETO DOMINANCE BASED CSO
TLBO WITH CSO AND TLBO
The performance of Pareto dominance based CSO TLBO
was compared with that of CSO as well as TLBO on two
objective ZDT [55] and three objective DTLZ [56] bench-
mark problems. The algorithms were statistically compared
by computing the hypervolume for 30 independent trials.
Each benchmark problem was examined by CSO TLBO
with the values of PN and gen as 200 and 750, respectively.
The test problems were compared based on the normalized
hypevolume (Table 6). From Table 5, it is observed that
the proposed algorithm performed better than the standalone
CSO and TLBO algorithm on all the benchmark functions.
The ranks of the different algorithms obtained by Friedman
test are given in Fig.5, in which the CSO TLBO yielded the
best rank among all the methods involved.

VIII. PERFORMANCE OF PARETO DOMINANCE BASED
CSO TLBO ON CEC 2009 BENCHMARK FUNCTIONS
The proposed Pareto dominance based CSO TLBO algorithm
was further tested on CEC 2009 benchmark functions. The
algorithm-specific parameters of CSO TLBO were tuned as
in Table 3. Moreover, the performance of the proposed algo-
rithm in attacking the benchmark problems was compared
with that of NSGA II andMOEA/D. The aforesaid algorithms
were statistically compared on the basis of the hypervol-
ume. The performances of NSGA II and MOEA/D on CEC
2009 benchmark functions were taken from [49]. The general
control parameters of CSO TLBO were set the same as [61].
Table 7 reports the performance comparison of the proposed
algorithm with NSGA II and MOEA/D on CEC 2009 bench-
mark functions. It is observed that our method performed
better than NSGA II and MOEA/D on all the benchmark
functions except F8 and F9. In addition, the Friedman ranks
of the three algorithms are shown in Fig. 5. It is observed
that the Pareto dominance based CSO TLBO yielded the best
rank.

IX. PERFORMANCE OF PARETO DOMINANCE BASED CSO
TLBO ON CHARGING STATION PLACEMENT PROBLEM
A. TEST SYSTEM AND INPUT PARAMETERS
The EV charging station placement problemwas validated on
the test network formed by superimposition of IEEE 33 bus
distribution network and 25 node road network as shown

FIGURE 6. Test network [38].

TABLE 6. Comparison of CSO TLBO with CSO and TLBO based on
hypervolume.

TABLE 7. Comparison of CSO TLBO with CSO and TLBO based on
hypervolume.

in Fig.6. The line, branch, and outage data of IEEE 33 bus
test network were taken from [2]. The road network data
was from [9]. The EVs were assumed to follow the two
following routes:Route 1- (1-2-3-4-5-6-7-8-9-10-13-11-12-
15-16-17-18-20-21-14-22-23-24-25) and Route 2-(1-2-3-4-
5-6-7-8-9-10-13-11-12-15-16-17-19-20-21-14-22-23-24-25)

Table 8 presents the superimposed nodes with respect to
distribution as well as road network and the points of charging
demand. The points of charging demand were computed
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FIGURE 7. Pareto front obtained by CSO TLBO.

FIGURE 8. Voltage Profile for the Pareto optimal solutions obtained by CSO TLBO.

TABLE 8. Superimposed and charging demand nodes.

based on the consideration that the driving range of EV
was 150 km [52], [53], and it followed either Route 1 or
Route 2. The values of the input parameters were selected
as in Table 9. In the simulations, it was assumed that each
fast charging station had 10 servers or charger units, and each
slow charging station had 20 servers or charger units.. The
algorithm-specific parameters of CSO TLBO were tuned as
in Table 3.

B. OPTIMAL ALLOCATION OF CHARGING STATIONS
The optimization problem explained in Section 2 was
explored using CSO TLBO. Table 10 shows the best Pareto
optimal solutions obtained by CSO TLBO. The algorithm

yielded four Pareto optimal solutions or planning schemes.
In Scheme 1, the positions of charging stations were selected
as bus number 3, 23, and 26. The number of fast charging
stations placed at bus 3, 23, and 26 were 1, 2, and 1, respec-
tively. 3, 3, and 2 number of slow charging stations were
placed at bus number 3, 23, and 26, respectively. In planning
Scheme 2, the positions of charging stations were selected
at bus number 23, 6, and 26. The number of fast charging
stations placed at bus number 23, 6, and 26 were all 1. 3, 3,
and 2 number of slow charging stations were placed at bus 23,
6, and 26, respectively. In planning Scheme 3, the positions
of charging stations were 20, 6, and 23. The number of fast
charging stations placed at bus number 20, 6, and 23 were
all 2. The number of slow charging stations placed at bus
number 20, 6, and 26 were all 3. In planning Scheme 4,
the positions of charging stations were bus number 20, 23,
and 28. The number of fast charging stations placed at bus
number 20, 23, and 28 were all 2. The number of slow
charging stations placed at bus number 20, 23, and 28 were
3, 3, and 1, respectively.

Figure 7 elaborates the Pareto front obtained by CSO
TLBO. Table 11 represents the values of the three objec-
tive functions for the four planning schemes mentioned
in Table 10. In Plan 1, the optimized values of cost,
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FIGURE 9. Radar charts of the four plans.

TABLE 9. Input parameters.

VRP index, and accessibility index were 1.5389 × 107$,
12.5010, and 0.0006, respectively. In Plan 2, the optimized
values of cost, VRP index, and accessibility index were
1.4783×107$, 14.0792, and 0.0013, respectively. The values
of cost and accessibility index of plan 2 were better than that
of Plan 1. However, the value of VRP index of Plan 1 was
better than that of Plan 2. In Plan 3, the optimized values
of cost, VRP index, and accessibility index were 2.1316 ×
107$, 13.7128, and 0.0014, respectively. The value of cost for
Plan 3 was worse than that of Plan 1 and Plan 2. However, the
value of accessibility index of Plan 3 was better than that of
Plan 1and Plan 2. In Plan 4, the optimized values of cost, VRP
index, and accessibility index were 2.1316× 107$, 13.7128,
and 0.0014, respectively. The cost associated with Plan 4 was
better than Plan 3 but much worse than Plan 1 and Plan 2.
The value of VRP index for Plan 4 was better than Plan 2 and
Plan 3 but worse than Plan 1. The value of accessibility index
for Plan 4 was equal to Plan 2 and better than Plan 1 but worse
than Plan 3. Figure8 illustrates the voltage profile of the buses
for all the four plans in Table 10. The voltage profile of the
buses after placement of charging stations (charging stations
were placed at the locations obtained by pareto optimal solu-
tions listed in Table 10 by using CSO TLBO) degraded as
shown in Fig. 8. From Fig.8, it is clear that the voltage profile
of Plan 1 is better than the other three plans.

C. FINAL DECISION MAKING
The four simulated plans obtained by CSO TLBO are shown
in Table 10. The characteristics of those four plans are dis-
cussed in the previous sub-section. However, it is difficult
to select the best plan among these four plans because of
conflicting objective functions. In practice, some criteria
cannot be measured by crisp values, due to the ambigu-
ity arising from human qualitative judgement [61]. For the

TABLE 10. Best Pareto optimal solution obtained by CSO TLBO.

quantification of such cases, fuzzy reasoning can be used.
In the present work, a fuzzy evaluation system was applied
for the final decision making [55]. The cost, VRP index, and
accessibility indices were chosen as the three aspects for final
decision making. In the fuzzy decision making, low cost, low
VRP index and high accessibility were preferred features and
hence received a higher evaluation. Table 12 gives the scale
of the three objective functions based on the aforementioned
fuzzy criteria. The scores of each plan obtained by the fuzzy
evaluation system are provided in Table 13. The radar charts
of all the four plans are shown in Fig. 9. Table 14 reports
the area occupied by the radar charts of the four plans shown
in Fig. 9. The area occupied by the radar chart is computed
by Heron’s formula. The four plans had their respective
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FIGURE 10. Convergence graph of CSO TLBO and NSGA II.

TABLE 11. -Objective function values for different planning schemes (obtained by CSO TLBO).

TABLE 12. -Scale of the fuzzy evaluation.

TABLE 13. Scores of each plan.

advantages and disadvantages. The area occupied by Plan 1 is
the biggest as compared to the other three plans indicating
that Plan 1 is the most advantageous plan.

D. COMPARISON OF THE PERFORMANCE OF CSO TLBO
WITH OTHER STATE OF ART ALGORITHMS
For examining the proposed Pareto dominance based CSO
TLBO algorithm, its performance was further compared with
that of NSGA II algorithm. In order to compare the quality of

TABLE 14. Scores of each plan.

the solutions of multi-objective CSO TLBO and NSGA II,
a statistical analysis was made for 50 independent trials.
These two algorithms were statistically compared by com-
puting hypervolume, diversity index, and number of Pareto
solutions of the results obtained by the aforesaid algorithms
for 50 independent trials. Table 15 gives the results of sta-
tistical comparison of CSO TLBO with NSGA II algorithm,
which clearly shows that the hypervolume of CSOTLBOwas
more than that of NSGA II. Thus, the spread and closeness
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TABLE 15. Statistical comparison of CSO TLBO with NSGA II algorithm.

TABLE 16. Average run time comparison of CSO TLBO with NSGA II
algorithm.

of the Pareto front obtained by CSO TLBO were better
than that of NSGA II. The diversity index is regarded as a
measure of diversity existing between the non- dominated
solutions obtained by the algorithms [54]. A large value
of the diversity index indicates the algorithm yields Pareto
optimal solutions that are diverse in nature. The best and
the worst diversity index of CSO TLBO were more than
that of NSGA II (Table 15). Thus, we can conclude that the
solutions obtained by CSO TLBO are more diverse in nature.
Furthermore, the convergence graph of CSO TLBO, CSO,
TLBO, and NSGA II is shown in Fig. 10.

The number of Pareto solutions is another metric used
to compare the performances of multi-objective evolution-
ary algorithms. The algorithm that yields more number of
Pareto solutions is more preferable, as it gives the decision
maker more alternatives [52]. The number of Pareto solu-
tions obtained by CSO TLBO and NSGA II were the same
(Table 15). Therefore, the both algorithms give the decision
maker the equal number of alternative planning schemes. The
time complexity analysis of the proposed algorithm was also
performed. The time complexity or computational time of the
proposed algorithm was also compared. Table 16 reports
the average run time of CSO TLBO and NSGA II in handling
the charging station placement problem. The average run time
of CSO TLBO was more than NSGA II. In CSO TLBO, both
CSO and TLBO were executed in some generations. As a
consequence, the average run time of CSO TLBO was more
than that of NSGA II.

X. CONCLUSION
The construction of charging station is indeed very impor-
tant to promote EVs. The placement of charging stations
must consider cost, distribution network characteristics, and
accessibility of the charging stations simultaneously. In our
paper, the charging station placement problem was repre-
sented in a multi-objective framework with cost, VRP index,

and accessibility index as the objective functions. The sci-
entific contribution of this work lies in not only proposing
a multi-objective framework to solve the charging station
placement problem but also developing a Pareto dominance
based multi-objective CSO TLBO for the charging station
placement problem and fuzzy selection of Pareto optimal
solutions. Thus, we have explored an integrated planning
scheme for charging stations by using multi-objective opti-
mization, fuzzy decision making, and radar charting. The
hybrid algorithm is found to be superior in handling the charg-
ing station placement problem as well as standard benchmark
problems. Our future work aims at the performance com-
parison of this new algorithm in dealing with other optimal
placement problems.

NOMENCLATURE
Abbreviations

EV Electric Vehicles
ICE Internal Combustion Engine
MPDIPA Modified Primal-Dual-Interior Point Algo-

rithm
CE Cross Entropy
DEA Data Envelopment Analysis
MOEA Multi-Objective Evolutionary Algorithm
SAIFI System Average Interruption Frequency

index
SAIDI System Average Interruption Duration

Index
CAIDI Customer Average Interruption Duration

Index
VSI Voltage Stability Index
CSO Chicken Swarm Optimization
TLBO Teaching Learning Based Optimization
BFA Binary Firefly Algorithm
GA Genetic Algorithm
PSO Particle Swarm Optimization
SPEA Strengthened Pareto Evolutionary Algo-

rithm
NSGA Non Dominated Sorting Genetic Algorithm
DE Differential Evolution
ZDT Zitzler Deb Thiele function
DTLZ Deb Thiele Laumann Zitzler function
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Decision Variables
p Position of charging stations in the network
Nfastp Number of fast charging stations placed at p
Nslowp Number of slow charging stations placed at

p

Sets and Matrices

TS Set of superimposed nodes
P Set of solutions in case of multi-objective

optimization
O1 First solution of set O
D Distance Matrix
DD Reduced Distance matrix
popintl Initial Population matrix
Apop Population sub-matrix containing initial

population of the candidate locations of
charging stations

Bpop Population sub-matrix containing initial
population of the number of fast charging
stations placed at the candidate locations

Cpop Population sub-matrix containing initial
population of the number of slow charging
stations placed at the candidate locations

Constant Parameters

Cfast Installation cost of fast charging station
Cslow Installation cost of slow charging station
CPfast Capacity of fast charging station
CPslow Capacity of slow charging station
Pelectricity Cost of electricity
m Maximum number of locations in which

charging station will be placed
q Total number of charging demand points
w1 Weight assigned to V
w2 Weight assigned to R
w21 Weight assigned to SAIFI
w22 Weight assigned to SAIDI
w23 Weight assigned to CAIDI
w3 Weight assigned to Power loss
VSIbase Base value of Voltage Stability Index
SAIFIbase Base value of SAIFI
SAIDIbase Base value of SAIDI
CAIDIbase Base value of CAIDI
Pbaseloss Base value of power loss
ND Total number of buses of the distribution

network
nfastp Maximum number of fast charging stations

placed at bus p
nslowp Maximum number of slow charging stations

placed at bus p
Qmin
i Lower limit of reactive power of bus i

Qmax
i Upper limit of reactive power of bus i

Pmin
i Lower limit of active power of bus i
Pmax
i Upper limit of active power of bus i

Variables
VSI ibase Base value of VSI of the ith bus
VSI il VSI of the ith bus after the placement of the

charging stations
VSIl VSI after after the placement of EV charging

stations
Pl−loss Power loss after the placement of EV charg-

ing stations
SAIFIl- SAIFI after the placement of charging sta-

tions in the distribution network
SAIDIl SAIDI after the placement of charging sta-

tions in the distribution network
CAIDIl CAIDI after the placement of charging sta-

tions in the distribution network
Vi- Voltage of ith bus for base case
Vi+1- Voltage of (i+1)th bus for base case
V ′i Voltage of ith bus after the placement of

charging station
V ′i+1 Voltage of (i+1)th bus after the placement of

charging station
Pi Active power at the ith bus
Pi+1 Active power at (i+1)th bus
P′i Active power at ith bus after the placement

of charging stations
P′i+1 Active power at (i+1)th bus after the place-

ment of charging stations
Qi Reactive power at the ith bus
Qi+1 Reactive power at (i+1)th bus
Q′i Reactive power at ith bus after the placement

of charging stations
Q′i+1 Reactive power at (i+1)th bus after the

placement of charging stations
Pp Active power at bus p
P′p Active power at bus p after the placement of

charging station
ri Resistance of the branch between bus i and

i+1
xi Reactance of the branch between bus i and

i+1
Z Impedance of the branch between bus i and

i+1
λi Failure rate of ith bus
Ni Number of consumers connected at ith bus
Ui Outage duration of ith bus
λ′i Failure rate of ith bus after the placement of

charging station
U ′i Outage duration of ith bus after the place-

ment of the charging station
λp Failure rate of bus p
λ′p Failure rate of bus p after the placement of

charging station
Up Outage duration of bus p
U ′p Outage duration of bus p after the placement

of charging station
Ii Current through branch i
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I ′i Current through branch i after the placement
of charging station

dicj Distance between ith charging demand point
and jth charging station where i=1,2,. . . q
and j=1,2,. . .m

Pgi Active power generation of ith bus
Pdi Active power demand of ith bus
Qgi- Reactive power generation of ith bus
Qdi- Reactive power demand of ith bus
Vj Voltage of jth bus
Yij Magnitude of (i,j)th term of bus admittance

matrix
θij Angle of Yij

δi Voltage angle of ith bus
δj Voltage angle of jth bus
xl Lower limit of decision variable
xu Upper limit of decision variable
µi Fuzzy membership function
OFi ith objective function
OFmin

i Minimum value of ith objective func-
tion

OFmax
i Maximum value of ith objective func-

tion
Fn[i]m mth objective function value of ith

solution in the front Fn
f max
m and f min

m Maximum and minimum value of mth

objective function in the same front
M Number of objective function

CSO and TLBO parameters

PN Total population
RN Set of roosters
HN Set of hens
CN Population of chicks
MN Set of mother hens
Tk Teacher
mk mean value of decision variable
Rt Random number between 0 and 2
gen Maximum generation
INV positive constant to introduce the frequency

of CSO
t Current iteration count

Functions

Cinstallation Installation cost
Coperation Operation cost
VRP Voltage Stability, Reliability, and Power loss
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