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Abstract

Phase synchronization of neuronal oscillations in specific frequency bands coordinates

anatomically distributed neuronal processing and communication. Typically, oscillations

and synchronization take place concurrently in many distinct frequencies, which serve sepa-

rate computational roles in cognitive functions. While within-frequency phase synchroniza-

tion has been studied extensively, less is known about the mechanisms that govern

neuronal processing distributed across frequencies and brain regions. Such integration of

processing between frequencies could be achieved via cross-frequency coupling (CFC),

either by phase–amplitude coupling (PAC) or by n:m-cross–frequency phase synchrony

(CFS). So far, studies have mostly focused on local CFC in individual brain regions,

whereas the presence and functional organization of CFC between brain areas have

remained largely unknown. We posit that interareal CFC may be essential for large-scale

coordination of neuronal activity and investigate here whether genuine CFC networks are

present in human resting-state (RS) brain activity. To assess the functional organization of

CFC networks, we identified brain-wide CFC networks at mesoscale resolution from stereo-

electroencephalography (SEEG) and at macroscale resolution from source-reconstructed

magnetoencephalography (MEG) data. We developed a novel, to our knowledge, graph-

theoretical method to distinguish genuine CFC from spurious CFC that may arise from non-

sinusoidal signals ubiquitous in neuronal activity. We show that genuine interareal CFC is

present in human RS activity in both SEEG and MEG data. Both CFS and PAC networks

coupled theta and alpha oscillations with higher frequencies in large-scale networks con-

necting anterior and posterior brain regions. CFS and PAC networks had distinct spectral

patterns and opposing distribution of low- and high-frequency network hubs, implying that

they constitute distinct CFC mechanisms. The strength of CFS networks was also predictive

of cognitive performance in a separate neuropsychological assessment. In conclusion,
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these results provide evidence for interareal CFS and PAC being 2 distinct mechanisms for

coupling oscillations across frequencies in large-scale brain networks.

Introduction

Human electrophysiological activity is characterized by neuronal oscillations, i.e., rhythmic

excitability fluctuations in a wide range of frequencies, at least from 0.01 to over 150 Hz. Syn-

chronization of these oscillations, commonly estimated as phase synchrony (PS), across brain

areas coordinates and regulates anatomically distributed neuronal processing [1, 2]. In

humans, large-scale oscillatory networks in several frequency bands characterize magnetoen-

cephalography (MEG), electroencephalography (EEG), and stereo-EEG (SEEG) data during

resting-state (RS) activity [3–8] and in many cognitive functions [9–13]. Interareal synchroni-

zation of alpha (α, 7–14 Hz) and beta (β, 14–30 Hz) oscillations in humans and nonhuman pri-

mates, respectively, is thought to regulate top-down or feedback communication [14–19]. In

contrast, both β and gamma-band (γ, 30–100 Hz) oscillations and synchronization have been

associated with bottom-up sensory processing and representation of object-specific sensory

information [15, 20–22], and β oscillations are also associated with sensorimotor processing

[23, 24]. Overall, brain-wide oscillation networks in multiple frequencies are proposed to be

the core of cognition [10, 11, 25–27]. Also, human brain activity at rest is characterized by rest-

ing-state networks (RSNs), first identified with functional magnetic resonance imaging (fMRI)

[28, 29]. Oscillatory RSNs observed in electrophysiological measurements are organized in a

partially similar fashion as the RSNs observed with fMRI [3, 30] as well as into a modular

structure at the whole-brain connectome level [31]. It has been proposed that RSNs form the

basis of task-state large-scale networks [8, 32].

The interplay between oscillations at distinct frequencies is thought to be regulated via 2

forms of cross-frequency coupling (CFC): phase–amplitude coupling (PAC) [9, 33–37] and

cross-frequency phase synchrony (CFS) [9, 38–41], also known as n:m-PS [38]. PAC indicates

the correlation between the amplitude envelope of a faster oscillation and the phase of a slower

oscillation, whereas CFS is a form of phase synchronization defined by a nonrandom phase

difference between oscillations having an integer n:m frequency ratio (Fig 1A). During task

performance, PAC has been suggested to reflect the regulation of sensory information process-

ing in β- and γ-frequencies by excitability fluctuations imposed by θ and α oscillations [9, 10,

34, 36, 37, 42]. A large number of studies have identified local PAC, i.e., PAC observed

between different frequency bands of the same signal, between the phases of slower oscillations

in delta- (δ, 1–3 Hz), theta- (θ, 3–7 Hz), and α-frequency bands and the amplitude of γ oscilla-

tions in local field potentials (LFPs) in rats [43–47] and in human intracranial EEG [48–51]

and MEG data [52–56]. Such local PAC has cortex-wide spatial modes akin to RSNs [53].

Unlike PAC, CFS enables temporally precise coordination of neuronal processing by establish-

ing systematic spike-timing relationships among possibly functionally distinct oscillatory

assemblies and hence has been suggested to serve functional integration and coordination

across within-frequency synchronized large-scale networks [39, 41, 57]. Local CFS has been

observed in human MEG and EEG data during rest [39, 58] and during attentional and work-

ing memory (WM) tasks [39, 40, 59] as well as in LFPs in the rat hippocampus [45]. However,

observations of CFS have remained scarcer than those of PAC, and it has remained unclear

whether CFS and PAC are even distinct phenomena or simply different reflections of a single

CFC phenomenon. Some studies have also identified interareal PAC or CFS between a few
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Fig 1. Schematics of identifying genuine and spurious interareal CFC. (a) Schematic illustration of PS, LF:HF (n:m)

CFS, and LF:HF PAC. In PS, 2 spatially distant processes oscillating at the same frequency exhibit a (statistically)

constant phase relationship. In CFS, a constant n:m-phase relationship exists between 2 processes at frequencies LF

and HF, so that LF:HF = n:m. In PAC, the amplitude of the HF signal is correlated with the phase of the LF signal.

These processes can either take place in the same region (local CFC) or between 2 regions (interareal CFC). (b)

Observations of local CFC can be either genuine or spurious. A measured signal from a single sensor or electrode can
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preselected regions of interest between MEG/EEG sensors [39, 40] or between brain regions in

source-reconstructed MEG/EEG data [41, 53, 56] or intracranial data [60]. However, only a

few studies [39, 41] have identified CFC in the cortex-wide networks that form the basis of

cognitive functions. Therefore, it has remained largely unknown whether CFC can couple

oscillations across frequencies in large-scale brain networks and, if so, what is the functional

organization of these networks, their similarities to PS networks, and their relevance for cogni-

tive performance and abilities. Furthermore, recent research has suggested that estimates of

CFC may be inflated by false-positive couplings arising from nonsinusoidal and nonzero

mean signals. False positives are caused by the artificial higher-frequency components pro-

duced when nonsinusoidal signals are filtered into narrow bands [61–68], as well as by artifi-

cial lower-frequency components arising from filtering of non-zero–mean waveforms [69].

Because nonsinusoidal and non-zero–mean waveforms are ubiquitous in electrophysiological

signals, their filter artifacts constitute a significant confounder to CFS and PAC estimation and

question the validity of prior CFC observations. Because CFC is thought to be central in the

coordination of processing across frequencies, it is crucial to establish whether genuine neuro-

nal CFC can be observed in neuronal activity in the first place.

The fundamental assumption in CFC is that it indicates an interaction between 2 distinct

neuronal processes in 2 frequency bands. Conversely, the notion of artificial CFC arising from

nonsinusoidal signal properties relies on the assumption that a neuronal process exclusively in

a single frequency band generates the observed signal. Approaches based on waveform analysis

[63, 68, 70] and appropriate control analyses [69] have been proposed to reduce the artifactual

connections. Nevertheless, filter-artifact–caused spurious CFC, in particular CFS, is difficult to

dissociate from genuine CFC by inspection of the waveform shape of any single signal in isola-

tion. Local CFC estimates are thus prone to ambiguous results. However, CFC is necessarily

genuine when there is evidence for 2 distinct coupled processes. Building on this notion, we

advance here a conservative test to identify genuine CFC, i.e., one that minimizes false posi-

tives, based on connection-by-connection testing of whether CFC can unambiguously be

attributed to 2 separable processes.

In this study, our objectives were (i) to investigate whether genuine interareal CFC between

brain regions characterizes meso- and macroscale RS activity in human SEEG and source-

reconstructed MEG, respectively; (ii) to reveal the functional organization of these networks;

(iii) to test whether the 2 predominant forms of CFC, PAC and CFS, were phenomenologically

similar; and (iv) to investigate whether the strength of RS CFC is predictive of cognitive

either be the sum of 2 (statistically) sinusoidal processes oscillating at distinct frequencies or a single nonsinusoidal

process, and these possibilities are difficult to dissociate from the single signal. Local CFC can be observed in both cases

because of filter artifacts produced by nonsinusoidal signals. (c) Genuine interareal CFC between 2 spatially distant

sinusoidal processes A and B. (d) An example of spurious observation of interareal CFC. Process A is sinusoidal, but B

is nonsinusoidal and causes spurious local CFC to be observed at location B, as shown in (b). If A and B are connected

by LF PS, spurious interareal CFC will also be observed between A and B. This spurious observed interareal CFC forms

a “triangle motif” with PS and the spurious CFC couplings. (e) Example of spurious observation of interareal CFC in

which process B is sinusoidal, but A has a nonzero mean, and spurious local CFC will be observed at location A. Again,

if A and B are connected by HF PS, spurious interareal CFC will also be observed between A and B, again forming a

triangle motif. (f) Constellations of observations that unambiguously indicate genuine CFC between regions A and B.

In none of the cases is there a triangle motif of PS and local CFC. (g) Constellations of observations with ambiguous

finding of interareal CFC between regions A and B. Although here, interareal CFC is genuine, it is part of a triangle

motif formed with PS and (true or spurious) local CFC. Such constellations cannot be distinguished by our graph-

theory–based method from spurious interareal CFC. (h) Constellations with spurious interareal CFC. These include

the 2 constellations from (d) and (e) in the left column and other possible constellations, including those in which

there is spurious local CFC at both locations (right column). In all cases, the spurious interareal CFC is part of a

triangle motif. CFC, cross-frequency coupling; CFS, cross-frequency PS; HF, high frequency; LF, low frequency; PAC,

phase–amplitude coupling; PS, phase synchrony.

https://doi.org/10.1371/journal.pbio.3000685.g001
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performance. We estimated whole-brain connectomes of CFS and PAC and identified ana-

tomical and topological structures therein. With SEEG data, we further addressed the putative

distinct roles of generators in deep and superficial layers. We found that genuine interareal

CFS and PAC indeed characterize human RS activity in both SEEG and MEG after pruning of

connections that could be artifact-related false positives. CFS and PAC networks were charac-

terized by directional coupling between the prefrontal, medial, visual, and somatomotor (SM)

cortices, but crucially, with distinct spectral profiles and opposing directionalities. The

strength of large-scale CFS RSNs was also predictive of cognitive performance in neuropsycho-

logical assessments. These results reveal the organization of genuine CFC in human RS brain

activity and provide evidence for CFS and PAC being functionally distinct mechanisms in the

coupling of neuronal oscillations across frequencies.

Results

A graph-theory–based method for identifying genuine neuronal interareal

CFS and PAC

Our first objective was to assess the presence and large-scale organization of genuine CFC in

human RS brain activity at mesoscale resolution with SEEG and at macroscale resolution with

source-reconstructed MEG data. In order to systematically address the possibility that observa-

tions of CFC might be spuriously caused by filtering artifacts stemming from nonsinusoidal or

non-zero–mean waveforms, we advance here a new, to our knowledge, method to control for

spurious connections. Our method is based on the core assumption that any genuine CFC

interaction takes place between 2 distinct processes, whereas spurious CFC is a property of a

single process with signal components distributed to distinct frequency bands because of filter

artifacts from nonsinusoidal or non-zero–mean signal properties. Thus, we set out to test

whether observations of interareal CFC reflect origins in 2 separable processes or within 1 pro-

cess. In our graph-theoretical, network-motif–based approach, we assess for each observation

of interareal CFC between areas A and B whether there is also observed interareal within-fre-

quency PS and local CFC that together may lead to a spurious observation of interareal CFC. If

this is the case, the observed interareal CFC possibly does not connect distinct oscillatory pro-

cesses and may hence be spurious, whereas the absence of either PS or local CFC indicates that

the observed interareal CFC cannot be attributable to a single source and is thus genuine.

Fig 1 shows basic schemata for PS, CFS, and PAC (Fig 1A) and our approach for dissociat-

ing the genuine from putatively spurious observations. Spurious observations of local CFC

occur when a nonsinusoidal signal is filtered, which creates coupled signals at distinct frequen-

cies that cannot be easily distinguished from genuine observations of local CFC (Fig 1B). On

the other hand, interareal CFC, connecting locations giving rise to separable signals, can be

proven to be genuine if it can be shown that the signals unambiguously originate from separa-

ble neuronal processes (Fig 1C). Spurious interareal CFC may arise only when spurious local

CFC is observed at one or both locations that are also interareally coupled via 1:1 PS either at

low frequency (LF) or high frequency (HF) so that a “triangle motif” with the observed (spuri-

ous) interareal CFC is formed (Fig 1D and 1E). We therefore developed a graph-theory–based

method to identify all CFC–PS network triangle motifs that might contain spurious interareal

CFC (Fig 1F–1H). This approach only identifies those interareal CFC observations as genuine

that are not part of a full triangle motif (Fig 1F), whereas all others are discarded. Because this

may include also genuine connections (Fig 1G) among the spurious ones (Fig 1H), our

approach is conservative and provides a lower bound for the number of genuine connections.

Notably, also cases wherein there is nonsinusoidal activity at both locations are excluded (Fig

1H, right half).
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Simulation of CFC and spurious interactions with the Kuramoto model

We thus posit that genuine CFC may be unambiguously observed between sources that are

anatomically separable because that enables the separation of the LF and HF processes. The

central statistical consideration in this is that observations of significant interareal CFC may

also spuriously arise from the combination of adequately strong interareal 1:1 phase synchro-

nization and local CFC, either genuine or artificial. Such spurious interareal CFC should, how-

ever, always be weaker than the local CFC because it arises only indirectly from statistical

regularities.

To test this rigorously, we developed a generative 4-population Kuramoto model [71] for

investigating the joint effects of within- and cross-frequency phase coupling (see Methods,

Modeling). The model comprised 2 “areas” that each contained 2 populations of weakly cou-

pled oscillators: one at LF and another at HF, so that fHF = 2 × fLF, i.e., with the n:m ratio (here-

after defined as LF:HF ratio) of 1:2 (Fig 2A). The populations were coupled with coupling

strengths ε with each other via 1:1 PS, local CFS, and interareal CFS, and these couplings var-

ied with a shared coupling factor c. The model produced salient 1:1 and 1:2 phase coupling at

large coupling values (all ε = 0.5, c = 0.3) with biologically plausible intermittent synchroniza-

tion dynamics (Fig 2A, right).

To investigate the emergence of spurious interareal CFS, we simulated interareal PS and

local 1:2 CFS with zero genuine interareal CFS. Hence, here all observations of interareal CFS

were spurious and driven by the indirect joint effect of local CFS and interareal PS (Fig 2B).

This analysis showed that as 1:1 PS and local 1:2 CFS increased (see Fig 2B, c> 0.02), interareal

1:2 CFS was indeed also observed in increasing strength. The crucial test for our method was

to then inspect the significant (nominal p< 0.01) observations of interareal CFS. For each

such observation, we tested whether it would be excluded by a simultaneous observation of sig-

nificant local CFS and significant interareal PS. We found that this was, by and large, the case

(Fig 2C). Because interareal CFS arose through indirect effects of local CFS and interareal PS

that reached significance at much lower coupling values, essentially all spurious interareal CFS

observations were correctly rejected (example false positives encircled in Fig 2C, bottom

panel). The nominal false-positive rate (FPR) was 0.006 ± 0.002 (mean ± SD) across the simu-

lations, and these false positives were attributable to the very-low–coupling regime in which

both local and interareal CFS were at chance level. Hence, for couplings above chance level,

the method proposed here is effective in pruning putative spurious observations of interareal

CFS.

Interareal CFC in single-subject SEEG and MEG analyses

To estimate the presence of genuine interareal CFC and to map the functional organization of

CFC networks, we used eyes-closed RS SEEG data (10 minutes, 59 subjects) from epileptic

patients and eyes-open RS MEG data (10 minutes, 19 subjects) from healthy controls (for the

analysis workflow, see S1 Fig, S2 Fig). SEEG data analysis was performed at the level of individ-

ually localized electrode contacts, from which we excluded those located in the epileptic zone

or exhibiting large artifacts (see Methods, SEEG data acquisition and SEEG data preprocessing

and filtering). For the MEG subjects, MRI scans were also obtained and used for generating

individual cortical source models for source reconstruction (see Methods, MEG and MRI data

acquisition). We obtained for each subject a cortical parcellation (see Methods, Cortical parcel-

lation) of 200 cortical parcels by iteratively splitting [72] the largest parcels in the Destrieux

atlas [73]. For both SEEG and MEG, the broadband time series were filtered into narrow-fre-

quency bands from 1 to 315 Hz. For MEG data, these were then inverse modeled and collapsed

to cortical-parcel time series (Methods, Source model and colocalization, MEG data

PLOS BIOLOGY Resting-state cross-frequency coupling networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000685 May 6, 2020 6 / 40

https://doi.org/10.1371/journal.pbio.3000685


preprocessing and filtering, and MEG source reconstruction: Inverse transform and collapsing

of source signals to parcel time series). We excluded from further analyses parcels and parcel–

parcel connections for which the source-reconstruction and connection-detection accuracy

Fig 2. Generative modeling of joint 1:1 and 1:2 cross-frequency phase coupling. (a) Two areas (A and B), each containing 2 populations of Kuramoto

oscillators (N = 500) at LFs and HFs. The populations exhibit intermediate and intermittent internal synchronization (see time series) and are mutually

coupled by population-signal–based 1:1 PS or 1:2 CFS phase coupling (see ε). (b) Increasing the 1:1 and local CFS coupling between populations led to

strengthening of the corresponding phase correlations (PLV, red and blue lines for PS and purple for local CFS) and, in the regime of strong coupling, also to

the emergence of spurious interareal CFS (green lines). Each data point indicates the observed phase correlation (PLV) in a single simulation with 100,000

iterations (5,000 cycles of the fast oscillation) with random initial parameters in a series of 512 simulations for coupling factors from 0 to 0.3. Shaded areas

indicate the 16th to 84th PLV percentiles across simulations. The gray line and shaded area indicate the PLV threshold for nominally significant CFS at

p< 0.01. (c) Phase correlation statistics: small squares indicate significant (p< 0.01) or n.s. phase correlation observations in individual simulations in the

example of series of panel (b). Lines and the shaded areas indicate the fraction of significant observations as a function of the shared coupling factor c. Black

frames indicate the observations of interareal CFS that were not associated with significant local CFS and 1:1 PS and would thus remain as false positives

after the correction proposed in this study. CFC, cross-frequency coupling; CFS, cross-frequency PS; FPR, false positive rate; HF, high frequency; LF, low

frequency; n.s., not significant; PLV, phase-locking value; PS, phase synchrony.

https://doi.org/10.1371/journal.pbio.3000685.g002
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were poor, respectively (see Methods, Removal of low-fidelity parcels and connections from

MEG connectivity analysis). From these data, we estimated interareal CFC between all remain-

ing SEEG electrode contacts and MEG parcels. CFC was estimated for LF time series between

1–95 Hz and HF time series between 2–315 Hz at LF:HF ratios of 1:2–1:7. For the removal of

the spurious connections as described above, we also estimated interareal 1:1 PS and amplitude

envelope correlations (ACs) between pairs of electrode contacts or parcels (see Methods, Anal-

ysis of interareal phase synchronization, Analysis of local and interareal CFC: PAC and CFS,

and Analysis of amplitude–amplitude coupling).

To first acquire a proof of concept for genuine CFC at the single-subject level, we identified

single-subject data sets with strong CFC. We selected an MEG participant with strong interar-

eal CFS between alpha (α) and beta (β) oscillations with a ratio of 1:2 (α:β CFS) and an SEEG

participant with strong interareal PAC between α and gamma (γ) oscillations (α:γ PAC) with a

ratio of 1:5. We focused on observations of interareal CFC between areas that were not con-

nected by interareal PS and/or local CF in the triangle motif so that CFC between them was

genuine from the perspective of our approach (see Methods, Removal of potentially spurious

CFC connections). To then measure CFS in an independent manner that allows the dissection

of filter artifacts from genuine coupling, we averaged unfiltered data segments time-locked to

the peaks of narrowband (NB)-filtered α oscillations in the temporal sulcus (TS) (see Methods,

Single-subject analysis of CFC). Time-frequency (TF) analysis of the average signal revealed a

peak only in the α-band, showing that neither genuine nor spurious local CFS was observable

therein (Fig 3A). We next used the same α-oscillation peak latencies to average broadband sig-

nals from another source, the central sulcus (CS; Fig 3B). TF analysis of the peak-averaged

broadband data in the CS revealed an oscillation in the β-band, matching averaged β-band–fil-

tered data. However, no components in the α-band in CS were found in TF analysis, which

confirmed the absence of both local CFS therein and interareal α PS between TS and CS. The

observation of α-peak locking of β oscillations between these 2 regions thus unambiguously

indicated genuine interareal CFS coupling. As a confirmatory analysis, we estimated time-

resolved α:β CFS between these 2 locations and found α:β CFS to be significant at p< 0.01 for

a duration of approximately 300 ms around the α peak in the TS (Fig 3C).

We then adopted this approach to assess local and interareal PAC. We first detected α
troughs from SEEG data and averaged data segments time-locked to these troughs in the elec-

trode contact c1 located in the middle temporal gyrus (mTG). Both the averaged broadband

time series itself and its TF analysis showed only α oscillations (Fig 3D). The broadband signal

in an electrode contact c2 in the inferior temporal sulcus (iTS), time-averaged to the α troughs

identified in the first contact, revealed no salient α oscillations, showing that these 2 contacts

were not coupled by α PS (Fig 3E). Amplitude TF analysis, i.e., averaging of the NB amplitude

envelopes around the α peaks in c1, revealed no evidence of local PAC in c1 (Fig 3F) save for a

peak at around 40 Hz during one α cycle. However, in c2, γ amplitude was comodulated by

multiple c1 α cycles over a wide range of frequencies, including 55 Hz (which was the initial

finding), indicating the presence of true interareal PAC (Fig 3G). As a confirmatory analysis,

we then evaluated time-resolved 1:5 α:γ PAC between LF 11 Hz at c1 and HF 55 Hz at c2 (fre-

quencies indicated by the gray boxes in Fig 3D and Fig 3F and 3G, respectively) and found

that PAC was significant for nearly 3 α cycles at p< 0.01 around the central α trough (Fig 3H).

Connectomes of interareal CFS and PAC in SEEG and MEG data

With both theoretical support for our method and experimental proof of concept for CFS and

PAC, we mapped the CFC connectomes (i.e., CFS and PAC between all parcels/channels) for

each subject, for all LFs between 1–95 Hz and for all LF:HF frequency ratios 1:2–1:7, in both
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SEEG (N = 59) and MEG (N = 27) data. In order to first quantify the prevalence of significant

CFS and PAC connections in the SEEG and MEG data, we compared the CFS and PAC con-

nectomes against individually generated surrogate data and identified statistically significant

(p< 0.01) connections separately for each subject (see Methods, Group-level statistics). We

denoted the proportion of significant CFS and PAC connections from all possible connections

Fig 3. Genuine interareal CFS and PAC at the single-subject level. (a) Averaged broadband time series and α-band (11 Hz)–filtered LF time series time-locked to the

α peaks in the left supTS for a representative MEG subject. TFR of the broadband average reveals α oscillations (highlighted by lower gray box) but an absence of β
oscillations (in area of upper gray box) and thus the absence of both nonsinusoidal filter artifacts and genuine local 1:2 CFS. (b) Averaged broadband-filtered and β-band

(22 Hz)–filtered HF time series for right vmCS time-locked to the α LF peaks identified in supTS. TFR of the broadband average reveals β oscillations but an absence of

α oscillations. Thus, vmCS shows no filter artifacts, local CFS, or interareal α or β CFS (highlighted by gray boxes). (c) PLV time series (green line) for 1:2 α:β CFS for

the LF and HF time series averaged over α-peak time-locked segments. Dotted gray line shows the PLV value above which CFS is significant at p< 0.01. (d) Averaged

broadband-filtered and α-band (11 Hz)–filtered LF time series time-locked to the α troughs in an electrode contact c1 located in the mTG in a representative SEEG

subject. The electrode location is marked by the red circle on the brain, and the closest white matter contact (used as reference) by the white circle next to it. TFR of the

averaged broadband time series reveals α oscillations (highlighted by gray box) and an absence of higher-frequency components, suggesting the absence of systematic

nonsinusoidal filter artifacts that would show up as local CFS here. (e) Averaged broadband time series in an electrode contact c2 in iTS that is time-locked to the α
troughs in contact c1 reveals no clear α oscillations, showing an absence of α PS between c1 and c2. The location of electrode contact c2 is marked by the blue circle on the

brain, and the closest white matter contact (reference) by the white circle next to it. (f) TFR of oscillation amplitudes in c1 time-locked to α peaks shows little modulation

of γ amplitudes by α phase at frequencies above 40 Hz. (g) TFR of oscillation amplitudes in c2 show comodulation of γ amplitudes in c2 and α cycles (i.e., α phase) in c1.

The frequency region at around 55 Hz, at which the HF of the 1:5 PAC should be seen, is marked with gray boxes. (h) PLV time series (green line) for 1:5 PAC between

LF time series in c1 and LF-filtered amplitude envelope of 55 Hz NB in c2. Dotted gray line shows the PLV value above which PAC is significant at p< 0.01. Plot data for

a–h are available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFS, cross-frequency PS; HF, high frequency; iTS, inferior temporal sulcus;

LF, low frequency; MEG, magnetoencephalography; mTG, middle temporal gyrus; NB, narrowband; PAC, phase–amplitude coupling; PLV, phase-locking value; PS,

phase synchrony; SEEG, stereoelectroencephalography; supTS, superior temporal sulcus; TFR, time frequency representation; vmCS, ventromedial central sulcus.

https://doi.org/10.1371/journal.pbio.3000685.g003
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as the connection density, K. To represent these data at the group level, we averaged the indi-

vidual K values and plotted group-level connection density spectra (K) as a function of LF sep-

arately for each LF:HF ratio (Fig 4; shaded areas indicate 95% confidence limits of the mean

estimated by bootstrap resampling). K spectra thus summarize the group-mean extent of sig-

nificant CFC in individual cortical networks.

In both SEEG (Fig 4A and 4B) and MEG (Fig 4C and 4D), the connection density spectra

revealed an LF α peak at ratios 1:2 and 1:3, which indicates significant CFS coupling between α
with β and γ oscillations, i.e., α:β and α:γ CFS. In SEEG, the frequency range of this peak was

approximately 6–12 Hz and in MEG, 7–15 Hz. This elevated amount of significant interareal

α:β and α:γ CFS was also reflected as a peak in the corresponding graph strength (GS), which

shows that these CFS connections were also stronger in terms of the phase-locking strength

(S3 Fig). We also observed similar α-band peaks in K spectra of interareal within-frequency PS

(S4 Fig) and in estimates of local CFS (S5 Fig). In addition to α-oscillation–based CFS, we

found in SEEG LF peaks in the range 2–5 Hz, covering parts of both delta (δ) and theta (θ)

bands (Fig 4A and 4B). These δ–θ oscillations were synchronized at ratios 1:2 and 1:3 with θ–α
oscillations, although no δ–θ peak was found in the within-frequency PS analysis (S3 Fig). In

MEG, on the other hand, CFS was significant also among γ and high-γ bands at ratios 1:2 and

1:3, although the wide confidence limits indicated large interindividual variability (Fig 4C and

4D).

We next assessed interareal PAC with the same approach as above and found significant

PAC in both SEEG (Fig 4E and 4F) and MEG (Fig 4G and 4H). As the most salient peak in the

connection density spectra, we found that PAC coupled the phase of θ–α band oscillations (5–

12 Hz) with the amplitude envelopes of oscillations at higher frequencies. PAC in SEEG was

robust throughout the studied range of LF:HF ratios and coupled θ–α oscillation phases with

the amplitude of neuronal activity up to the Hγ band. In MEG, α-oscillation phases (7–12 Hz)

were coupled with β and γ amplitudes at ratios 1:2–1:4. In MEG, PAC also coupled γ and Hγ
band oscillations, similarly to CFS. On the other hand, the δ–θ band oscillations that were cou-

pled via CFS with α oscillations in SEEG were not observed to exhibit PAC with these or

higher frequencies, indicating that the observed δ–θ:α coupling in SEEG was specific to CFS.

Overall, these data suggest that robust interareal CFC, both CFS and PAC, of θ and α oscilla-

tions with oscillations in β and γ frequencies is characteristic to human RS brain activity.

Genuine interareal CFS and PAC in RS brain activity

We addressed then whether the findings of CFC were attributable to filtering artifacts or

reflected genuine neuronal coupling. To remove all potentially spurious connections of CFS,

we discarded observations of interareal CFS between such sources that were also connected by

both interareal 1:1 PS and local CFC by using the triangle motif analysis as described above

(Fig 1; see also Methods, Removal of potentially spurious CFC connections). We found that

after the pruning of all putatively spurious connections, the mean connection density of CFS

and its 95th percentile confidence limit remained above zero for CFS for α:β CFS in SEEG and

MEG and for δ:α CFS in SEEG (Fig 4A and 4B). In SEEG, the correction removed a larger frac-

tion of CFS connections than in MEG, indicating that the larger initial connection density K
in SEEG may have been due to putative spurious couplings. In MEG, observations of CFS

between γ and Hγ were reduced to near zero, suggesting that this phenomenon was mostly

spurious and possibly arising from muscle artifacts [74]. In summary, genuine CFS was

observed in human RS brain activity even after application of our correction method, which,

because of its conservative nature, likely underestimates the actual number of significant genu-

ine connections.
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Fig 4. Genuine observations of interareal CFS and PAC. (a) Connection density (K), i.e., the fraction of significant connections over all possible connections, of

interareal CFS in SEEG at the group level before (left) and after removing possible spurious connections (right) for LF:HF ratio 1:2 (top row) and ratios 1:3–1:7 (bottom
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We next applied the triangle-motif–based correction to remove ambiguous PAC connec-

tions, with the difference that amplitude envelopes (S6 Fig) were used instead of PS to detect

HF interactions and PAC for detecting local CFC (see Methods, Group-level statistics). After

applying the correction method and removing the possibly spurious PAC connections, the

connection density for PAC remained significantly above zero (as indicated by the 95% confi-

dence limits) for PAC between θ–α and α–γ oscillations in SEEG as well as for PAC between α
and β–γ oscillations in both SEEG and MEG. The connection density values for PAC between

γ and Hγ in MEG remained significantly above zero after removing the possibly spurious con-

nections, although they too were greatly attenuated.

Because our correction method for spurious interactions is based on estimation of PS, it is

affected by the metric of PS used. For the results presented so far, we used the weighted phase-

lag index (wPLI) [75], which yields PS estimates that are not inflated by volume conduction

(SEEG) and source leakage (MEG). However, it is insensitive to genuine zero-lag neuronal cou-

plings and may thus underestimate the genuine extent of PS. To test whether this is a significant

confounder, we also used the phase-locking value (PLV) to estimate PS. PLV is not markedly

sensitive to variation in phase difference, but it is inflated by linear mixing [76]. To compensate

for this and reduce the effects of linear mixing, we excluded the signal-leakage–dominated

short-range connections from analyses of MEG data (see Methods, Removal of low-fidelity par-

cels and connections from MEG connectivity analysis). Even so, we found a greater connection

density for PS measured with PLV than with wPLI in MEG (S4 Fig). Correspondingly, the cor-

rection led to a greater reduction of K in MEG CFS (S7 Fig), but importantly, the connection

density of α:β CFS remained significantly above zero. In SEEG, the corrected K values for PS

were more similar between PLV and wPLI, in line with the fact that in appropriately referenced

SEEG, volume conduction is well controlled [6]. We also computed corrected PAC values using

PLV as the PS metric. Results were largely similar when PLV instead of wPLI was used for esti-

mating LF PS (S7C and S7D Fig). Taken together, these results show that using our novel, to our

knowledge, method for removing potentially spurious interareal CFC, genuine interareal CFS

and PAC between separable sources can be observed in both SEEG and MEG data and that our

method is not qualitatively confounded by the method used for estimating within-frequency PS.

RS CFS in eyes-open and closed conditions

In the SEEG RS data set used here, participants had their eyes closed to limit the disturbances

typical to the clinical environment, whereas eyes-open RS data were acquired from MEG par-

ticipants for compatibility with visual tasks. Because the amplitude of local α oscillations is

greater in the eyes-closed than in the eyes-open state [14, 18, 77], we asked whether the larger

K values found in SEEG compared to MEG could be explained by differences in the brain

state. We recorded new MEG eyes-open and eyes-closed RS data from 10 healthy subjects and

computed interareal CFS in the same manner as described above. Significant and qualitatively

identical 1:2 CFS between α and β oscillations was observed in both the eyes-open and eyes-

row). The x axis shows the LF. K values are plotted with 95% confidence limits obtained from surrogate data. (b) The same data as in (a), but presented in a matrix in

which each frequency-ratio combination is a matrix element. K is again presented before (left) and after removal of possibly spurious connections (right). (c–d)

Interareal CFS in MEG before and after removing possibly spurious connections. Robust α:β CFS at ratio of 1:2 and α:γ CFS at ratios 1:3 characterize SEEG and MEG

data before removing spurious connections. Although K is reduced by removing the putatively spurious connections, α:β at 1:2 ratio and α:γ CFS at 1:3 ratio remain

significantly above zero. (e–f) Interareal PAC in SEEG data and (g–h) in MEG data before and after removing spurious connections as in (a)–(d). SEEG is characterized

by robust PAC of θ–α oscillations to HFs in α–γ bands at ratios 1:2–1:7, indicating that α–γ band amplitudes are modulated by phases of θ–α oscillations. In MEG, PAC

is observed between α phase and β–γ band amplitudes at ratios 1:2–1:4, as well as between γ and Hγ oscillations at all ratios. The connection densities are reduced by

removing putatively spurious connections but remain significantly above the zero. Plot data and underlying connectome data are available online at https://datadryad.

org/stash/dataset/doi:10.5061/dryad.0k86k80. CFS, cross-frequency PS; HF, high frequency; LF, low frequency; MEG, magnetoencephalography; PAC, phase–amplitude

coupling; PS, phase synchrony; SEEG, stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.g004
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closed RS, but with greater K values in the eyes-closed than in the eyes-open condition (S8

Fig). This parallels the overall larger K values in SEEG data and overall shows that RS CFS is

qualitatively unaffected by the RS condition. Because no θ:α CFS coupling was observed in

eyes-closed MEG, the θ:α CFS observed in eyes-closed SEEG does not result from the lack of

visual input but is a genuine property of the mesoscale brain dynamics observed with SEEG.

Interareal CFC decreases as a function of distance

Observations of significant CFC after removal of putative false-positive CFC using a method that

minimizes false positives strongly suggests that genuine interareal CFC characterizes human RS

brain dynamics. We next set out to investigate whether CFC would be dependent on the distance

between the cortical sources. Since prior studies [6, 31, 39, 78] have shown that within-frequency

PS is negatively correlated with distance, we expected similar results for CFC. We divided the elec-

trode contact pairs in SEEG and parcel pairs in MEG into 3 distance bins containing equal num-

bers of connections each and computed 1:2 and 1:3 CFS and PAC, as well as PS, in each of these

bins (see Methods, Computation of CFC in distance bins). CFS and PAC were observed in all dis-

tance bins in both SEEG and MEG data (Fig 5). For nearly all low frequencies, the greatest K val-

ues for CFC were found for the shortest distances (blue lines) and the smallest K values for the

longest distances (green lines) both before and after removing possibly spurious connections, and

all 3 bins were found to be significantly different pairwise from each other (Wilcoxon test,

p< 0.05, corrected for multiple comparisons) for 1:2 CFS and 1:2–1:3 PAC. PS GS also was found

to decrease with distance (S3 Fig) as observed before [6, 31, 39, 78].

Interareal CFC is dependent on laminar depth

We then investigated whether interareal 1:2 and 1:3 CFS and PAC in SEEG would vary along

cortical depth, which would yield insight into the underlying cortical current generators of

human CFC interactions. The electrode segmentation algorithm used here enables the separa-

tion of electrode contacts in deep and superficial cortical layers (see Methods, Estimation of

CFC in distinct cortical layers in SEEG data), but not localization to specific layers because of

the electrode size and limits of localization accuracy. Using this approach, a previous study has

identified cortical-depth–dependent coupling profiles for within-frequency PS [6]. We found

that before the pruning of spurious connections, CFS and PAC of δ–θ and θ–α LF oscillations

with higher frequencies showed the largest K values between the electrodes in superficial corti-

cal layers (Fig 6, red lines) and the lowest K values between those in the deeper layers (blue

lines), this difference in K being significant for θ:α and α:β CFS at ratio 1:2 and for PAC at 1:2–

1:3 over a wide LF range (Wilcoxon test, p< 0.05, corrected for multiple comparisons). Values

for CFS connections between electrodes in more superficial and deeper layers (green and pur-

ple lines) lay between these values. After the pruning of possibly spurious connections, how-

ever, these differences were less pronounced and did not exceed the significance threshold.

For PAC, connections with the LF electrode in a deeper and the HF electrode in a more super-

ficial layer were now most prominent and those with the inverse relationship least prominent,

which was significant over α:β PAC. Thus, while CFC was indeed dependent on cortical depth,

further studies are needed to clarify its source in the cortical laminae with more precision, as

well as its dependence on interareal PS and local CFC in the correction approach.

We then asked whether MEG could be preferentially sensitive to CFC interactions from

either the deeper or more superficial layers. To this end, we measured with parcel degree how

central each parcel was in the CFC networks and estimated the correlation between these

degrees in MEG and in each of the 4 possible laminar depth combinations in SEEG data

(Spearman’s rank correlation test) for α:β and α:γ CFS and PAC (see Methods, Correlation of
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CFC in MEG with laminar depth in SEEG data). Parcel degree values of α:β CFS in MEG data

were positively correlated with degree values when both electrodes were localized in deeper

layers and negatively when they were both localized in more superficial layers (S9 Fig,

p< 0.05, corrected with Benjamini–Hochberg). The difference between the correlation values

r between different layer combinations was determined to be significant at z> 1.96 with a

Fisher z-transform for 1:2 CFS (indicated by black bar in S9 Fig). Also, for α:β and α:γ PAC,

the parcel degree values of MEG data were positively correlated when both electrodes were

localized in deeper layers. These findings thus extend to CFC the notion that MEG may be

most sensitive to neuronal current sources in deep cortical layers [79].

LF and HF hubs differ between CFS and PAC

Finally, we aimed to elucidate the anatomical–topological organization of the δ–θ:α, α:β, and

α:γ CFS and PAC connectomes. We first used a conventional in- and out-degree–based

Fig 5. Interareal CFS and PAC decrease as a function of distance. (a) Connection density (K) for uncorrected (left) and corrected (right) interareal CFS estimated

separately in 3 distance bins containing equal numbers of connections for 1:2 (top row) and 1:3 (bottom row) interareal CFS in SEEG data. All values are plotted, with

95% confidence limits indicated by shades. The colored bars and stars indicate LFs where K values between distance bins were significantly different (Wilcoxon test,

p< 0.05, corrected) between distance bins (purple: short versus medium; turquoise: short versus long; orange: medium versus long). (b) Same as (a) for CFS in MEG.

(c) Same as (a) for interareal PAC in SEEG and (d) in MEG. Connection density of CFC was larger for the shortest than for the longest distance bin for CFS at ratio 1:2

and for PAC at ratios 1:2 and 1:3 in both SEEG and in MEG data across most of the frequency spectrum. Plot data and underlying connectome data are available

online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFC, cross-frequency coupling; CFS, cross-frequency PS; LF, low frequency; MEG,

magnetoencephalography; PAC, phase–amplitude coupling; PS, phase synchrony; SEEG, stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.g005
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graph-theoretical approach [80] to estimate LF and HF centrality across the cortical surface

(see Methods, Estimation of functional organization of CFC networks). We represented both

SEEG and MEG CFC connectomes in the 148-parcel Destrieux atlas and estimated relative

directed degrees. This thus yielded, for each of the main LF peaks, a measure of whether a

given parcel was predominantly an HF or an LF hub in the CFC network. For CFS networks,

HF β and γ hubs (red) were largest in SM regions, posterior parietal cortex (PPC), and tempo-

ral cortex (Fig 7). LF α hubs (blue) were localized to the lateral prefrontal cortex (lPFC) and

medial parietal cortex (MPC) in both SEEG and MEG, and in MEG also to the occipital cortex.

Hub localization of θ:α and δ:α CFS (which was only observed in SEEG) was similar to that of

α:β CFS. However, for PAC, we observed largely an opposite localization of LF and HF hubs in

most cortical regions. We found the LF α hubs to be consistently localized to the SM, PPC, and

occipitotemporal regions in both SEEG and MEG, and the HF β and γ hubs mainly to be local-

ized to frontal regions and the MPC. In order to confirm the similarity between SEEG and

MEG data and the dissimilarity between CFS and PAC, we computed the correlation of rela-

tive directed degree values across parcels using Spearman test. A significant (p< 0.05) positive

correlation between SEEG and MEG was found for α:β and α:β PAC and a nonsignificant one

for α:β CFS (Table 1). Relative degree values for α:β CFS and PAC were indeed significantly

anticorrelated both in SEEG and MEG (p< 0.05) and also for α:γ CFS and PAC in SEEG, but

not in MEG (Table 2).

To corroborate this graph-theoretical, parcel-degree–based approach, we then directly esti-

mated the preferential directionality of each CFC connection between parcels and, by pooling

these connections, asked whether in CFC connections, one parcel predominantly was the loca-

tion of either the LF or HF oscillation. We estimated such low-versus-high directionality for

Fig 6. CFS and PAC in different laminar depths in SEEG data. (a) Connection density K for uncorrected (left) and corrected (right) interareal CFS at ratio 1:2 (top

row) and 1:3 (bottom row) in SEEG among electrode pairs that were either both in more superficial (s) layers (red) or both in deeper (d) layers (blue), when the LF

electrode was in a more superficial layer and the HF electrode in a deeper layer (green), and vice versa (purple). The colored bars and stars indicate LFs at which K values

were significantly different between laminar depth combinations (Wilcoxon test, p< 0.05, corrected) (purple: s–s versus d–d; beige: s–s versus s–d; pink: s–s versus d–s;

turquoise: d–d versus s–d; dark blue: d–d versus d–s; gray: s–d versus d–s). (b) Same for interareal PAC in SEEG data. In both CFS and PAC, for the uncorrected data,

the connection densities were highest for connections in which both electrodes were localized within superficial layers and lowest for both localized within deeper layers.

In corrected PAC, K was highest when LF electrodes were localized to deeper and HF to superficial layers and lowest when vice versa. Plot data and underlying

connectome data are available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFS, cross-frequency PS; HF, high frequency; LF, low frequency;

PAC, phase–amplitude coupling; PS, phase synchrony; SEEG, stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.g006
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each parcel pair and each frequency pair of the main peaks across subjects (see Methods, Esti-

mation of functional organization of CFC networks). Significant directionality between the 2

parcels was established if the absolute directionality was higher than in 95% of permutations.

We then averaged for each parcel the significant directionality values, again yielding a positive

value for parcels that are predominantly HF hubs and a negative value for parcels that are pre-

dominantly LF hubs. The results were remarkably similar to those of the degree-based hubness

analysis and also corroborated the salient dissociation in the directionality between CFS and

PAC (S10 Fig). Estimation of similarity between SEEG and MEG and the dissimilarity between

CFS and PAC using the Spearman test yielded results similar to those we obtained for the

directed degree (Tables 1 and 2). Taken together, these results provide strong evidence that the

anatomy and structure of CFS and PAC connectomes are distinct.

Fig 7. CFC networks have an asymmetric LF and HF hub architecture. The functional organization of CFC networks as measured with localization of LF and HF

hubs. Hubness was measured as relative LF and HF degree of each brain region (parcel). Relative degree values indicate whether a parcel is primarily a LF hub (blue) or

HF hub (red) in interareal CFC. Top row: brain anatomy of LF and HF hubs for CFS and PAC at ratio 1:2 connecting θ:α and α:β frequencies. Bottom row: brain

anatomy of LF and HF hubs for CFS and PAC networks at ratio 1:3 connecting δ:α and α:γ frequencies. CFS and PAC networks show saliently opposing anatomical

structures connecting anterior and posterior brain regions. Plot data and underlying connectome data are available online at https://datadryad.org/stash/dataset/

doi:10.5061/dryad.0k86k80. CFC, cross-frequency coupling; CFS, cross-frequency PS; HF, high frequency; LF, low frequency; MEG, magnetoencephalography; PAC,

phase–amplitude coupling; PS, phase synchrony; SEEG, stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.g007

Table 1. Parcel values are correlated between SEEG and MEG data.

Relative Directional Degree Directionality

r p r p
1:2 CFS 0.136 0.101 0.094 0.254

1:2 PAC 0.233 0.004 0.259 0.002

1:3 CFS −0.052 0.531 0.130 0.114

1:3 PAC 0.203 0.013 0.314 <10−4

Values obtained with Spearman test. Significant correlations (p < 0.05) in bold. Abbreviations: CFS, cross-frequency

PS; MEG, magnetoencephalography; PAC, phase–amplitude coupling; PS, phase synchrony; SEEG,

stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.t001
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RS CFS predicts performance in neuropsychological tests

If CFC is a neuronal coupling mechanism that enables the integration of processing distrib-

uted to functionally specialized frequency bands [9, 33–37, 39, 42, 57], its recruitment upon

task demands may be limited by individual factors in a trait-like fashion. In this case, RS CFC

could be predictive of individual performance in complex cognitive tasks that demand exten-

sive functional integration. To investigate whether the RS CFC networks identified in the prior

analyses were predictive of cognitive task performance, we estimated the correlation of CFS

and PAC individual GS in RS MEG data with neuropsychological test scores collected sepa-

rately (Methods, Neuropsychological assessment and correlation of CFC with neuropsycho-

logical test results). We computed the correlation of the test scores with CFS or PAC GS

separately for each LF and for each frequency ratio (Spearman rank test). CFS between θ–α
with β–γ oscillations (θ–α: β–γ CFS) and CFS between β and γ oscillations (β:γ CFS) showed

significant positive correlations with scores on Trail-Making Tests (TMTs), which measure

visual attention, speed of processing, and central executive functions, as well as with Zoo Map

Tests, which measure planning ability (p< 0.05, Spearman rank correlation test, Fig 8).

Intriguingly, negative correlations with the test scores were observed for CFS of α and β oscil-

lations with higher frequencies (α–β:γ) and for γ:Hγ CFS in the Digits Tests measuring WM

performance. In contrast to CFS, PAC was largely uncorrelated with performance in any of

these tests, although γ:Hγ PAC was negatively correlated with performance in TMT-A (S11

Fig). For all tests together, PAC did not exceed the threshold for significance. These results

suggest that in a trait-like manner, individual RS CFC brain dynamics are predictive of the var-

iability in behavioral performance in separately measured tasks, which supports the notion

that CFC plays a key functional role in the integration of spectrally distributed brain dynamics

to support high-level cognitive functions.

Discussion

Several CFC mechanisms, especially PAC [9, 34–37] and cross-frequency phase synchrony

(CFS [9, 38–41], have been proposed to coordinate neuronal processing across multiple fre-

quencies and regulate the communication among coupled oscillatory networks over frequen-

cies. Networks of phase-coupled oscillations distributed across brain areas and multiple

frequencies are a core systems-level mechanism for cognition functions [11, 25–27]. Yet, only

a few studies have identified CFC in cortex-wide networks and across multiple frequency pairs

[39, 41, 56, 60]. We propose that that cortex-wide CFC networks are essential for coordinating

computations across many frequencies and across multiple brain regions concurrently to sup-

port complex brain dynamics and cognitive functions. We report the presence and

Table 2. Parcel values are anticorrelated between CFS and PAC.

Relative Directional Degree Directionality

r p r p
1:2 SEEG −0.254 0.002 −0.277 0.001

1:2 MEG −0.114 0.168 −0.106 0.200

1:3 SEEG −0.241 0.003 0.018 0.831

1:3 MEG −0.240 0.003 −0.252 0.002

Values obtained with Spearman test. Significant correlations (p < 0.05) in bold. Abbreviations: CFS, cross-frequency

PS; MEG, magnetoencephalography; PAC, phase–amplitude coupling; PS, phase synchrony; SEEG,

stereoelectroencephalography.

https://doi.org/10.1371/journal.pbio.3000685.t002
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organization of 2 forms of interareal CFC, CFS and PAC, in human SEEG and MEG RS brain

activity. Importantly, the validity of all prior CFC findings has also come into question because

filtering artifacts arising from nonsinusoidal signals lead to spurious observations of CFC.

Here, we used a novel, to our knowledge, graph-theoretical network-motif–based method to

Fig 8. Correlation of CFS with neuropsychological test scores. The correlation of CFS GS in MEG data with scores

from neuropsychological assessments for all ratios and frequency pairs (Spearman rank correlation test, p< 0.05). The

assessments include TMTs A and B and Zoo Map Plan and Time Tests, as well as Forward Digits, Backward Digits,

and Digit Symbol Tests, and the Letter-Number Sequencing from Wechsler Adult Intelligence Scale–III. Red color

indicates a positive correlation, so that stronger CFS is associated with better performance, while blue indicates a

negative correlation between CFS and performance. Correlations with p> 0.05 are masked (low saturation colors).

The asterisks indicate the observations that remain significant after correction for multiple comparisons (see Methods,

Neuropsychological assessment and correlation of CFC with neuropsychological test results) across the 8

neuropsychological tests and CFC frequency pairs. Plot data and underlying connectome data and neuropsychological

data are available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFC, cross-frequency

coupling; CFS, cross-frequency phase synchrony; GS, graph strength; MEG, magnetoencephalography; TMT, Trail-

Making Test.

https://doi.org/10.1371/journal.pbio.3000685.g008
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distinguish genuine and putatively spurious CFC in large-scale CFC networks. Genuine interareal

CFS and PAC both characterized human RS activity but showed distinct spectral profiles, anatom-

ical architectures, and coupling directions across distributed brain regions, which strongly sug-

gests that they originate from distinct neurophysiological mechanisms and play unique functional

roles. The strength of CFS networks was also predictive of the behavioral performance in neuro-

psychological assessments performed separately, implying a trait-like role for individual CFS in

complex cognitive tasks. Overall, these data conclusively establish the presence of 2 distinct types

of interareal CFC that are in a position to underlie the coordination of neuronal processing across

anatomically distributed networks in multiple oscillatory frequencies.

Large-scale CFC networks characterize human RS brain activity

Human brain activity during rest is characterized by intrinsically correlated fluctuations in

networks of brain regions, first identified with fMRI [28, 29]. Also, in human electrophysiolog-

ical measurements, PS and amplitude correlations of neuronal oscillations characterize RS

activity in a wide range of frequencies in anatomically well-delineated structures [3–8, 81] with

a modular architecture and colocalized phase and amplitude correlations [31]. It has, however,

remained unknown whether RS activity is also characterized by CFC networks and how net-

works formed by CFC would be organized. We report here the presence of genuine interareal

PAC and CFS in large-scale RSNs. PAC of θ and α oscillations with higher frequencies was

robust throughout all investigated ratios from 1:2 up to 1:7 in SEEG data and up to 1:4 in MEG

data, indicating that the phases of θ and α oscillations were coupled with the amplitudes of β,

γ, and Hγ oscillations. PAC has been suggested to reflect the regulation of sensory information

processing achieved in higher frequencies through excitability fluctuations imposed by slower

oscillations [9, 10, 34, 36, 37, 42]. These results, despite methodological differences, are similar

to previous findings that have reported PAC in the rat hippocampus [46, 47], nonhuman pri-

mates [82, 83], and in human intracranial EEG [48–51, 60] and EEG and MEG recordings

[54–56, 84–86]. In contrast to PAC, interareal CFS connected the phase of θ/α oscillations

with the phases of β and γ oscillations only with small frequency ratios (1:2 and 1:3). CFS, by

definition, reflects a stable phase difference between coupled oscillations and thus is, by defini-

tion, associated with consistent spike–time relationships between the neuronal assemblies in

the 2 CFS-locked frequency bands [57]. The lack of high frequency ratios in CFS is not surpris-

ing because CFS necessitates the slow oscillation having a temporal accuracy in the subcycle

timescales of the fast oscillation. Hence, stable phase differences over large frequency ratios

may be limited by the temporal accuracy in the cellular, synaptic, and circuit mechanisms gen-

erating the slower oscillations. However, transient CFS at larger ratios has been observed dur-

ing task performance [41].

CFS and PAC similarly were observed in both SEEG and MEG data, indicating that their

interareal CFC characterizes both the meso- (mm) and macro- (cm) scale brain dynamics.

Pronounced local α oscillations have been recognized as a marker of RS human brain activity

for several decades [18, 77]. Here, we show that these α oscillations are systematically cross-fre-

quency–coupled with the faster β- and γ-frequency oscillations across long distances in both

SEEG and MEG. CFC was present in both eyes-open and eyes-closed brain states, albeit stron-

ger in eyes-closed data, putatively contributing to larger CFC values in SEEG in addition to

better signal/noise ratio.

Characteristics of CFC networks in RS human brain activity

A central unresolved question in research aimed at emergent brain dynamics is whether net-

works of interareal CFC characterize resting human brain activity with consistent large-scale
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architectures. Prior studies have found phase synchronization within frequencies in SEEG [6]

and in MEG data [31, 39, 78] to decrease as a function of distance. In this study, we found that

the connection density of interareal CFS and PAC decreased with distance between electrode

contacts (SEEG) or cortical parcels (MEG), similarly to that of interareal PS.

Intracortical recordings with laminar probes have shown that oscillations of different fre-

quencies are generated differentially across cortical layers [87–90]. We identified the depth in

cortical gray matter of each SEEG electrode [6, 91] and estimated the strength of CFC within

and between cortical depths. Before the exclusion of potentially spurious connections, CFS

and PAC were significantly stronger among electrode pairs that were both located in more

superficial layers than between pairs both located in deeper layers. However, possibly because

of a decreased number of samples in corrected data and perhaps because a larger proportion of

superficial connections were putatively spurious, differences between depths were not signifi-

cant for CFS after correction. For PAC, we found the greatest connection density values for

connections in which the slow θ–α oscillations were located in the deeper layers and the fast β
oscillations in the more superficial layers, and conversely, the lowest values for those in which

it was vice versa. This parallels earlier studies, which showed that γ synchrony is strongest in

superficial layers 2–3, whereas α oscillations and synchrony are generally more pronounced in

the deeper layers in both monkeys and mice, although this varies somewhat with the cortical

regions [87–90]. It is important, however, to note that without a current source density analy-

sis, for which the SEEG electrode contacts and their separation are too large, and because of

complex current source geometries in cortical circuitry and the volume conduction between

layers [91], our findings should be corroborated and expanded in future studies addressing the

neuronal sources of CFC in different cortical layers with appropriate laminar probes.

Interestingly, our data showed that CFC in MEG, in terms of the cortical node-degree

structure, is most similar with that observed with SEEG when both electrode contacts were

localized into the deeper layers. This result strongly suggests that the sensitivity of MEG to the

postsynaptic currents in large, asymmetric, and well co-oriented neurons, i.e., the pyramidal

neurons in cortical layers 5 and 6 that are central in thalamocortical loops [79, 92, 93], biases

the detection of CFC with MEG towards the postsynaptic currents in these neurons.

Distinct large-scale organization of directional network architecture of CFS

and PAC

To assess the large-scale architecture of the cortical CFC networks, we used 2 strategies for iden-

tifying the hubs of LF α and HF β and γ oscillations. These hubs are the brain regions where pre-

dominantly the slower (α) or the faster oscillations (β and γ) of the CFC connection are

observed. We found that the LF α and HF β and γ hubs and their directional interactions were

asymmetrically localized between anterior and posterior brain regions. The localization of hubs

was largely similar between SEEG and MEG data, which corroborates the validity of these find-

ings. Importantly, however, we observed distinct and partially opposing localization of the LF

and HF hubs for CFS and PAC. In α:β and α:γ CFS, the α LF hubs were observed in PFC and

medial regions that belong to the default mode network [29] or to control and salience networks

in the functional parcellation based on fMRI BOLD signal fluctuations [94–96]. This is line with

many previous studies that have found α oscillations in these regions to be correlated with

attentional and executive functions [14–19]. In contrast, the β and γ HF hubs were found in

more posterior regions such as the SM region and the occipital and temporal cortices, where β
and γ oscillations are often associated with sensory processing [15, 20–22].

In contrast to CFS, the α LF hubs of PAC were found in the occipital, temporal, and PPC,

whereas the β and γ HF hubs were found in the PFC and MPC. This anatomical structure
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between LF and HF hubs was essentially opposite to the anatomical structure observed for

CFS. These results imply that both CFS and PAC contribute to the coordination of intrinsic/

task-negative and extrinsic/task-positive RS networks [13, 28, 97] but at least partially with

opposite directional roles.

RS CFS networks predict individual cognitive variability

If CFC regulates communication between within-frequency oscillatory networks to support

integration of separate computational functions of cognition [9, 33–37, 39, 42, 57], it should be

correlated with the psychophysical performance in cognitive tasks. We have previously shown

that α-, β-, and γ-band oscillations and PS networks in these frequencies are coupled via CFS

and predict performance in a visual WM task. These observations imply that CFS could coor-

dinate the representation of sensory information achieved in γ frequencies with the executive

control achieved in the α band [41]. Because within-frequency PS networks during RS have

been shown to form a core underlying the task-state networks [8, 32], we hypothesized here

that CFC RS networks might thus also be predictive of cognitive performance in a trait-like

manner. We thus estimated the correlation of CFS and PAC GSs in MEG data with the indi-

vidual variability in cognitive performance in an array of neuropsychological tests. The CFS

network strength was indeed predictive of test performance. CFS of θ–α oscillations with β–γ
band oscillations and CFS between β and γ oscillations were correlated positively with perfor-

mance in TMT-A and TMT-B as well as with the Zoo Map Time Test, which measure the

interplay of visual processing speed and central executive functions. Negative correlations

were found between the strength of CFS and digit test measuring WM performance. These

results thus suggest that RS CFS networks indeed predict individual cognitive capacities in a

trait-like manner.

CFS and PAC are distinct CFC mechanisms

Many neurophysiological models have been developed to explain how the phase of slow oscil-

lations reflecting fluctuations in neuronal excitability can regulate the power of fast oscilla-

tions, usually in the γ-frequency band via PAC [9, 33–36, 98]. PAC, by definition, is unrelated

to spike synchronization between the slow and fast oscillations per se and reflects either the

regulation of fast neuronal processing regulated by slower excitability fluctuations or the

entrainment of slower oscillations by intermittent bursts of fast oscillations. We have postu-

lated that CFS may support different computational functions than PAC [57]. CFS is a form of

PS in which the stable phase difference takes place between 2 neuronal assemblies that oscillate

with an m:n frequency ratio [38, 39, 41]. Therefore, the coupling of the phases of the faster and

slower oscillations indicates, by definition, that CFS will be associated with consistent spike–

time relationships between the neuronal assemblies in different frequency bands. For example,

for the α:β CFS, the spikes locked to the beta oscillation would have a consistent spike–time

relationship, with spikes locked to the alpha oscillation in every second β cycle. In the current

study, spectral and ratio differences, distinct large-scale anatomical structures, and directional-

ities of CFS and PAC, as well as the differential correlation of the connectomes with the scores

of neuropsychological assessments, provide evidence that CFS and PAC impose distinct

computational functions and likely arise via separable neurophysiological mechanisms. This

conclusion is in line with prior findings during task performance in which we found interareal

CFS and PAC to show distinct spectral profiles and CFS, but not PAC, to predict WM perfor-

mance [41]. Together, these results strongly suggest that CFS and PAC are not simply different

operationalizations of a shared CFC process, but rather mechanistically, phenomenologically,

and functionally distinct CF coupling mechanisms.
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Genuine positive interareal CFC is not explained by spurious connections

The main goal of this study was to investigate whether genuine interareal CFC characterizes

SEEG and MEG data during RS. Our study was motivated by the multiple concerns that have

been raised about the validity of previous observations of CFC [61–69]. To map genuine large-

scale networks from human SEEG and source-reconstructed MEG data, we introduced a novel,

to our knowledge, graph-theory–based approach to identify and exclude all putatively spurious

CFC interactions. We first verified the validity of this approach using simulations in coupled

Kuramoto oscillators, and then used it to control for possibly spurious CFC connections in

SEEG and MEG data. Because our approach may also discard a subset of genuine CFC connec-

tions, it gives a conservative lower-bound estimate of the presence of genuine neuronal interar-

eal CFC. The number of significant CFC connections was indeed reduced by the exclusion of

the potentially spurious corrections, indicating that part of the commonly observed CFC in

SEEG and MEG data may be caused by filter artifacts arising from nonsinusoidal signal compo-

nents [61–68] or by amplitude fluctuations of non-zero–mean waveforms [69]. However, our

results clearly also indicate that genuine neuronal CFC characterizes SEEG and MEG data.

Our method was based on assessing, for each observation of interareal CFC between areas A

and B, whether there is also observed interareal within-frequency PS and local CFC that together

may lead to a spurious observation of interareal CFC. Because our method uses within-frequency

PS to identify the putatively spurious connections, the number of identified potentially spurious

connections depends on the PS metrics. Especially in MEG, PLV connection density values were

larger than the corresponding wPLI values because PLV is inflated by volume conduction and

source leakage [10, 76, 99], whereas wPLI [75] is insensitive to all linear mixing, including also

true zero-lag phase coupling. Consequently, use of PLV as a PS metric led to a larger reduction of

CFS in MEG than correction with wPLI, but importantly, significant genuine CFC was observed

with both methods. While in this study, we focused on identifying genuine interareal CFC in con-

tinuous RS data, this approach is adaptable to analyses of event-related data and may thus be used

to assess the presence of genuine interareal CFC during task performance.

Conclusions

We show here that large-scale networks of genuine neuronal CFS and PAC characterize

human RS brain activity in SEEG and MEG data. Using a new graph-theoretic approach, we

eliminated observations of interareal CFC that could be explainable by filter artifacts. The

directional organization of CFC networks showed that CFC coupled slow and fast oscillations

between anterior and posterior parts of the brain, suggesting that RS CFC coordinates intrinsic

and extrinsic processing modes. The strength of CFS networks was also predictive of cognitive

performance in a separate neuropsychological assessment, which implies that individual CFS

is a functionally significant, trait-like property of spontaneous brain dynamics. Salient differ-

ences in spectral patterns, functional organization, and behavioral correlates demonstrated

that CFS and PAC are phenomenologically and functionally distinct and thus likely to serve

complementary computational functions. Altogether, converging results from SEEG and

MEG data provide strong evidence for the coexistence of 2 forms of genuine neuronal interar-

eal CFC in human RS brain activity and reveal their large-scale network organization.

Methods

Ethics statement

All research was carried out according to the Declaration of Helsinki. Prior to the study, each

subject signed an informed and written consent. The study protocol for SEEG, computerized
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tomography (CT), and MRI data obtained in the La Niguarda Hospital were approved by the

ethical committee of the Niguarda “Ca Granda” Hospital, Milan (ID 939). The study protocol

for MEG and MRI data obtained in the University of Helsinki was approved by the Coordinat-

ing Ethical Committee of Helsinki University Central Hospital (HUCH) (ID 290/13/03/2013).

Modeling

We used a Kuramoto model [71] to investigate the direct and indirect effects of within- and

cross-frequency phase coupling on phase correlations observable among neuronal popula-

tions. The model was adapted from conventional Kuramoto models so that it comprised 2

“areas” that each contained 2 populations (N = 500) of oscillators; one at LF and another at HF

so that their frequency ratio was 1:2. The model was defined so that for each area k, k = 1, . . .,

4, the phase of each oscillator h, h = 1, . . ., 500, was given by

dyh;k
dt
¼ oh þ

P4

k ¼ 1

l 6¼ k

P500

h ¼ 1

j 6¼ i

kinternalsinðyj;k � yh;kÞ þ kexternal;k;lMlsin yl � yh;k
� �

;

where the phase increment per sample ωi was uniformly distributed in the range from π/m to

π/15m with m = 1 for HF and m = 2 for LF. Oscillators within the populations were all-to-all

connected with constant weak coupling κinternal = 0.12. The populations were 1:1 (εLF PS and

εHF PS) or 1:2 (εLocal CFS and εInterareal CFS) phase coupled with oscillators of the other popula-

tions (see Fig 2A) so that the coupling was mediated by the population mean signals Mk,

Mk ¼
1

N j
PN¼500

h¼1
eiyh j. The coupling between the populations, κexternal, was varied with a shared

coupling factor, c, so that κexternal = cε for each connection specified by the corresponding ε
value.

To validate our method for correction of spurious CFS, we set εinterareal CFS = 0, εLocal CFS =

0.3, and εLF PS = εHF PS = 0.5 in order to produce model time series that had no genuine inter-

areal CFS, but rather only spurious interareal CFS that emerges indirectly from the combina-

tion of interareal PS and local CFS. We performed significance tests for PS and both forms

of CFS. We simulated 100,000 iterations of the model, yielding 5,000 cycles at HF (at nominal

ωi = π/10) across 512 values of c from 0 to 0.3. Observations of PS and CFS were deemed sig-

nificant at a nominal p< 0.01, obtained by setting the threshold for the observed PLV to 2.42

times the null-hypothesis PLV.

SEEG data acquisition

SEEG data were recorded from 59 subjects affected by drug-resistant focal epilepsy and under-

going presurgical clinical assessment at “Claudio Munari” Epilepsy Surgery Centre, Niguarda

Hospital, Milan. Intracranial “monopolar” (i.e., all contacts referenced to a single contact in

the white matter) LFPs were recorded with platinum–iridium, multilead electrodes with 8–15

contacts each. These contacts were 2 mm long, 0.8 mm thick, and had an intercontact border-

to-border distance of 1.5 mm (DIXI medical, Besancon, France). The neuroanatomical targets

and numbers of electrodes implanted to each subject varied exclusively according to clinical

requirements [100].

For each subject, one 10-minute set of eyes-closed RS data was recorded with a 192-channel

SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110, Tokyo, Japan) at a sampling

rate of 1,000 Hz. The electrode contact positions were localized after the implantation by using

CT scans and the SEEGA tool, which performs automatic electrode contact localization and is

freely available [91, 101]. Structural MRIs were recorded before implantation, and rigid-body
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coregistration was used to colocalize MRIs and postimplant CT scans [100, 102]. Based on

this, electrode contacts were assigned to one of 148 parcels of the Destrieux atlas [73].

SEEG data preprocessing and filtering

Defective electrode contacts were identified by nonphysiological activity and excluded from

further analysis. For referencing, we used the closest-white–matter referencing scheme [102],

in which each contact in cortical gray matter is referenced to the nearest contact in white mat-

ter. The seizure-onset and propagation zones were identified by clinical experts in gold-stan-

dard visual analysis, and contacts in these areas were excluded from analysis, as were contacts

from subcortical regions. In order to avoid spurious connectivity due to volume conduction,

we excluded from connectivity analyses also contact pairs that shared the same reference or

had a contact-to-contact distance < 2 cm.

We excluded all harmonics of 50-Hz line noise using a band-stop equiripple finite-

impulse–response (FIR) filter. Moreover, because interictal epileptic events (IIEs) such as

interictal spikes are characterized by high-amplitude fast temporal dynamics as well as by

widespread anatomical spread, filtering artifacts may occur around epileptic spikes and artifi-

cially inflate both PS and CFC estimates. We therefore discarded periods containing IIEs so

that we first divided the signal in nonoverlapping 500-ms time windows and detected IIEs in

amplitude envelopes by values that exceeded the channel mean amplitude > 5 standard devia-

tions. Time windows during which at least 10% of cortical contacts demonstrated IIEs in more

than half of the 18 frequency bands were then excluded from further analyses. Time series

were then filtered with Morlet wavelets with m = 5 using 49 roughly logarithmically spaced

center frequencies from 1.2 to 315 Hz and downsampled to a sampling rate approximately 5

times greater than the wavelet center frequency.

MEG and MRI data acquisition

For the main study, 306-channel MEG (204 planar gradiometers and 102 magnetometers) was

recorded with a Vectorview/Triux (Elekta-Neuromag/MEGIN, Helsinki, Finland) at the Bio-

Mag Laboratory, HUS Medical Imaging Center from 19 healthy participants during 10 min-

utes of eyes-open RS. Overall, 27 sets of RS MEG data were obtained, with 4 participants

contributing 2 sets and 2 participants contributing 3 sets. Subjects were instructed to focus on

a cross on the screen in front of them. Bipolar horizontal and vertical EOG were recorded for

the detection of ocular artifacts. MEG and EOG were recorded at a 1,000-Hz sampling rate.

T1-weighted anatomical MRI scans (MP-RAGE) were obtained for head models and cortical

surface reconstruction at a resolution of 1 × 1 × 1 mm with a 1.5-Tesla MRI scanner (Siemens,

Munich, Germany) at Helsinki University Central Hospital. Written informed consent was

obtained from each subject prior to the experiment. In addition to the main MEG data set, we

also recorded a de novo 10-subject cohort (of which 4 had also participated in the main study)

with 10-minute sessions of both eyes-open and eyes-closed RS. These data were recorded and

preprocessed in a manner identical to the main MEG data set.

Cortical parcellation

FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) was used for volumetric segmenta-

tion of MRI data, flattening, cortical parcellation, and neuroanatomical labeling with the Des-

trieux atlas [73]. We obtained a cortical parcellation of 200 parcels by iteratively splitting the

largest parcels of the Destrieux atlas along their most elongated axis at the group level [72,

103]. All analyses of MEG data in the main data set were carried out using the 200-parcel par-

cellation, except the degree and directionality analyses (see Methods, Estimation of functional
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organization of CFC networks), for which the data were collapsed to the original 148-parcel

Destrieux atlas to facilitate the comparison with SEEG data. The analysis of the additional

10-subject MEG data set was carried out in the 148-parcel Destrieux atlas.

Source models and colocalization

MNE software (https://mne.tools/stable/index.html) [104, 105] was used to create cortically

constrained source models, for MEG–MRI colocalization, and for the preparation of the for-

ward and inverse operators. The source models had dipole orientations fixed to pial-surface

normals and a 5-mm interdipole separation throughout the cortex, which yielded 5,086–7,857

source vertices per hemisphere.

MEG data preprocessing and filtering

Temporal signal space separation (tSSS) in the Maxfilter software (Elekta-Neuromag) [106]

was used to suppress extracranial noise from MEG sensors and to interpolate bad channels.

We used independent components analysis (ICA) adapted from the MATLAB

toolbox Fieldtrip, http://www.fieldtriptoolbox.org/, to extract and identify components that

were correlated with ocular artifacts (identified using the EOG signal), heartbeat artifacts

(identified using the magnetometer signal as a reference), or muscle artifacts. After artifact

exclusion, the time-series data were filtered into NB time series using a bank of 53 Morlet fil-

ters with wavelet width parameter m = 5 and approximately log-linear spacing of center fre-

quencies ranging from 1.1 to 315 Hz. After the filtering, the time-series data were

downsampled to a sampling rate around 5 times the center frequency.

MEG source reconstruction: Inverse transform and collapsing of source

signals to parcel time series

We computed noise covariance matrices (NCMs) using preprocessed (see Methods, MEG data

preprocessing and filtering) and FIR-filtered (151–249 Hz) MEG RS data time series. NCMs

were evaluated in and averaged across 60 time windows of 10 s. This frequency band was used

for NCMs because it comprises environmental, sensor, and biological noise components but

less neuronal activity than the lower-frequency bands. These NCMs were then used for creat-

ing one inverse operator per subject with the MNE software and the dSPM method with regu-

larization parameter λ = 0.11 [104, 105]. In analyses of interareal correlations with source-

reconstructed MEG data, one confounder is posed by the spurious connections resulting from

source leakage that spreads true interareal into false positives in their vicinity [10, 76]. In order

to mitigate these effects and collapse the inverse transformed source-dipole (vertex) time series

into parcel time series in a manner that maximizes the source-reconstruction accuracy [107],

we used estimates of “vertex fidelity” to obtain fidelity-weighted inverse operators. The fidelity

estimates were obtained by simulating for all 200 parcels uncorrelated, complex white-noise

time series (equivalent to decimated Morlet-filtered white noise) and then applying these par-

cel time series to all source dipoles per parcel. The source time series, ZV,orig, were then forward

and inverse modeled (i.e., considered as ground-truth parcel data, transformed into MEG sen-

sor time series, and then source-reconstructed) to obtain source time series, ZV,mod, that thus

encompass the effects of MEG-data-acquisition–related signal mixing and residual inverse-

modeling source leakage. Then, vertex fidelity was estimated for each source vertex by the cor-

relation between the forward-inverse–modeled data and ground-truth data. This correlation

was quantified with the absolute-valued real part of the complex PLV (cPLV) between ZV,orig
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and ZV,mod, which was defined [38, 39, 108] as follows:

cPLVorig;mod ¼
1

N
P

texpfiðyV;orig � yV;modÞg;

where θ is the phase of a complex filtered time series Z. Each source-dipole row of the inverse

operator was then weighted with

w ¼ signðreðcPLVorig;modÞÞ � ðreðcPLVorig;modÞÞ
2
:

The fidelity-weighted inverse operator has higher reconstruction accuracy than a regular

inverse operator for the given parcellation because it gives greater weight to sources with better

reconstruction accuracy for the signals from the parcels they belong into. The NB RS time

series were inverse modeled using this operator and collapsed into the parcellation by simply

averaging the sources for each parcel. The sign operation ensures that the source current polar-

ity switching, for example, on opposing walls of a sulcus, does not result in signal cancelation

at averaging.

Removal of low-fidelity parcels and connections from MEG connectivity

analysis

To focus further analyses on parcel pairs of which the interaction can be estimated with rea-

sonable accuracy, we measured the quality of the parcellation-collapsed inverse transform with

“parcel fidelity” and “cross-parcel mixing.” Similarly to the procedure for estimation of vertex

fidelity described in Methods, MEG source reconstruction: Inverse transform and collapsing

of source signals to parcel time series, we simulating uncorrelated, complex white-noise time

series for all parcels, applied forward and inverse transforms, and collapsed vertex time series

into parcel time series using the fidelity-weighted inverse (see Methods, MEG data preprocess-

ing and filtering). We then estimated parcel fidelity as the absolute real part of cPLV between

the original and forward-inverse–modeled parcel time series for the 200 parcels concurrently

and also estimated cross-parcel mixing among all parcels as the |re(cPLV)| between all for-

ward-inverse–modeled time series [41].

To decrease the probability of spurious synchronization and exclude poorly source recon-

structable connections, for the wPLI analysis, we excluded parcels with parcel fidelity < 0.1,

retaining 187 of 200 parcels and 34,782 (87.4%) of all 39,800 parcel pairs. For the PLV analysis,

which is affected by source leakage, we additionally excluded parcel pairs with cross-parcel

mixing of PLV > 0.2143, so that in these analyses, we retained 28,416 (71.4%) of parcel pairs.

The threshold for cross-patch PLV was obtained as 1.95 times the mean value in the simula-

tions, which corresponds to a nominal p< 0.05 significance level. The removed parcels and

connections were located mostly in deep and/or inferior sources, which are known to generate

the least detectable signals in MEG and are hence most likely to generate spurious connections

[109].

Analysis of interareal phase synchronization

To identify cortex-wide PS networks, we first computed individual electrode contact-to-con-

tact (SEEG data) or parcel-to-parcel (MEG data) interaction matrices. PS was estimated using

the wPLI [75] and the PLV [38, 39]. Because of residual linear mixing between the parcel time

series after inverse modeling, i.e., source leakage, the PLV yields inflated values and artificial

zero-lag false-positive observations, while wPLI is insensitive to all zero-lag interactions and

hence does not yield artificial interactions or true zero-lag couplings [75, 110].
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We computed PS across the whole time series for each frequency, and each contact pair ca,
cb or parcel pair pa, pb with wPLI and PLV. The wPLI was defined as

wPLIa;b ¼
jEfimðXabÞgj

EfjimðXabÞjg
¼
jEfjimðXabÞjsignðimðXabÞÞgj

EfjimðXabÞjg
; ð1Þ

where im (Xab) is the imaginary part of the cross spectrum of the complex time series Za and

Zb and E{} is the expectancy value operator. Here, we substituted the cross spectrum with =

ZaZ�b , where Za and Zb are Morlet-filtered NB time series and � denotes the complex conjugate,

and used the mean over samples as the expectancy value. This can be done because Fourier-

and Morlet-based spectral analysis are mathematically equivalent [111].

The PLV was defined as

PLVa;b ¼
1

N
j
P

texpfiðya � ybÞgj; ð2Þ

where θ is the phase of the complex filtered time series Z and N is the number of samples. To

assess the significance of synchronization at the level of individual subjects, we obtained one

surrogate PS value for each contact/parcel pair in which Zb was randomly rotated (shifted by a

random number of samples) and then calculated the means (wPLIsurr_mean, PLVsurr_mean) and,

for wPLI, also standard deviations (wPLIsurr_SD) of these surrogate PS estimates across con-

tact/parcel pairs. Rotation, rather than more aggressive shuffling methods, was used to retain

the autocorrelation structures in the data for the surrogate analyses and thereby avoid the

underestimation of the null-hypothesis–level PS values. We then computed for observed wPLI

values, wPLIobs, the z-score as

z ¼
wPLIobs � wPLIsurr mean

wPLISD

and considered those wPLIobs values significant for which z> 2, corresponding to α = 0.02.

The PLV of uncorrelated phases is Rayleigh distributed, and the Rayleigh distribution is only

a function of its mean so that the distribution reaches the 99th percentile at PLV = 2.42

PLVsurr_mean [39]. We used α = 0.01 as the significance criterion for the measured PLV,

PLVmeas, and thus, connections with PLVmeas > 2.42 PLVsurr_mean were considered significant.

Using this approach, we obtained for each subject and each frequency the individual connec-

tion density (K) values, where K indicates the proportion of significant connections of all pos-

sible connections across channel pairs in SEEG and parcel pairs in MEG.

Analysis of local and interareal of CFC: PAC and CFS

CFS and PAC were computed between all LF and HF frequency pairs at ratios of n:m (LF:HF)

from 1:2 to 1:7, and for each contact pair ca, cb in SEEG data and for each parcel pair pa, pb in

MEG data. Frequency pairs were chosen so that the ratio of their center frequencies lay within

5% deviation of the desired integer 1:m ratio.

CFS was computed as

PLVCFS;a;b;m ¼
1

N
j
P

texp½i � ðm � ya;LF � yb;HFÞ�j; ð3Þ

where θa,LF and θb,HF are the phases of the time series of contact/parcels. θa,LF was upsampled

to match the sampling rate of the HF signal and then “phase-accelerated” by multiplication

with m [39, 41]. Local CFS (CFSloc) was obtained where a = b and interareal CFS where a 6¼ b.
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The strength of PAC was quantified as

PLVPAC;a;b ¼
1

N
j
P

texp½i � ðya;LF � y
env
b;HF;LFÞ�j; ð4Þ

where y
env
b;HF;LF is the phase of the amplitude envelope of the HF signal filtered with a Morlet fil-

ter at LF and downsampled to match the LF signal’s sampling rate. Local PAC was obtained

where a = b, interareal PAC where a 6¼ b.

For both CFS and PAC, we obtained, for each subject and each frequency pair, surrogate

values for each contact pair or parcel pair by rotating θb,HF or y
env
b;HF;LF analogously to what was

done for PS and then calculated the means (PLVCFS,surr_mean, PLVPAC,surr_mean). As for PS,

connections with a ratio PLVmeas/PLVsurr of 2.42 or higher were identified as significant at α
level 0.01, and connection density K was estimated as fraction of significant over possible con-

nections, also as for PS.

Analysis of amplitude–amplitude coupling

As a prerequisite to the removal of potentially spurious PAC (see next section), we estimated

AC with PLV as the pairwise PS of LF-modulated amplitude envelopes of the HF signals. In

order to do so, we obtained the LF-filtered amplitude envelopes of the HF signals y
env
i;HF;LF and

y
env
j;HF;LF, as described in the previous section, for all contact pairs or parcel pairs i 6¼ j and all fre-

quency pairs LF, HF and then computed the PS between these envelope time series using PLV.

Significance for each connection and subject-level K were determined in the same manner as

for PS.

Removal of potentially spurious CFC connections

The core tenet of CFC is that it indicates an interaction between 2 distinct neuronal processes,

and hence, CFC is genuine when there is evidence for the presence of 2 separate signals. Con-

versely, CFC may be spurious if evidence of the presence of 2 separate signals is not confirmed,

and it remains a possibility that an observation of interareal CFC between 2 signals is due to at

least one of them being nonsinusoidal and “leaking” via PS or AC to the other one. We devel-

oped a connection-by-connection test for whether interareal CFC can unambiguously be

attributed to 2 separable signals. In this test, observations of interareal CFC are discarded

between any 2 such signals that are also connected by both interareal 1:1 PS/AC and local CFC

at one or both of the locations in a “triangle motif” (see Fig 1D–1H). Since such a test also may

remove “ambiguous” cases, in which interareal CFC is genuine but nevertheless part of a trian-

gle motif (see Fig 1G), our test is conservative in the sense that it minimizes false positives

while possibly leading to false negatives and thus provides a lower-bound estimate for the

number of genuine connections.

Interareal CFS was removed when there was a triangle motif of (significant) local CFS at the

LF location and (significant) interareal HF PS or when there was local CFS at the HF location

and significant interareal LF PS (see Fig 1E–1H). Likewise, interareal PAC was removed when

there was a triangle motif of either local PAC at the HF location and LF interareal PS or when

there was local PAC at the LF location and interareal HF AC.

Single-subject analysis of CFC

In MEG data, we first identified a parcel pair p1, p2 with strong 1:2 α:β CFS across subjects.

Next, we selected a representative subject and filtered that subject’s broadband (BB) time series

with Morlet filters (m = 5) in p1 at LF = 11 Hz and in p2 at HF = 22 Hz to obtain NB time series.
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We then identified the largest α oscillation peaks in the real-valued LF time series and averaged

time-locked data segments of 1,000-ms length centered around these α peaks (N = 62) in order

to identify LF-peak–locked oscillations without a contribution from filtering artifacts.

The frequency content of the averaged BB time series at p1 and p2 was then visualized in TF

plots obtained by Morlet-filtering (m = 5) the averaged BB time series at frequencies from 4 to

48 Hz (in steps of 1 Hz) and taking the amplitude A of the filtered time series. From this, we

calculated, in the baseline windows from −500 ms to −200 ms and 200 ms to 500 ms relative to

the peak, the mean and SD ABL_mean and ABL_SD and computed the z-score for A at each of the

1,000 time points:

z ¼
A � ABL mean

ASD mean
:

To corroborate the TF-analysis–based inferences of CFS, we also estimated the conven-

tional 1:2 CFS (see Methods, Analysis of local and interareal of CFC: PAC and CFS) with PLV

between the NB time series of p1 and p2 in sample-by-sample sliding time windows of 200 ms

length, i.e., with phase differences concatenated across samples within the time windows and

across the LF-peak–locked data segments. To estimate the null-hypothesis CFS and its distri-

bution, the above analysis was performed with randomly picked data segments of equal num-

bers of samples. As described in Methods, Analysis of interareal phase synchronization, CFS

was deemed significant when PLVmeas > 2.42 × PLVsurr_mean.

In SEEG data, we identified a pair of electrode contacts c1, c2 (from different electrode

shafts) with strong 1:5 α:γ PAC in a single subject. We filtered that subject’s BB times series in

c1 at LF = 11 Hz and in c2 at HF = 55 Hz to obtain LF (α) and HF (γ) NB time series and in c1

identified the largest α troughs (N = 108). Centered around these troughs, we again averaged

time-locked data segments of 1,000-ms length and obtained a TF plot of the average of time-

locked BB time series in c1. From both contacts’ BB time series, we further constructed BB

amplitude-average TF plots by filtering the BB time series at frequencies from 20 to 200 Hz

and for each of these frequencies averaging the amplitude over segments time-locked to the LF

(α) trough.

To again corroborate the TF- analysis–based inferences of PAC, we estimated 1:5 PAC

conventionally between the LF NB time series in c1 and the averaged LF-filtered amplitude

envelope of HF NB time series in c2 (see Methods, Analysis of local and interareal of CFC:

PAC and CFS) in 200-ms sliding windows, concatenated across segments as for CFS. As for

CFS, we estimated the null hypothesis and deemed PAC significant where PLVmeas > 2.42 ×
PLVsurr_mean.

Group-level statistics

To represent these data at the group level, we averaged the individual PLV and K values

obtained as described above to obtain group-level GS and connection density K. In SEEG,

these values were weighted with the number of contacts for each subject, which is equivalent

to pooling all contacts across subjects. For estimating the group-level statistics of coupling

strength and K for PS, AC, CFS, PAC, CFSlocal, and PAClocal, group-level upper and lower con-

fidence limits (2.5% and 97.5%) were computed with a bootstrapping approach using

N = 1,000 resamplings, with replacement of the subjects in the cohort separately for each LF

and for each frequency ratio LF:HF, again weighting values from SEEG with the number of

contacts.

Since it can be expected that in the absence of any genuine interactions, 1% of observed

edges would be false positives at the significance level p< 0.01, we subtracted 1% from the
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connection density K of significant connections for all reported and visualized K values. Cor-

rected K values were computed as the fraction of the remaining significant connections

divided by number of possible connections after removing all putatively spurious connections

using the approach described in Methods, Removal of potentially spurious CFC connections.

Computation of CFC in distance bins

For both SEEG and MEG data, we divided all channel/parcel pairs into 3 distance bins of

equal numbers of connections using Euclidian distance between channel or parcel pairs. For

SEEG data, the distance bins were 2–4 cm, 4–5.6 cm, and 5.6–13.7 cm, and for MEG data,

these were 0–6.3 cm, 6.3–9.1cm, and 9.1–17.7 cm. We then computed the GS and K values sep-

arately in these distance bins as described above. We tested CFS and PAC for significant differ-

ences of K between all 3 pairs of distance bins with a Wilcoxon signed-rank test (p< 0.05,

corrected for multiple comparisons across frequencies and combinations with Benjamini–

Hochberg).

Estimation of CFC in distinct cortical layers in SEEG data

We divided SEEG electrode contacts to 2 laminar depths based on the Grey Matter Proximity

Index (GMPI), which is the distance between contact position and the nearest vertex of the

white-gray surface, normalized by the cortical thickness in that point [91]. GMPI = 1 thus indi-

cates the pial surface, and GMPI = 0 indicates the surface between gray and white matter.

Based on this depth along the cortical gray matter, contacts within 0.5< GMPI < 1.2 were

marked as “superficial” and those within −0.3< GMPI < 0 as “deep.” We analyzed interareal

CFC among electrode pairs in 4 groups: 1) in which both electrode contacts were superficial,

2) in which both contacts were deep, 3) in which the LF contact was superficial and the HF

contact deep, and 4) in which the LF contact was deep and the HF superficial. We tested CFS

and PAC for significant difference of K values between all 6 pairs of laminar depth combina-

tions with a Wilcoxon signed-rank test (p< 0.05, corrected for multiple comparisons across

frequencies and combinations with Benjamini–Hochberg).

Correlation of CFC in MEG with laminar depth in SEEG data

In order to elucidate the cortical sources contributing to the CFC connectomes observed with

MEG, we performed an analysis to assess the correlation of these connectomes with those in

layer-specific SEEG connectomes. We here focused on the frequency pairs that showed the

most robust observations of interareal CFS and PAC interactions in both SEEG and MEG,

namely 1:2–1:3 CFS and 1:2–1:4 PAC for the LF peak in the α band. We estimated for each of

the selected frequency pairs the degree for each parcel in MEG as the number of connections

as a measure of its centrality in the CFC network [80] and averaged degree values over fre-

quency pairs of the same ratio. For SEEG data, we again divided the CFC connectome into the

same 4 laminar depth combinations based on the localization of LF and HF electrode contacts

in deep or superficial layers as described in Estimation of CFC in distinct cortical layers in

SEEG data and then estimated parcel degrees within these subconnectomes and averaged, for

each ratio and in each group, the degree values over frequency pairs. We then estimated the

correlation of degree values in MEG CFC connectomes with those in each of the 4 SEEG

groups using a Spearman rank correlation test, correcting for multiple comparisons with Ben-

jamini–Hochberg. Fisher z-transform was further used to test differences between correlation

values within SEEG depth combinations of the same ratio.
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Estimation of functional organization of CFC networks

To investigate the functional organization of CFC networks, we identified the brain regions

that served predominantly as either LF or HF hubs. We achieved this by using 2 complimen-

tary approaches: “relative directed degree” and “parcel directionality.”

Estimation of relative directed degree. First, in order to be able to compare SEEG and

MEG data, all electrode contacts in SEEG, and all parcels of the 200-parcel atlas that had been

used so far in MEG were collapsed to the 148 parcels of the Destrieux atlas [73]. Then, for each

LF–HF combination, we estimated for each parcel p the graph-theoretic measures “relative in-

degree” and “relative out-degree” [80], indicating how often that parcel was either the HF or

LF node, respectively, of a CFC connection. The relative in-degree or out-degree of a parcel

was defined as the fraction of significant connections NC for which that parcel was the HF

node or LF node, respectively, over the total possible number of possible connections NC,pot. In

SEEG data, NE,pot,S was for each subject S the sum of possible, i.e., not excluded, connections

from contacts assigned to that parcel to electrodes assigned to other parcels, and NC,pot was

obtained by adding possible CFS or PAC connections over all subjects. In MEG, NC,pot was

simply the number of possible, i.e., not excluded, connections of one parcel to other parcels

times the number of subject datasets. Finally, the “relative directed degree” was computed as

the difference between relative in-degree and out-degree. Positive values therefore indicated

that a parcel was predominantly a HF hub, and a negative value indicated that it was predomi-

nantly a LF hub. Relative directed degree values were collapsed over frequency bands for visu-

alization. In order to assess similarity between SEEG and MEG data and between CFS and

PAC, we computed the correlation of relative directed degree values across parcels using

Spearman test (p< 0.05).

Estimation of parcel directionality. In this approach, we first estimated, for each not-

excluded pair of parcels p1, p2 of the Destrieux atlas, the LF–HF directionality DirLH as the dif-

ference in the strengths of CFC connections:

DirLH LF;HF; p1; p2ð Þ ¼
1

N
PNPLVCFðLF;HF; p2; p1Þ �

PNPLVCFðLF;HF; p1; p2Þ
� �

; ð5Þ

i.e., the total strength of connections in which p1 was the HF node and p2 the LF node minus

the total strength of connections in which p2 was the HF node and p1 the LF node. N was the

number of connections between the 2 parcels, equivalent to NC,pot defined above. For all pairs

(p1, p2) in SEEG for which NC< 8, DirLH was set to 0.

We then tested, for all frequency pairs, all nonzero values of DirLH (LF, HF, p1, p2) for signif-

icance value using a permutation test. In each permutation (N = 1,000), the strengths of all

connections PLVCF (LF, HF, p1, p2) and PLVCF (LF, HF, p2, p1) between 2 parcels p1, p2 were

pooled and randomly assigned to 2 groups G1, G2. The permutated directionality DirLH value

was then computed as

DirLH;perm LF;HF; p1; p2ð Þ ¼
1

M
PMPLVCFðLF;HF;G1Þ �

PMPLVCFðHF; LF;G2Þ
� �

:

If the genuine DirLH value was larger than DirLH, perm in 95% of permutations, the direction-

ality of the connection was deemed significant. A significant value of DirLH> 0 thus indicated,

that between p1 and p2, those connections in which parcel p1 was the HF node and p2 was the

LF node were significantly stronger than those in which it was the other around.

The overall directionality DirpLH of a parcel p was computed as the number of connections

with other parcels for which its DirLH value was positive minus the number of those for which

it was negative, divided by the total number N of possible connections. Thus, similar to the
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directed relative degree, a positive or negative value of DirpLH indicated a parcel being a HF hub

or LF hub, respectively, in interareal CFC. Analogously to relative directed degree, the direc-

tionality values were collapsed over frequency bands for visualization, and their similarity

between SEEG and MEG and between CFS and PAC was estimated using Spearman test across

parcels (p< 0.05).

Neuropsychological assessment and correlation of CFC with

neuropsychological test results

A subset of the participants of the MEG recordings performed a set of well-validated neuropsy-

chological assessments (N = 16–18 for each test). Four tests were used from the Wechsler

Adult Intelligence Scale–III (WAIS–III) battery [112]: the Digit Span Forward subtest evalu-

ates verbal short-term memory, while the Digit Span Backward and Letter-Number Sequenc-

ing (LNS) subtests evaluate verbal WM, and the Digit Symbol–Coding subtest measures visual

psychomotor processing speed. The TMT [113] is composed of 2 parts, A and B, of which the

TMT-A measures visual scanning and processing speed while the TMT-B measures cognitive

flexibility, visual scanning, and processing speed. The Zoo Map Test [114] measures the partic-

ipant’s planning capability and speed. For the correlation analysis, the test scores were inverted

for the TMT and Zoo Map tests, which measure processing speed, so that the higher values

were indexing better performance as in the first 4 tests. To investigate the correlation of the

CFC with psychophysical performance, we then computed the correlation of subject’s test

scores with their individual GS using Spearman rank correlation test (p< 0.05). To consider

the effect of multiple comparisons across all tests performed, we estimated how many of the

total number of the observed significant findings were predicted to be observable by chance.

In total, across the 8 neuropsychological tests and the CFC frequency pairs, the probability for

finding the observed number of significant observations (170) by chance was p = 0.0051. Thus,

we consider the CFS overall to be significantly correlated with neuropsychological tests. The

asterisks in Fig 8 indicate the most significant observations (34) exceeding the number of sig-

nificant observations (136) predicted to be observable by chance at p = 0.05. The total number

of significant observations for PAC was 45, i.e., below the number expected by chance at

p = 0.5. Thus, PAC, at least in such widespread testing, is overall not correlated with neuropsy-

chological test performance.

Supporting information

S1 Fig. Workflow for SEEG data. Workflow for the processing and analysis of SEEG data,

flowing from top to bottom. SEEG, stereoelectroencephalography.

(EPS)

S2 Fig. Workflow for MEG data. Workflow for the processing and analysis of MEG data,

flowing from top to bottom. MEG, magnetoencephalography

(EPS)

S3 Fig. GS of interareal CFS and PAC. (a) The GS (mean strength of all connections of all

subjects) of interareal CFC with 95% confidence limits for ratio 1:2 (top row) and ratios 1:3–

1:7 (bottom row). (b) GS of interareal CFC at ratio 1:2 (top row) and 1:3 (bottom row) in 3 dis-

tance bins, as in Fig 4. (c) GS of interareal CFC at ratio 1:2 (top row) and 1:3 (bottom row) in

SEEG among different groups of electrode pairs, based on their location in deep or superficial

layers, as in Fig 6. Plot data and underlying connectome data are available online at https://

datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFC, cross-frequency coupling; CFS,

cross-frequency phase synchrony; GS, graph strength; PAC, phase–amplitude coupling; SEEG,
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stereoelectroencephalography.

(EPS)

S4 Fig. 1:1 PS in SEEG and MEG. (a) The mean GS of 1:1 PS (top) and K (bottom) in SEEG

data with 95% confidence limits estimated with the wPLI for all connections (left) and sepa-

rately in three distance bins (right). (b) Same in MEG data. (c–d) Phase synchrony in SEEG

data and MEG data, respectively, estimated with the PLV. Plot data and underlying connec-

tome data are available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.

0k86k80. GS, graph strength; MEG, magnetoencephalography; PLV, phase-locking value; PS,

phase synchrony; SEEG, stereoelectroencephalography; wPLI, weighted phase-lag index.

(EPS)

S5 Fig. Local CFS and PAC in SEEG and MEG data. (a) The mean graph strength GS and

fraction of significant parcels (K) with 95% confidence limits (shaded) of local CFS in SEEG

data for coupling ratios 1:2 (top) and 1:3–1:7 (bottom). Values are shown with 95% confidence

limits. (b) Same for local CFS in MEG data. (c–d) Same for local PAC in SEEG data and MEG

data, respectively. (e–h) The same K values as shown in (a)–(d) plotted in matrices for the

whole spectral connectome. Plot data and underlying connectome data are available online at

https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFS, cross-frequency PS; GS,

graph strength; MEG, magnetoencephalography; PAC, phase–amplitude coupling; PS, phase

synchrony; SEEG, stereoelectroencephalography.

(EPS)

S6 Fig. ACs. (a) GS and K for ACs in SEEG data for ratios of 1:2 to 1:7. The same data are plot-

ted as a function of the envelope frequency (top row) and the modulating frequency (bottom

row). (b) Same for MEG data. Plot data and underlying connectome data are available online

at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. AC, amplitude envelope

correlation; GS, graph strength; MEG, magnetoencephalography; SEEG, stereoelectroencepha-

lography.

(EPS)

S7 Fig. Interareal CFS and PAC when PLV is used for removing spurious connections.

(a) Connection density K of interareal CFS in SEEG data before (left) and after removing

possible spurious connections (right) using the PLV as a metric for phase synchrony. (b) Same

for interareal PAC in SEEG data. (c–d) Same for interareal CFS and PAC in MEG data. Plot

data and underlying connectome data are available online at https://datadryad.org/stash/

dataset/doi:10.5061/dryad.0k86k80. CFS, cross-frequency PS; MEG, magnetoencephalogra-

phy; PAC, phase–amplitude coupling; PLV, phase-locking value; SEEG, stereoelectroencepha-

lography.

(EPS)

S8 Fig. CFS in eyes-open and eyes-closed RS. (a) The mean n:m CFS GS (left), K before cor-

rection (middle), and K after correction (right, using PLV as PS metric) of interareal 1:2–1:4

CFS in eyes-open RS MEG data. (b) The same in eyes-closed RS MEG data. Plot data and

underlying connectome data are available online at https://datadryad.org/stash/dataset/doi:10.

5061/dryad.0k86k80. CFS, cross-frequency PS; GS, graph strength; MEG, magnetoencephalog-

raphy; PLV, phase-locking value; PS, phase synchrony; RS, resting state.

(EPS)

S9 Fig. Correlations between MEG data and laminar SEEG data. Correlation of parcel

degree values of MEG CFC connectomes with parcel degree values of SEEG CFC connectomes

connecting electrodes in either both in more superficial layers, both in deeper layers, from
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superficial to deep or deep to superficial layers (Spearman rank correlation test, ���p< 0.001,
��p< 0.01, �p< 0.05, (�)p< 0.05, n.s. after correction with Benjamini–Hochberg). The black

bar denotes when 2 correlation values for the same ratio were found to be significantly differ-

ent by a Fisher z-transform test (z> 1.96). Plot data and underlying connectome data are

available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFC, cross-

frequency coupling; MEG, magnetoencephalography; n.s., nonsignificant; SEEG, stereoelec-

troencephalography.

(EPS)

S10 Fig. Asymmetric directional connectivity in CFC networks. The organization of CFC

networks as measured with directionality between LF and HF hubs. Averaged LF versus HF

directionality values for each parcel. The values indicate whether parcel is a directional hub for

LF (blue) or for HF (red) in interareal CFC networks. Top row: directionality for CFS and

PAC networks at ratio 1:2 connecting θ:α and α:β frequencies. Bottom row: directionality for

CFS and PAC at ratio 1:3, connecting δ:α and α:γ frequencies. Directional connections of CFS

and PAC networks reflect their structure in brain anatomy and show similar opposite direc-

tional connections connecting anterior and posterior brain regions, as seen in degree hub anal-

ysis (see Fig 7). Plot data and underlying connectome data are available online at https://

datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. CFC, cross-frequency coupling;

CFS, cross-frequency PS; HF, high frequency; LF, low frequency; PAC, phase–amplitude

coupling.

(EPS)

S11 Fig. Correlation of PAC with neuropsychological test scores. The correlation or PAC

strength in MEG data with neuropsychological test scores (Spearman rank correlation test,

p< 0.05). Red color indicates a positive correlation, while blue indicates a negative correlation,

as in Fig 8. Correlations that do not reach statistical significance are masked with lower opac-

ity. No correlations were significant after correcting for multiple comparisons with Benja-

mini–Hochberg. Plot data and underlying connectome data and neuropsychological data are

available online at https://datadryad.org/stash/dataset/doi:10.5061/dryad.0k86k80. MEG,

magnetoencephalography; PAC, phase–amplitude coupling.

(EPS)
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