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We present an experimental and theoretical study of the phonon mode in a unitary Fermi gas. Using
two-photon Bragg spectroscopy, we measure excitation spectra at a momentum of approximately half the
Fermi momentum, both above and below the superfluid critical temperature Tc. Below Tc, the dominant
excitation is the Bogoliubov-Anderson (BA) phonon mode, driven by gradients in the phase of the
superfluid order parameter. The temperature dependence of the BA phonon is consistent with a theoretical
model based on the quasiparticle random phase approximation in which the dominant damping mechanism
is via collisions with thermally excited quasiparticles. As the temperature is increased above Tc, the phonon
evolves into a strongly damped collisional mode, accompanied by an abrupt increase in spectral width. Our
study reveals strong similarities between sound propagation in the unitary Fermi gas and bosonic liquid
helium.
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Elementary excitation spectra provide a quantitative
picture of the physical properties of matter. In many-body
quantum systems, the lowest-lying excitations are typically
collective modes such as sound waves, while at higher
energies, single-particle excitations dominate. For systems
in the normal phase, two distinct regimes of sound
propagation generally exist [1]. When the lifetime τ of
the quasiparticles that comprise the excitation is short
compared to the sound frequency ω, i.e., ωτ ≪ 1, local
thermodynamic equilibrium can be established, and hydro-
dynamic (first) sound, driven by pressure gradients, is
supported. The sound speed is set by the thermodynamic
equation of state, and the damping depends upon the shear
viscosity and thermal conductivity [2]. In the opposite
limit, ωτ ≫ 1, the system is said to be collisionless, but a
stable linearly dispersing collective mode can exist for
repulsive interactions due to a mean-field restoring force,
known as zero sound [1]. In a superfluid, sound waves are
driven by gradients in the phase of the order parameter, as
shown by Anderson [3,4] and Bogoliubov [5], and later
formalized by Goldstone [6]. At long wavelengths, both the
frequency and damping of the Bogoliubov-Anderson (BA)
phonon coincide with the hydrodynamic (first) sound mode
described by Landau’s two-fluid theory [2,7,8]. But the BA
mode can persist to higher frequencies into the collisionless
regime.
Sound modes in strongly interacting gases of ultracold

fermions have been investigated both theoretically [9–15]
and experimentally [16–21]. The unitary Fermi gas is of

particular interest since interactions reach the strongest
levels allowed by quantum mechanics for a short-range
potential, making it an important testing ground for theories
of interacting fermions [22–25]. Recent quantitative studies
of first [21,26] and second [17,27] sound propagation have
shed light on the transport properties [28,29] and superfluid
fraction of a Fermi gas at unitarity. As the wave vector
k is increased beyond the hydrodynamic regime (when
k > 1=λmfp, where λmfp is the mean free path between
collisions), the dispersion of the BA mode remains approx-
imately linear [12,30], such that the sound speed agrees
with the k → 0 limit. The damping, on the other hand, can
show strong departures from hydrodynamic behavior [31].
Similar behaviors have been seen in neutron scattering
studies on liquid helium, and these provide a basis for
understanding changes in the nature of the elementary
excitations across the superfluid transition [32,33].
In this Letter, we study sound propagation in a unitary

Fermi gas, at a wave vector of approximately half the Fermi
wave vector kF, as a function of temperature. Using focused
beam Bragg spectroscopy, we map the response of the
phonon mode in a region of the cloud with near-homo-
geneous density [20]. In the superfluid phase, we observe a
clear BA phonon mode in good agreement with a quasi-
particle random phase approximation (QRPA) theory.
The QRPA theory assumes collisionless dynamics but
includes damping via scattering from thermally excited
fermionic quasiparticles [20,34]. Just above Tc, we observe
strongly damped collisional sound, which evolves towards
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single-particle excitations at higher temperatures. Finally,
we identify similarities in the temperature dependence of
the excitations in the unitary Fermi gas and bosonic liquid
4He [33,36,37].
The experimental sequence employed here is similar to

that used previously to study the low-temperature excita-
tions in a Fermi gas with tunable interactions [20]. Briefly,
we cool a gas of 6Li atoms in an equal mixture of the two
lowest hyperfine states jF ¼ 1=2; mF ¼ �1=2i and control
the cloud temperature by varying the endpoint of the
evaporation. An external magnetic field is tuned to
832.2 G, where the s-wave scattering length diverges,
jaj → ∞. At this point, elastic collisions are unitarity
limited, and the thermodynamic properties of the gas
become universal functions of the temperature and density
[8,38,39]. The cloud is held in a harmonic trap with typical
confinement frequencies ωðx;y;zÞ=ð2πÞ¼ð120;115;24.5ÞHz.
A single-frequency 1064-nm laser provides x-y confine-
ment, and axial trapping arises from a curvature in the
applied magnetic field. The power of the 1064-nm trapping
light can be tuned to vary the mean atom density n̄ in the
Bragg scattered volume [20], which in turn sets the Fermi
energy EF ¼ ℏ2k2F=ð2mÞ where m is the mass of a lithium
atom and kF ¼ ð3π2n̄Þ1=3.
We use two focused Bragg laser beams with 1=e2 radii of

20 μm, intersecting at an angle2θ ¼ 12.9°� 0.2°, to probe a
small volume of the cloudwhere the density is near uniform.
The Bragg lasers create a periodic perturbation in the center
of the cloud with k ¼ ð4π=λÞ sin θ, where λ ¼ 670 nm is
approximately 1 THz blue-detuned from the nearest atomic
transition. For the atom densities used in subsequent experi-
ments, this corresponds to a relativewave vector in the range
0.5≲ k=kF ≲ 0.6. By scanning the relative frequency of the
two Bragg lasers over a range of ω=ð2πÞ ¼ 0 → �15 kHz,
we map the response of the cloud as a function of the Bragg
energy. The Bragg lasers are applied with an approximately
Gaussian-shaped time envelope and a full width at half
maximum (FWHM) of 600 μs. Immediately after the Bragg
pulse, the optical trap is switched off, and the cloud is
allowed to expand for 4 ms before taking an absorption
image. The finite duration and size of the Bragg beams lead
to a Fourier-limited spectral resolution of approximately
1.25 kHz FWHM, which is well below the typical Fermi
energies, EF ≈ 11 kHz, used in our experiments.
Within linear response, momentum P is imparted to the

cloud at a rate proportional to the imaginary part of the
density-density response function χ00ðk;ωÞ, where χðk;ωÞ
is given by the Fourier transform of χðr − r0; t − t0Þ ¼
−iϑðt − t0Þh½n̂ðr; tÞ; n̂ðr0; t0Þ�i [40], n̂ðr; tÞ is the density
operator at position r and time t, and ϑðtÞ is the Heaviside
function. After a time of flight, the total momentum
transferred, ΔP, leads to a displacement of atoms Δx from
the Bragg scattered volume proportional to ΔP [41]. All
measured Bragg spectra are normalized via the f-sum rule
[1,20,42],

χ00ðk;ωÞ
2πnϵr

¼ Δxðk;ωÞR
dωωΔxðk;ωÞ ; ð1Þ

where ϵr ¼ ℏk2=ð2mÞ is the atomic recoil energy.
Figure 1(a) shows a selection of measured spectra at

unitarity for a range of temperatures below and above
Tc ≃ 0.17TF. Cloud temperatures were determined by
fitting in situ density profiles to the equation of state
[43]. Below Tc, we observe a well-defined phonon mode
with a decreasing amplitude and increasing width as the
temperature approaches Tc. Above Tc, the mode is notice-
ably broader, becoming strongly damped with increasing
temperature.

FIG. 1. Excitation spectra for a unitary Fermi gas for a range of
temperatures T=TF at k=kF ¼ 0.55� 0.03. (a) Filled circles show
the experimental data; solid curves and shaded areas are fits to
Eq. (2), convolved with a Gaussian instrumental broadening
function as described in the text. (b) Calculated excitation spectra
using the QRPA theory, also convolved with the instrumental
broadening function. Red solid lines indicate the superfluid
transition temperature Tc. All spectra are presented in units of
ð4πϵrEFÞ−1.
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Figure 1(b) shows calculated spectra using the QRPA
theory [20,34]. Note that the QRPA theory yields a different
Tc ∼ 0.33TF to that found in the experiment, but the
behavior as a function of T=Tc can be compared. The
evolution of the BA phonon mode in the calculated spectra
shows good agreement with the experimental data below Tc.
The theory assumes collisionless dynamics and predicts a
well-defined BA mode in the superfluid phase, along with a
continuum of single-particle excitations at higher energy but
no collective mode in the normal phase due to the absence of
zero sound for attractive interactions [1]. Above Tc, the
QRPA spectra consist of just single-particle excitations.
Inspired by studies of the excitations in liquid helium, we

fit our experimental spectra to a damped harmonic oscil-
lator function [33,36,37]

χ00ðk;ωÞ ¼ ZkΓω
ðω2 − ω2

0Þ2 þ ω2Γ2
; ð2Þ

where Γ is the damping rate, ω0 is the fundamental
frequency of the mode, and Z is a normalization factor.
Equation (2) is further convolved with a Gaussian broad-
ening function with FWHM 1.25 kHz before performing
the fit, to account for the finite spectral resolution of our
measurements. Solid lines and shaded areas in Fig. 1(a)
show the fitted functions.
Blue points in Fig. 2(a) show the measured center

frequency ω0 of the spectra which, provided the dispersion
is approximately linear, serves as a measure of the sound
speed. In Fig. 2(b), we check the linearity of the dispersion
over a small range of k=kF at temperatures below and above
Tc, T=TF ¼ 0.11ð2Þ (blue circles) and T=TF ¼ 0.20ð2Þ
(red squares), respectively. Each point in Fig. 2(b) corre-
sponds to the normalized peak frequency ℏω0=EF of a
Bragg spectrum obtained at a particular density (and hence
k=kF). Fitting these data to ℏω0=EF ¼ aðk=kFÞb, where a
and b are fitting parameters, we find b ¼ 1.1� 0.2 and
1.1� 0.5, at low and high temperatures, respectively,
indicating that the observed dispersion is linear (sonic)
within our experimental resolution [12,30,44].
Also shown in Fig. 2(a) are themode frequencies from the

QRPA calculation (grey solid line) and the hydrodynamic
sound speed obtained from the thermodynamic equation of
state [43] using c2s ¼ ð∂P=∂ρÞs, where P is the pressure,
ρ ¼ nm is the mass density, and s is the entropy density (red
dash-dotted line). The experimental data for the sound speed
are consistent with both the hydrodynamic result and the
QRPA theory for T < Tc. As T approaches Tc from below,
the QRPA theory predicts a downward shift of the BAmode
frequency, which is “repelled” from the single-particle
continuum. The threshold for single-particle excitations is
set by twice the superfluid gap 2Δ [12,20,34], which
decreases with temperature. However, this downshift is
not visible in the experimental data. Above Tc, our data
agree well with the hydrodynamic sound speed but lie

well below the collisionless single-particle calculation.
Figure 2(c) shows a comparison of two sets of experimental
and theoretical spectra, in the normal phase at temperatures
close to and well above Tc. While the theoretical (single-
particle) spectrum at 1.26 Tc is very wide, the experimental
spectrum at 1.27 Tc displays a much narrower peak,
indicating the existence of a damped collisional mode in
the normal phase. Further above Tc, the agreement
improves, reflecting the evolution from collective to sin-
gle-particle excitations at higher temperatures. ABoltzmann
equation calculation of the viscous relaxation time τ sup-
ports this result, yielding 0.5≲ ω0τ ≲ 1 for T ≳ Tc [45,46],
with τ growing monotonically with increasing T. Similar
values of ω0τ were obtained using Luttinger-Ward [47] and
Gaussian pair fluctuation theories [29]. Our measurements
aboveTc thus lie in the crossover between the hydrodynamic
and collisionless regimes.
In Fig. 3, we plot the amplitude max½χ00ðk;ωÞ�, width Γ,

and quality factor Q ¼ ω0=Γ of the phonon mode as a

0.45 0.55 0.65
0.3

0.4

0.5

(a)

(c)

(b)

FIG. 2. (a) Mode frequency as a function of T=Tc. Blue circles
are experimental data, the red dash-dotted line is the hydro-
dynamic sound frequency [43], and the grey solid line is the
QRPA prediction [34]. Note that Tc is indicated by the green
dashed line. (b) Mode frequency as a function of momentum at
two temperatures, below and above Tc, respectively. Straight
lines are linear fits that cross the origin, confirming the dispersion
is linear within experimental resolution. (c) Zoomed-in plots of
two experimental spectra (points and solid lines) in the normal
phase at two different temperatures along with the corresponding
QRPA spectra (dashed and dash-dotted shaded curves). Error bars
include uncertainties in the density measurement used to deter-
mine EF and the standard error in the mean of the measured data
points.
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function of the temperature. The amplitude, Fig. 3(a),
decreases monotonically with T, with a steep gradient
below Tc and a shallower gradient above Tc. The width,
Fig. 3(b), increases with temperature and exhibits a jump at
the superfluid transition, reflecting a sudden increase in the
damping. These features signify a qualitative change in the
sound mode from a BA phonon below Tc to a strongly
damped collisional mode in the normal phase.
The QRPA theory accurately describes both the

amplitude and width below Tc (Fig. 3). This confirms
the collisionless nature of the BA mode at k ∼ kF=2 and
identifies collisions with fermionic quasiparticles as the
primary damping mechanism. Above Tc, the width
cannot be described by the collisionless model, nor is it
deeply hydrodynamic. To see this, we can compare our
data to hydrodynamic theory based on viscous damping.
Neglecting the contribution from thermal conductivity
(discussed below), the damping rate is given by [8]

ℏΓ=EF ¼ 8

3

�
k
kF

�
2 η

n
; ð3Þ

where η is the shear viscosity. The blue dash-dotted curve in
Fig. 3(b) is found using Eq. (3) with η ¼ 2.77ℏnðT=TFÞ3=2,
valid in the classical limit T ≫ TF [45,46]. This case is
clearly well below the experimental data, which is not
surprising given that T < TF. On the other hand, using
the shear viscosity calculated from a self-consistent
T -matrix approach [47] (red diamonds) yields a damping
rate that appears to be consistent with the experimental
data. However, this result does not include the damping
contribution from thermal conductivity, which should
be significant in the hydrodynamic regime [21,26,48].

For ω0τ ∼ 1, there will be too few collisions to enable full
rethermalization or momentum relaxation within one
period of the sound wave. Therefore, both the viscous
and thermal contributions to the damping will be lower than
in the hydrodynamic limit as the efficiency of both
mechanisms will be reduced, providing further confirma-
tion that our experiments probe the crossover between
hydrodynamic and collisionless dynamics.
A recent study of sound propagation in the unitary Fermi

gas at long wavelengths, k≲ kF=10, measured the temper-
ature dependence of sound diffusivity D [21]. In the
hydrodynamic limit, both the sound frequency ω0 and
damping Γ were found to evolve smoothly with temper-
ature, including across Tc. Below Tc, a transition from
hydrodynamic damping (Γ ∝ k2) to collisionless damping
(Γ ∝ k) was seen with increasing k [21], consistent with a
model of sound attenuation in liquid helium [49]. Our data
at larger k lie outside the range of hydrodynamic ðΓ ∝ k2)
damping for all reported temperatures. Using the model of
Ref. [49], our damping rates below Tc connect smoothly to
those found in Ref. [21] within experimental uncertainties.
The jump in Γ we observe at Tc highlights that the BA
mode at k ∼ kF=2 is a collisionless excitation driven by
phase gradients and that the transition from hydrodynamic
to collisionless sound takes place at different k in the
superfluid and normal phases.
Finally, we compare the excitations in the unitary Fermi

gas to those in liquid helium, which has been studied over
several decades [36,50–53]. The brown stars in Fig. 3 show
the scaled width (b) and quality factor ω0=Γ (c) of the
phonon mode in liquid helium [36], as a function of T=Tc.
Helium data were obtained via neutron scattering at a wave
vector of k ≈ 0.4 Å−1, which lies approximately half way

FIG. 3. (a) Normalized peak amplitude of the phonon mode as a function of temperature. Blue circles are experimental data, and the
gray solid line is the QRPA calculation. (b) Blue points show the FWHM of the experimental spectra determined by fitting Eq. (2). The
grey solid line is the damping predicted by the QRPA theory; blue and red dash-dotted lines are hydrodynamic predictions from Eq. (3)
using the classical result for the shear viscosity [46] and for η obtained from a T -matrix calculation [47]. (c) Quality factor ω0=Γ of the
sound mode. Blue circles are the experimental data; the grey solid line is the QRPA theory. Brown stars and dashed lines in panels (b)
and (c) show scaled results for liquid helium measured at a wave vector of 0.4 Å−1 [36].
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along the linear (phononic) branch of the dispersion curve,
where the excitation energy is approximately half of the
roton-gap energy. This case is comparable to the phonon
frequency in our measurements being roughly half of the
pair-breaking threshold 2Δ. In both systems, this momen-
tum lies in the crossover between the hydrodynamic and
collisionless regimes [33]. The qualitative similarity
between these two systems as a function of the relative
temperature is striking, despite the fact that one system is
bosonic and the other is fermionic. This result indicates that
interactions dominate the allowed excitations in strongly
correlated systems. A similar universality has been
observed for the transport coefficients of strongly interact-
ing systems in the hydrodynamic limit across many energy
scales spanning cold atomic gases, liquid He, and quark-
gluon plasmas [21,54,55]. Our results suggest that these
similarities extend beyond the hydrodynamic limit.
In conclusion, we have studied sound propagation in a

unitary Fermi gas as a function of temperature in the upper
part of the phononic branch. The dominant excitation
shows a strong temperature dependence and evolves from
a collisionless BA mode driven by superfluid phase
gradients below Tc to a strongly damped collisional mode
above Tc. While these different regimes are not distin-
guished by the sound velocity, the damping rates reveal the
differences. Below Tc, the damping is dominated by
collisions with thermally excited quasiparticles and is well
described by a QRPA theory, whereas above Tc, the strong
damping indicates that the mode lies in the crossover
between the collisionless and hydrodynamic regimes. At
even higher temperatures, excitation spectra approach the
single-particle limit. Finally, we identify strong similarities
in the temperature dependence of sound in the unitary
Fermi gas and liquid helium at comparable momenta.
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