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ARTICLE OPEN

Simulating Raman spectra by combining first-principles
and empirical potential approaches with application
to defective MoS2
Zhennan Kou 1, Arsalan Hashemi1, Martti J. Puska 1, Arkady V. Krasheninnikov1,2 and Hannu-Pekka Komsa 1,3✉

Successful application of two-dimensional transition metal dichalcogenides in optoelectronic, catalytic, or sensing devices heavily
relies on the materials’ quality, that is, the thickness uniformity, presence of grain boundaries, and the types and concentrations of
point defects. Raman spectroscopy is a powerful and nondestructive tool to probe these factors but the interpretation of the
spectra, especially the separation of different contributions, is not straightforward. Comparison to simulated spectra is beneficial,
but for defective systems first-principles simulations are often computationally too expensive due to the large sizes of the systems
involved. Here, we present a combined first-principles and empirical potential method for simulating Raman spectra of defective
materials and apply it to monolayer MoS2 with random distributions of Mo and S vacancies. We study to what extent the types of
vacancies can be distinguished and provide insight into the origin of different evolutions of Raman spectra upon increasing defect
concentration. We apply to our simulated spectra the phonon confinement model used in previous experiments to assess defect
concentrations, and show that the simplest form of the model is insufficient to fully capture peak shapes, but a good match is
obtained when the type of phonon confinement and the full phonon dispersion relation are accounted for.

npj Computational Materials            (2020) 6:59 ; https://doi.org/10.1038/s41524-020-0320-y

INTRODUCTION
Structural defects can be either intentionally or unintentionally
introduced into materials during their synthesis or processing, or
they can naturally appear at finite temperatures due to the
entropic contribution to the free energy of the system1. The
defects can have either beneficial or detrimental effects on
materials properties. For example, doping by foreign impurities
can be used to increase carrier concentration, but at the same
time the mobility decreases due to enhanced scattering2. They
can also enable new technologies, e.g., point defects can be used
as single-photon emitters or qubit hosts3,4 in the field of quantum
information. With the discovery of new materials, defects continue
to be an active and important research area for both engineers
and scientists. This seems to be especially relevant now with two-
dimensional (2D) materials, such as graphene and transition metal
dichalcognides (TMDs). Due to their high surface-to-volume ratio,
essentially all the atoms are in contact with the environment.
Because of this, not only the concentration of defects can be much
larger than that in bulk systems because of interactions with
reactive species, but it is also much easier to study and control
defects in 2D systems than those buried in bulk materials (for an
overview, see refs. 5–11).
Raman spectroscopy can be used as a qualitative and

inexpensive diagnostic tool to characterize 2D materials, that is,
to get information on the lateral size and the number of layers of
flakes12,13, doping14, strain15, temperature16,17, and defect con-
centration18. The changes in Raman spectra of MoS2, the
prototype material among TMDs, upon introduction of point
defects have already been investigated18–22, and three different
signatures of defects have been reported. First, there is a shift of
the mode frequencies. In the case of MoS2, the frequency of the E0
peak shifts down while the A0

1 peak remains roughly constant.

Second, there is an asymmetric broadening toward lower
frequencies below the E0 peak and toward higher frequencies
above the A0

1 peak. However, the previous studies remain
inconclusive on whether this is pure broadening or whether it
also involves new peaks. The asymmetric broadening can, at least
qualitatively, be explained using the phonon confinement model
(PCM)18,23, where it is assumed that defects lead to confinement of
the Raman-active modes of a pristine system. Third, new peaks
may arise from vibrational modes localized around the defects,
possibly contributed by splitting of the degenerate modes due to
symmetry lowering around the defect.
A common difficulty present in all experimental studies is that

the exact density and types of the defects are not known, and it is,
therefore, difficult to obtain a quantitative correspondence
between the defect type or its concentration and the changes
in the Raman features. In addition, the results may be affected by
instrumental contributions, interaction with the substrate, synth-
esis, and transfer procedures, etc. To this end, few computational
studies have also been carried out20,21,24. Unfortunately, there is
also a problem in all these works, since only small supercell sizes
are computationally tractable, which consequently leads to
spurious effects arising from high concentrations of defects
considered and their periodic arrangement. Simulating spectra
in cases of randomly distributed defects at realistic concentrations
requires very large supercells. Therefore, in order to advance the
understanding of the changes observed in the measured Raman
spectra, it is required to have computational tools with good
predictive power and high computational efficiency.
We recently introduced a method for simulating Raman spectra

of defective materials with very small computational cost. The
method can be used once the vibrational eigenvectors of the non-
pristine system and the Raman tensors of the pristine system are
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known25. The latter are easily obtained using first-principles
calculations. However, since the first-principles evaluation of the
vibrational eigenvectors is still computationally fairly demanding,
in our previous work we only considered simple substitutional
alloys, where the eigenvectors could be evaluated within the mass
approximation25. Here, we explore the use of empirical potentials
(EP) for determining the eigenvectors in the case of monolayer
MoS2 with randomly distributed Mo and S vacancies. Our main
aim is to benchmark the computational approach and, in
particular, the quality of the EP in describing the eigenmodes.
Although a quantitative comparison to the experimental data is
difficult and not the focus here, all the experimentally observed
trends are correctly reproduced. Moreover, we apply PCM to
analyze the simulated Raman spectra. Armed with the knowledge
on the exact defect concentrations and the full dispersion relation
of the pristine host, we can assess the quality and applicability of
PCM in a robust way.

RESULTS
Simulation approach
The method for evaluating first-order non-resonant Raman spectra
of defective materials as modeled using large supercells was
recently introduced by us in ref. 25. In brief, when calculating the
Raman intensity of the supercell (SC) mode j, its Raman tensor RSC,j

is obtained as a sum of the primitive unit cell (PUC) Raman tensors
RPUC,i and the projections of the SC eigenmodes to the PUC
eigenmodes at the Γ-point:

ISC;j � jes � RSC;j � eij2 (1)

¼ es �
X
i

wijR
PUC;i

 !
� ei

�����
�����
2

(2)

where ei and es are the polarization vectors of the incident and
scattered light, respectively, and wij is the projection weight. The
vibrational eigenmodes are obtained in the conventional way by
first determining the force constants and then solving the
equations of motion for the ions. In ref. 25, this method was
denoted as RGDOS as it involves Raman tensor weighting of the
Γ-point projected density of states (DOS).
This approach allows one to avoid the Raman tensor calculation

for each supercell mode, but still requires evaluating vibrational
eigenvectors, which can still be prohibitively expensive with large
supercells if carried out by density-functional theory (DFT)
calculations. For instance, directly constructing the force constant
matrix in the case of a defective 10 × 10 MoS2 supercell requires
about 900 DFT calculations (each of the 300 atoms should be

displaced in three directions). Our present solution to this issue is
to use empirical potentials to evaluate the force constants and
consequently the vibrational eigenmodes. The Raman tensors of
the pristine system are evaluated via DFT.
In the following, force evaluations are done with the reactive

empirical bond order (REBO) potential combined with the
Lennard–Jones (LJ) interaction26,27. REBO was mainly chosen
because of its transferability and since it has been shown to
describe well formation energies of point defects28 and thermal
conductivity29 in MoS2. We note that some empirical potentials
might provide more accurate descriptions of phonon dispersion
curves of the pristine material, since they have been specifically
fitted to dispersion curves, but their application to defective
systems would require a careful verification.
To investigate the reliability of the REBO potential, we compare

phonon dispersion curves calculated by DFT and EP for monolayer
MoS2 in Fig. 1a. Since we are mainly interested in the two Raman-
active modes at the Γ-point (E0 at about 390 cm−1 and A0

1 at about
410 cm−1), we have scaled the EP frequencies by 0.975 to align
them with the DFT values. This also brings the calculated
frequencies in close agreement with the experimental values.
The dispersion of the bands around the Γ-point is reproduced
fairly well for the E0-mode, but the A1 mode bends strongly
upwards in the EP resuls while it is noticeably flatter in the DFT
case.
To investigate vibrational properties as a function of the defect

concentration, we created large supercells with randomly
distributed point defects. Here we focus on the vacancy-type
defects: a missing Mo atom (Movac), a missing S atom (Svac), and
two missing S atoms on top of each other (S2vac). Svac is the most
common defect in MoS2

30–33, but depending on the preparation
or synthesis method Movac may also be present32,33. We used 10 ×
20 hexagonal supercells with different numbers of vacancies to
cover defect concentrations from 0.5 to 5%. At each concentra-
tion, we generated five random configurations, over which the
presented spectra are averaged over. We also compared the
results to those obtained by ordered arrays of defects, where one
defect is created in a supercell with its size ranging from 4 × 5 to
10 × 10 PUCs in the case of S2vac and Movac (defect concentration
0.23–5.0%), and from 3 × 4 to 15 × 15 PUCs in the case of Svac
randomly placed on the two sides of the layer (defect concentra-
tion 0.22–4.2%). Note that the defect concentration is defined as
the number of defects per available defect sites, but there are two
sites per unit cell for Svac and only one site for S2vac and Movac.
While the use of large supercells leads to thousands of
displacements, depending on the symmetry of the optimized
supercell, evaluation of the forces for each displaced structure
takes generally only few seconds on a single CPU core.
Now we have all the ingredients needed for calculating

RGDOSs. Starting with a trivial case, Fig. 1b shows the comparison
between the full DFT calculated Raman spectrum, DFT RGDOS,
and EP RGDOS in the case of pristine MoS2. RGDOSs correctly pick
up the active modes from the total DOS with correct intensities. As
a more challenging test case, Fig. 2 compares the results for 2%
Svac systems in random and ordered arrangements. The ordered
system corresponds to a single Svac in a 5 × 5 PUCs supercell.
Comparison between the DFT Raman and DFT RGDOS shows that
RGDOS again correctly picks up the Raman-active modes from all
the states that are folded to the Γ-point, although there are some
differences in the intensities. DFT and EP RGDOSs are also in a
fairly good agreement, suggesting that the modification of the
vibrational modes by defects are correctly captured by EP. In
Fig. 2, we also show the EP RGDOS for the same Svac concentration
(2%), but randomly distributed in a large SC and averaged over 5
different configurations. While the ordered configuration already
exhibits all the main features, it is difficult to ascertain which of the
peaks arise from the broadening of the main features and which
would evolve as extra peaks.
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Fig. 1 Vibrational properties of pristine MoS2 monolayer.
Comparison of a phonon dispersion curves, b density of states,
and c RGDOSs calculated by the EP (red curves) and DFT (green
curves) methods. In c the DFT Raman (blue curve) is also shown.
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Evolution of the Raman spectra
The simulated Raman spectra for randomly distributed vacancies
with different concentrations are shown in Fig. 3a–c and the peak
position shifts of the E0 and A0

1 modes are illustrated in Fig. 3d–f.
We find that: (i) For all defects, the E0 mode shifts to lower
frequencies with a similar rate of about 2–3 cm−1 for the 5%
defect concentration. We remind that with our definition of the
defect concentration the number of missing S atoms in the S2vac
case is twice that for Svac. This means that the shifts are governed
mostly by the number of defects and not by their size. (ii) In the
case of Svac and S2vac, the A0

1 mode remains nearly intact, whereas
in the case of Movac also the A0

1 peak experiences a pronounced
downshift with increasing defect concentration. (iii) The peak
shifts in the cases of random and ordered defects are always in a
close agreement with the exception of the small deviations in the
case of the S2vac E0 mode. (iv) In addition to the peak shifts, the
simulated spectra in Fig. 3a–c show also a clearly increasing
asymmetric broadening of the peaks as well as an emergence of
additional broad peaks at around 355 cm−1 and 435 cm−1. (v)
Movac shows an additional peak at about 5 cm−1 above the E0
peak with the frequency independent of defect concentration.
Our results for Svac are in a good agreement with the results of

previous experimental and computational studies18–22, which also
show the E0 mode shifting downward and the A0

1 mode remaining
at a fixed frequency. Comparing the magnitude of the shift is
more challenging. Parkin et al. report about an 8 cm−1 peak shift
for the 4% vacancies concentration20, which is more than twice
that in our calculations. In contrast, a 3–4 cm−1 shift for a similar
vacancy concentration was reported by Mignuzzi et al.18, which is
close to our results. The different experimental details make it
difficult to directly compare the results. In ref. 20 the defects were
created by electron irradiation and their concentration evaluated
using a sputtering cross section from selected-area electron
diffraction, while in ref. 18 the defects were created using Mn+ ion
irradiation and their concentration evaluated directly from the ion
dose. Here we do not want to argue which experimental report is
the most reliable, but the similarity of the Svac and S2vac results
shows that part of the discrepancy could arise from different

degrees of vacancy clustering. Naturally, our computational
approach relying on EP may also lead to inaccuracies in the peak
shifts. Our shifts are smaller than the DFT calculated ones in ref. 20,
which could arise from the different exchange-correlation func-
tionals. We note that the peak shift obtained from our full DFT
calculation for the case of 2% S vacancy concentration (cf. Fig. 2) is
1.3 cm−1, which is close to the shift obtained from EP RGDOS.
The asymmetric broadening of the peaks, the E0 mode shifting

to lower frequencies, and the independence of these features on
the defect size (Svac vs. S2vac) are all consistent with the PCM.
According to PCM, phonons are confined to pristine regions of the
sample, away from defects, and the sizes of these regions
decrease as the defect concentration increases. This can be
verified by visualizing the eigenmodes that contribute most to the
selected peaks of the simulated Raman spectra, as shown in Fig. 4
in the case of a single vacancy defect placed in a supercell of 20 ×
20 PUCs. For the all defect types, the E0 mode is localized away
from the defect. The size of the “excluded” region slightly depends
on the defect, and the larger size in the case of S2vac could be due
to the larger extent of the localized strain field. We note that the
non-spherical appearance arises from the fact that we are
visualizing only one of the two perpendicular E0 modes. The
PCM also predicts how the Raman peak shape evolves with
increasing confinement: a confining potential in the real space
leads to broadening in the k-space and thereby activation of
states around the Γ-point. As a result, the peak broadening should
reflect the band dispersion around the Γ-point, and consequently
also the peak maximum will shift slightly following the band
dispersion. That is, the negative curvature of the E0 mode, for
instance, should lead to a shift to lower frequencies, which is
consistent with the simulated spectra.
The changes in the A0

1 peak position and broadening are not
consistent with PCM. As shown in Fig. 4c, f, i, the modes which
mostly contribute to the A0

1 peak remain largely unaffected by the
Svac and S2vac defects, and are resonant with the defect in the case
of Movac. On the other hand, according to PCM, the A0

1 peak
should exhibit asymmetric broadening and a shift to higher
frequencies, since the corresponding band has a positive
curvature (cf. Fig. 1). Presumably, due to the minor effect of Svac
on this mode, the peak shift and broadening are very minor, as
seen in Fig. 3. At large defect concentrations, there is an extra
structure above the A0

1 peak that clearly follows the dispersion of
the corresponding phonon band, starting from 412 cm−1 at the Γ-
point to about 440 cm−1 at the Brillouin zone edges (cf. Fig. 1).
One can expect that with a better force-constant model this
feature would move much less, and, indeed, it is mostly absent in
the DFT calculated Raman spectra and DFT RGDOS shown in Fig. 2.
This feature likely arises from the highly localized nature of the
(small) modifications of the eigenmodes around the defect, which
then leads to activation of the modes with relatively large wave
vectors. As for Movac, we assign the downshift of the A0

1 mode to
the localization of the mode around the defect, where the bonds
may be weakened and also local strain contributions may play a
role. In addition, the new mode at 393 cm−1 is a purely localized
mode around the Mo vacancy. In this mode, the vibrations are in-
plane and found to originate from the E0 mode.

Improved fitting to PCM
Thus far, we have invoked PCM only in a qualitative manner. We
now investigate the peak shape in more detail and compare
RGDOSs to the peak shapes obtained using PCM. We consider
phonons confined within an envelope function described by a
Gaussian cðrÞ ¼ expð�r2=2σ2Þ. The variance σ describes the
confinement, but preferably needs to be connected to the
geometric parameters describing the system. When the confine-
ment is within a (spherical) grain of diameter L, one might, for
instance, equate L with the full width at the half maximum of the

Fig. 2 Benchmarking our computational approach. DFT and EP
RGDOSs and DFT Raman spectra of monolayer MoS2 with a 2% Svac
concentration. “5 × 5 ordered” means one Svac is created in a
5 × 5 supercell, and “random” is evaluated using a large SC and
averaged over five different random configurations.
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Gaussian (L ≈ 2.355σ). However, this is not the only possible choice
and it is not a priori clear how to choose it. Consequently, it can be
impossible to extract precise quantitative data about the grain
sizes using PCM.
In the case of confinement due to defects, L should be

related to the defect concentration, e.g., via
Ld ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Asc=Nd

p ¼ 1=
ffiffiffiffiffi
nd

p
, where Asc is the SC area, Nd the

number of defects, and nd is the defect density. In this case,
the SC area is divided equally to all the defects. Since the
defects are most often distributed randomly, there can be a
wide distribution in the sizes and shapes of the confinement
regions, which further complicates the quantitative comparison
to experiments.
Now, we consider a wave function originally at

q0, ψðq0; rÞ ¼ expð�iq0 � rÞuðq0; rÞ, following the notation in the
original PCM paper16. Due to the confinement by c(r) in the real
space, the wave function spreads in the reciprocal space as

ψ(q0, q)= C(q0, q)u(q0, q) where C(q0, q) is the Fourier transform
of c(r),

Cðq0;qÞ ¼ exp � q� q0ð Þ2σ2

2

 !
σ

2π
: (3)

In order to obtain the line shape, we assume that the phonon
transition matrix element can be simplified as jMj2 ¼ Cðq0;qÞ223,
which we then integrate over the Brillouin zone and obtain

IðωÞ ¼
X
i

Z
BZ
jMj2γðω� ωiðqÞÞdq; (4)

where we have also summed over bands i. ωi(q) is a mode
frequency and γ is a broadening function, which is here the same
as used for broadening the RGDOSs.
We note that in the literature Eq. (4) is often evaluated using the

parabolic approximation for the dispersion relation around the
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Fig. 3 Simulated Raman spectra for different defect concentrations. Raman spectra of randomly distributed a Svac, b S2vac, and c Movac
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1 and E0 mode peak maxima
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Γ-point. This might be appropriate for very weakly confined
phonons, but we found it insufficient in our case due to the large
extent of C(q0, q) in the reciprocal space, which makes it sensitive
to (i) non-parabolicity of the bands, (ii) anisotropy of the bands,
and (iii) breaking of the E-mode degeneracy, as already
recognized in the literature34,35. Thus we explicitly integrated
over the BZ using the calculated dispersion relation, which enters
Eq. (4) via ωi(q). The extent of the reciprocal space broadenings
are illustrated in Fig. 5d for three different values of L. Here we
have chosen, somewhat arbitrarily, L= 2σ. Fig. 5a shows the
spectra when PCM is applied to the E0 mode with L fitted to yield
the best match. The quality of the fits is reasonable at high defect
concentrations, but becomes poorer at low concentrations. The
fitted values of L shown in Fig. 5c do not appear to follow the
expected 1=

ffiffiffiffiffi
nd

p
behavior. Both observations suggest that the

employed model can not capture the calculated spectral features
in a satisfactory way.
We found, however, that the poor agreement between PCM fits

and RGDOSs is not due to the deficiency of PCM itself, but rather
due to improper modeling of the the confinement envelope, as
alluded above. In fact, the E0 mode is best described as being an
antiresonance around the defect, cf. Fig. 4g. To model anti-
resonant modes, we write our Fourier coefficients as

Cðq0;qÞ ¼ B0δðq ¼ q0Þ � B exp � q� q0ð Þ2σ2
2

 !
σ

2π
: (5)

In practice, the delta function is replaced by another, very narrow
Gaussian that is normalized to B0. We fit using this model, which
essentially entails two fitting parameters: B/B0 and L. Due to the
normalization of the spectra, only the ratio B/B0 is significant.
Figure 5b shows the fitted spectra. The agreement at low defect
concentrations is very good, although it somewhat deteriorates at
high concentrations. Figure 5c, d shows that the width of the

antiresonant Gaussian remains nearly constant, whereas the B/B0
ratio increases linearly with defect concentration. Both of these
observations are in line with the expected behavior from the
antiresonant model. The deterioration of fits at high defect
concentrations could be related to the overlap of the Gaussians.
Since the Gaussians are no longer isolated, this effectively leads to
a distribution of antiresonance “holes” of different sizes, which
additionally smoothens the Raman peak. There may be also other
indirect contributions from defect-defect interactions.
Thus, we have demonstrated that PCM is able to describe well

the peak broadening in defective materials if the modeling is done
carefully. This conclusion is independent on how well our EP-RGDOS
manages to reproduce the spectra of explicit DFT calculations or
those of experiments. Therefore, to guide future work, we propose
the following approach to accurately fit the experimental spectra: (i)
Calculate phonon dispersion using an accurate first-principles
method to guarantee the correct dispersion of the bands. (ii) Carry
out calculation for the defect to find out how the pristine modes are
confined (localized, resonant, or antiresonant). (iii) With the known
confinement model, apply PCM as demonstrated above via
integration of the dispersion relation over the BZ.

DISCUSSION
We have demonstrated a method for simulating Raman spectra of
defective materials based on a combination of empirical potentials
and first-principles calculations. The empirical potentials are used
to evaluate the vibrational modes of the defective system, which
are then combined with Raman tensors evaluated from the first-
principles calculations. This approach allows us to not only reliably
simulate Raman spectra, but also gain insights into the physics of
vibrational modes in defective systems and how they can be
probed with Raman spectroscopy. We used this method to study
vacancies in monolayer MoS2. We captured the effect of defects

Fig. 4 Selected vibrational eigenmodes. Illustration of the E0 and A0
1Γ-point eigenmodes for a, c Movac, d, f Svac, and g, i S2vac. The blue and

red colors correspond to Mo and S atoms, respectively. The atoms are positioned in the supercell and the extent of a symbol is proportional to
the amplitude of vibration of the corresponding atom. b, e, h Strain maps of the structures, where the stretched, compressed, and unstrained
bonds are colored by blue, red, and gray, respectively.
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on the shifts and on the asymmetric broadening of the prominent
peaks, with the results being in a qualitative agreement with
experimental data. We then used the phonon confinement model
to fit our simulated Raman spectra to assess the applicability of
the model in the context of defective materials. We found it to
work well when the full dispersion relation and the type of
confinement are accounted for. The approach presented here
allows for efficient evaluation of the Raman spectra of defective
systems provided that an appropriate empirical potential is
available.

METHODS
Empirical potential calculations
Empirical potential calculations are done by the LAMMPS code (http://
lammps.sandia.gov) with the reactive empirical bond order (REBO)
potential combined with the Lennard–Jones (LJ) interaction26,27. The
structures are optimized within the NVT ensemble at T= 0.

Density functional theory calculations
Our DFT calculations are carried out using the VASP program package36.
We use the Perdew–Burke–Ernzerhof revised for solids (PBEsol)37

exchange-correlation functional. A plane wave basis with a 550 eV cutoff
energy is employed to represent the electronic wave functions. During the
structural relaxation for MoS2 PUC, a 15 × 15 × 1 k-mesh is used. The total
energies in both geometry relaxation and in phonon calculations were
converged to within 10−6 eV and the forces within 10−3 eV/Å, to
guarantee accurate evaluation of forces for the initial and displaced
structures. The polarizability tensors for Raman spectra38 were determined
with the same parameters as above through calculations of the changes of
the dielectric constant upon finite displacements of atoms. The simulated
spectra are evaluated in the (XX+ YY)/2 polarization configuration.

With both DFT and EP, phonon spectra were assessed by using the
PHONOPY code39 within the method of finite displacements. Our results
match well with the previous DFT calculations and also with
experiments40,41.
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