
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Mostafaei, Hossein; Ikonen, Teemu; Kramb, Jason; Deneke, Tewodros; Heljanko, Keijo;
Harjunkoski, Iiro
Data-Driven Approach to Grade Change Scheduling Optimization in a Paper Machine

Published in:
Industrial and Engineering Chemistry Research

DOI:
10.1021/acs.iecr.9b06907

Published: 29/04/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Mostafaei, H., Ikonen, T., Kramb, J., Deneke, T., Heljanko, K., & Harjunkoski, I. (2020). Data-Driven Approach to
Grade Change Scheduling Optimization in a Paper Machine. Industrial and Engineering Chemistry Research,
59(17), 8281-8294. https://doi.org/10.1021/acs.iecr.9b06907

https://doi.org/10.1021/acs.iecr.9b06907
https://doi.org/10.1021/acs.iecr.9b06907


Data-Driven Approach to Grade Change Scheduling Optimization in
a Paper Machine
Hossein Mostafaei, Teemu Ikonen, Jason Kramb, Tewodros Deneke, Keijo Heljanko,
and Iiro Harjunkoski*

Cite This: Ind. Eng. Chem. Res. 2020, 59, 8281−8294 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: This paper proposes an efficient decision support tool for the optimal
production scheduling of a variety of paper grades in a paper machine. The tool is based on a
continuous-time scheduling model and generalized disjunctive programming. As the full-
space scheduling model corresponds to a large-scale mixed integer linear programming
model, we apply data analytics techniques to reduce the size of the decision space, which has
a profound impact on the computational efficiency of the model and enables us to support
the solution of large-scale problems. The data-driven model is based on an automated
method of identifying the forbidden and recommended paper grade sequences, as well as the
changeover durations between two paper grades. The results from a real industrial case study
show that the data-driven model leads to good results in terms of both solution quality and
CPU time in comparison to the full-space model.

1. INTRODUCTION

Modern industrial production processes are typically complex,
multistage processes, and much research has been conducted
in order to improve efficiencies of these processes using
analytical techniques, such as mathematical optimization. The
application scope for optimization ranges from large-scale
supply network planning to short-term production scheduling
of individual machines. On the broader scope, Papageorgiou1

provides a review of supply chain management and
optimization. For short to medium terms, Maravelias and
Sung2 review the methodologies on production planning and
scheduling.
Scheduling can be considered as a key element of enterprise-

wide optimization3 and has been an area of intense research
activity over the last 20 years. The major feature in the
modeling of process-oriented scheduling problems is the time
representation, which can be discrete or continuous.4,5 This
subject has been widely studied in many scheduling
applications6−10 and concerns the division of the time horizon
of interest into a specific number of slots. The discrete-time
representation divides the time horizon into slots of fixed
duration, whereas the continuous-time representation relaxes
such an assumption. The major advantage of discrete-time
approaches against their continuous-time counterparts is their
simplicity and a tighter LP relaxation.11 As discrete-time
approaches need many more time slots to account for accurate
data, generating larger problems, the continuous-time
representation will be used in this paper.
The objective of this work is to propose an optimization

framework for single-stage production scheduling of paper

reels in a paper machine producing several paper grades with
sequence-dependent changeovers. Changeovers occur when
two different tasks are processed in the same unit in
consecutive process operations. The changeovers are often
associated with changing the operating conditions or with the
cleaning of the equipment. There are many publications that
have addressed the production scheduling of multiproduct
plants with sequence-dependent changeovers.12−15 Oh and
Karimi12 presented a novel mixed integer nonlinear program-
ming (MINLP) formulation to solve the single machine
economic lot-scheduling problem on a single multiproduct
production facility. Liu et al.13 developed a hybrid discrete−
continuous-time mixed integer linear programming (MILP)
model for the medium-term planning of single-stage multi-
product plant with one processing unit. In their model, the
planning horizon is composed of a discrete number of weeks
with a known demand, and each week is modeled by a
continuous-time approach.
The problems, occurring in the paper industry, share

similarities with many other production scheduling problems.
For example, when changing the paper grade being produced
on a paper machine, the production process does not stop, but
the paper being produced during the transition may not meet
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customer quality criteria and is typically converted back to pulp
for reuse. The time required to make the transition between
the products depends on the starting and ending grades of the
grade change. These sequence-dependent changeover times, or
costs, are a common feature of paper production scheduling
models.
Keskinocak et al.16 developed a relatively comprehensive

scheduling approach for paper production on a company scale,
including order allocation to mills in addition to the actual
production scheduling (including sequence-dependent setup
times) and trimming on individual machines. Santos and
Almada-Lobo17 addressed the combination of paper produc-
tion scheduling with sequence-dependent setup times and
material flows in an integrated pulp and paper mill with a two-
week planning horizon. Examples of sequence-dependent setup
costs can also be found from outside the paper industry. For
example, Tang et al.18 presented a scheduling solution for the
iron and steel industry using a multiple traveling salesman
approach.
This article has been motivated by a real-world application

from the Finnish paper making industry. The specific goal is to
explore how historical data can be used to narrow down the
decision space of a rigorous scheduling model addressing the
sequence-dependent changeovers. The contribution of this
work is threefold: first, we develop a continuous-time MILP
model for the production scheduling of different paper grades
in a real-world paper machine. The model allows the
consideration of multiple intermediate due dates in the
production process. Second, we use automatic methods to
derive the changeover durations between two paper grades as
well as define the forbidden and recommended changeovers.
Third, we use the past “best practices” to guide the
optimization in order to reduce the search space of the full-
space MILP model. We show that by combining data analytics
and rigorous scheduling models, more efficient decisions can
be made while incorporating the rule-based operations into the
optimization model.
In the next section, we give a brief description of the

papermaking process. Section 3 develops a novel MILP
formulation based on generalized disjunctive program-
ming19−23 for the production scheduling of different paper
grades on a paper machine. Section 4 applies data analytics
techniques to extract information from historical data to

support the full-space model developed in Section 3. Section 5
provides numerical examples to validate the proposed decision
support tool, and conclusions are given in Section 6.

2. PROBLEM STATEMENT

Figure 1 presents a schematic overview of the papermaking
process.24,25 First, the paper machine is fed by pulp, the main
ingredient of paper, to produce large rolls of paper called
jumbo reels, which are often of fixed width for each paper
machine. The jumbo reels then continue to another machine
called winder to be cut into rolls of smaller dimensions. The
rolls either go straight to the customer or are cut into sheets at
the cutters. In the end, the final packaged products are
dispatched to customers or distribution centers. In this paper,
we will only focus on the production of different grades of
jumbo reels that are typically around 8−10 m wide and 25−35
km long.
Because of market requirements and global competition,

more paper grades are manufactured nowadays, and con-
sequently frequent grade changes are inevitable in the paper
machine. The grade change is a transition from one set of
operating conditions (e.g., speed, stock flow, and steam
pressure) to another and requires from few minutes to hours
depending on the subsequent grades. As the paper machine is
never idle, the paper produced during the transition may not
be sellable due to quality reasons and is typically recycled again
into the pulper. Therefore, minimizing the grade change
transition can lead to a significant reduction in production loss
and the efforts and energy needed to recycle off-spec waste.
Given the number of jumbo reels needed to be produced

during a specific time horizon, we aim to sequence the
production of paper grades in the paper machine while
minimizing the grade change transitions. It is a challenging
objective function to deal with because its linear relaxation is
typically zero, often far away from the actual MILP solution. It
is worth mentioning that, in practice, paper machine operators
usually use a cyclic scheduling strategy to meet customer
orders and consequently, historical process data can be used to
reduce the domain of variables and constraints, which has a
profound impact on the CPU time of the full-space MILP
model.

Figure 1. An overview of the papermaking process.

Figure 2. Continuous-time grid for proposed formulation.
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3. MATHEMATICAL FORMULATION
We now present a continuous-time MILP formulation for
production scheduling of jumbo reels in a paper mill. Such an
MILP model (hereafter referred to as the full-space model) is
capable of finding the optimal sequence of paper grades in a
paper machine in a single step.
3.1. Sequencing Production Runs. We adopt a

continuous-time formulation with the common reference grid
given in Figure 2. It is made of a set of chronologically ordered
r ∈ R = {1,2,...,|R|} production runs. Therefore, run r must be
performed after run r − 1. As the continuous variable SRr
represents the starting time of production run r and LRr its
duration, we will have eq 1. Equation 2 enforces that all
production runs are located within the given time horizon h.
Note that the start time of the first run is a known datum, that
is, SR1 = 0.

≥ + ∀ ∈ |− − ≥SR SR LR r Rr r r r1 1 2 (1)

∑ ≤
∈

LR h
r R

r
(2)

3.2. Size and Length of Each Run. Let the Boolean
variable Xi,r = True indicate if run r is processing grade i, and
let Xr

no i = True if no grade is being processed during run r. In
the former case, the processing of grade i is associated with the
production of a certain number of jumbo reels (Vi,r). In the
latter case, the variables Vi,r will be equal to zero. Notice that
the disjunction in eq 3 is exclusive, meaning that at most one
grade can be processed during each run r ∈ R.

Equations 4 and 5 are obtained using the convex hull
reformulation of disjunction 3. Note that the binary variable xi,r

that has a one-to-one relationship with the Boolean variable Xi,r
can be assigned to Xi,r to transform disjunction 3 to an MILP
representation.

∑ ≤ ∀ ∈
∈

x r R1
i I

i r,
(4)

≤ ≤ ∀ ∈ ∈v x V v x i I r R,i i r i r i i rmin, , , max, , (5)

Equation 6 computes the length of a run r ∈ R processing
grade i.

∑= ∀ ∈
∈

LR ptV r Rr
i R

i i r,
(6)

The number of production runs (|R|) as a tuning parameter
of the proposed model should be postulated by the user.
Because the resulting problem for |R| is a relaxation of the one
for |R| − 1, a typical procedure is to increase the cardinality of
the set R by one until no better schedule is discovered. In case
the number of predefined runs is greater than the optimal
number of runs to be performed, the problem will result in
some dummy runs (Xr

no i = 1 or ∑i∈IXi,r = 0). To reduce the
symmetry, dummy runs should be confined to the end of
ordered set R, see eq 7.

This can be reformulated into eq 8.

∑ ∑≤ ∀ ∈ |
∈ ∈

− ≥x x r R
i I

i r
i I

i r r, , 1 2
(8)

3.3. Grade Change Transition and Forbidden Grade
Changes. When two consecutive runs process two different
grades, a transition period occurs between the runs. If grade i
has been processed at run r − 1, and run r is processing grade

Figure 3. Simple example illustrating constraint 24.
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i′,there will be a transition time TTr(= τi,i′) between the two
runs. We have thus the following conditions

∧ ⇒ ∀ ′ ∈ ∈ |− ′ ′ ≥X X X i i I r R, ,i r i r i i r r, 1 , , ,
GChange

2 (9)

The reformulation of logic proposition 9 and the convex hull
reformulation of the disjunction 10 result in the following
constraints

≥ + − ∀ ′ ∈ ∈ |′ − ′ ≥x x x i i I r R1 , ,i i r i r i r r, ,
GChange

, 1 , 2

(11)

∑ ∑ τ= ∀ ∈ |
∈ ′∈

′ ′ ≥TT x r Rr
i I i I

i i i i r r, , ,
GChange

2
(12)

Note that constraints 11 and 12 can be replaced by a single
inequality equation in constraints 13 by combining eqs 11 and
12 τ τ τ= ∑ ∑ ≥ ≥ + −∈ ′∈ ′ ′ ′ ′ ′ − ′( )TT x x x x( 1)r i I i I i i i i r i i i i r i i i r i r, , ,

GChange
, , ,

GChange
, , 1 , .

τ≥ + − ∀ ′ ∈ ∈ |′ − ′ ≥TT x x i i I r R( 1) , ,r i i i r i r r, , 1 , 2

(13)

Note that the binary variable xi,i′,r
GChange in eqs 11 and 12 can

be treated as a continuous 0−1 variable. This is simply because
(i) when both xi,r−1 and xi′,r take one, the constraint 11
enforces xi,i′,r

GChange to be 1, and (ii) when at least one of the
variables xi,r−1 and xi′,r is zero; consequently xi,i′,r

GChange must be
zero. The latter is due to the fact that variable TTr has a
profound impact on the value of objective functions in eqs 29
and 30 which are minimized. Except Ex 2, we will use
constraints 11 and 12 in our implementations.
The start time of run r should be after completing the end of

the previous run r − 1 and the subsequent changeover
operation between the two runs

≥ + + ∀ ∈ |− − ≥SR SR LR TT r Rr r r r r1 1 2 (14)

Because of prohibitively long transition times, some grades
cannot be processed in consecutive runs. This condition is
imposed by the logic proposition 15, which is reformulated
into eq 16

¬ ∧ ∀ ′ ∈ { | = } ∈ |− ′ ′ ≥X X i i I fs r R( ) , 1 ,i r i r i i r, 1 , , 2

(15)

+ ≤ ∀ ′ ∈ { | = } ∈ |− ′ ′ ≥x x i i I fs r R1 , 1 ,i r i r i i r, 1 , , 2

(16)

3.4. Inventory and Due Date Constraints. Let us
suppose that the horizon of interest is partitioned into a
number of time periods t ∈ T = {t0,t1,t2,...} and ept is end of
period t (note that ept=t0 = 0, see Figure 3). The aim is to
produce a predefined number of reels i during each time
period. Clearly, when a run starts, it should complete in exactly
one of the time periods. If run r is completed during time
period t (Yr,t = True), its completion time SRr + LRr should
satisfy ept−1 ≤ SRr + LRr ≤ ept. These conditions can be
described through the following disjunction

The convex hull reformulation of the disjunction gives rise
to the following due dates timing constraints

∑ = ∀ ∈
∈

y r R1,
t T

r t,
(18)

∑+ ≤ ∀ ∈
∈

SR LR ep y r Rr r
t T

t r t,
(19)

∑+ ≥ ∀ ∈
∈

−SR LR ep y r Rr r
t T

t r t1 ,
(20)

Note that it is not necessary for a run that has started at
period t to be completed in the same run. This is because eqs
19 and 20 are only applied to the completion time (SRr + LRr)
of a run r and not to the start time of that run (SRr), meaning
that yr,t = 1 can only lead to ept−1 ≤ SRr + LRr ≤ ept. For
instance, run 4 processing grade 17 in Figure 3 completed at
time period 2 starts during the first time period.
Alternative due date timing constraints can be developed

using the big-M constraints in eqs 21−23. They describe that if
run r is processing a grade, it should complete in one of the
time periods and its completion time should satisfy ept−1 ≤ SRr
+ LRr ≤ ept. If, run r is a dummy run, its completion time is
relaxed. As constraints 18−20 result in a tighter linear
relaxation, they will be used in our implementations.

∑ ∑= ∀ ∈
∈ ∈

y X r R
t T

r t
i R

i r, ,
(21)

+ ≤ + − −

∀ ∈ ∈

SR LR ep h ep y

r R t T

( )(1 )

,

r r t t r t,

(22)

+ ≥ ∀ ∈ ∈−SR LR ep y r R t T,r r t r t1 , (23)

The inventory balance at the end of each time period is
defined in eq 24, stating that the number of reels of grade i at
the end of time period t (IVi,t) is equal to the number of reels i
at period t − 1 plus the number of reels produced during time
period t minus the numbers sent to the downstream processor
(nwi,t). To satisfy the market demand on time, the number of
jumbo reels of grade i sent to the downstream processor
should be exactly equal to nwi,t, the number of jumbo reels of
grade i that needs to be produced during period t. The initial
inventory of each grade is a known parameter as stated by eq
25.

∑= + − ∀ ∈ ∈ |−
∈

≥IV IV V y nw i I t T,i t i t
r R

i r r t i t t, , 1 , , , 1

(24)

= ∀ ∈ =IV iv i I t, 0i t i,
0

(25)

Note that the bilinear term Vi,ryr,t(=VYi,r,t) can simply be
linearized by the following equations.

≤ ∀ ∈ ∈ ∈VY v y i I r R t T, ,i r t i r t, , max, , (26)

≤ + − ∀ ∈ ∈ ∈VY V v y i I r R t T(1 ) , ,i r t i r i r t, , , max, ,

(27)

≥ − − ∀ ∈ ∈ ∈VY V v y i I r R t T(1 ) , ,i r t i r i r t, , , max, ,

(28)

Figure 3 is a simple example illustrating constraints 18−25.
The time horizon h = 72 h has been divided into three time
periods t1, t2, and t3, with each period being composed of one
day (24 h). There are a total of 8 production runs during the
scheduling horizon, and each run is completed in exactly one
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Figure 4. Example time window of transition period identification.
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time period. Let us assume that from the planning level, we
need 6, 8, and 24 jumbo reels of grade 7 and 0, 20, and 0 of
grade 17 during periods t1, t2, and t3, respectively. As can be
seen from Figure 3, 14 reels of grade 7 are produced during the
first period and none during the second one. The initial
inventory of grade 7 is zero, and during the first period 6 reels
of it should be sent to the downstream processor. Thus, at time
24 h, the inventory of grade 7 will be 8 reels, which are used in
the second period. The production of grade 7 is restarted at
time point 48 h to satisfy 20 units of its demand needed during
the third period. Run 4 processing grade 17 starts during
period t1 and finishes within the second period t2. Note
however, we can only calculate the number of reels of grade 17
at the end of run 4, which happens within the second period,
meaning that the inventory of grade 17 at the end of period t1
will be 0. In other words, the 20 units of grade 17 produced
during run 4 will be only available at the end of the second
period.
3.5. Objective Function. Two alternative objective

functions are considered: minimum makespan in eq 29 and
minimum cost in eq 30 including inventory cost, grade change
transition cost, and the cost for executing a production run.

=z MSmin (29)

∑ ∑ ∑ ∑ ∑= + +
∈ ∈ ∈

≥
∈ ∈

z ciIV ctTT crxmin
t T i I

i t
r R
r

r
r R i I

i r,

2

,

(30)

For the objective of minimization of makespan, the
continuous variable MS should be the upper bound on the
end time of last production run (r = |R|), as given in eq 31.

≥ +| | | |MS SR LRR R (31)

The full-space model for cost minimization consists of eqs 2,
4−6, 8, 11, 12, 16, 18−20, 24−28, and 30. For the makespan
minimization, we replace eq 30 with eqs 29 and 31.

4. DATA ANALYTICS
Historical process data contains information that is useful for
defining the future operation of the process. The paper
machine we consider in this work produces 20 groups of
grades, each of which has a specific paper weight. Further, each
of these groups contains various grades with different colors,
brightness, coating material, and so on. However, in order to
keep the size of the problem manageable, we only consider the
groups of grades and refer to them simply as grades. In this
section, we analyze a dataset recorded on the paper machine
during one year of operation from the beginning of July 2017
to the end of June 2018. We extract two types of information
from the dataset: (i) the number of pairwise grade transition
occurrences and (ii) their average duration. We consider eight
signals, which correspond to paper weight and moisture and
coating weight measurements, in different parts of the paper
machine.
A historical dataset of such process may either be labeled

(i.e., the grade identifiers are recorder) or unlabeled. In this
work, we consider the worse of these situations, that is, an
unlabeled dataset. We demonstrate that useful information can
still be extracted, even if the grade identifiers are unknown,
using data clustering. In the following, we describe our signal
processing approach to identify the grade transition periods
(Section 4.1) and our clustering approach to summarize the
information into useful tables (Section 4.2).

4.1. Signal Processing. The dataset contains both
measurement and set point signals for each of the measured
quantities. The set point signal is the target value at which the
control system aims to retain the measurement signal. The
sampling interval of the measurement signals is around 30 s.
However, these samplings are not synchronized and contain
idle periods, during which no measurements are recorded. We
apply the Kalman filter to the measurement signal, in order to
obtain a representative continuous signal. Figure 4 shows the
measurement, its Kalman filtered and the set point signal for all
eight measured quantities during a representative operation
window of 5 h. For Kalman filtering and general data
processing, we use the Python modules Pykalman26 (version
0.9.5) and Pandas27 (version 0.23.0), respectively.
Our procedure to identify the transition periods from these

signals is the following. First, for each measured signal, we flag
time periods where the absolute difference between the
Kalman filtered measurement and the set point signal exceeds
a threshold of ra = 5% anomaly, that is, 1.96 times the standard
deviation. In addition, we flag all time periods where the set
point signal remains unchanged for less than a predefined
minimum duration of a batch, tbatch. We use the value of tbatch =
30 min in this work. The operators of the paper machine
indicate this as the minimum time to produce a single grade.
Figure 4 shows the flagged time periods for the measured
quantities.
Second, the time periods at which any of the signals is

flagged are marked as potential transition periods (see the
second last subplot of Figure 4). Here, as the sampling of
measurement signals are not synchronized, the missing values
are forward filled. In reality, all signals might temporarily lay
within the anomaly threshold of ra soon after the set point
change but exceed the threshold after a short time (cf., e.g., a
controlled variable overshoot). Therefore, we merge two
potential transition periods into one, if they are separated by
less than a settling time of tsettle = 2 min. In other words, the
end of a potential transition period is marked as the time point,
from which onward, no flagging occurs for 2 min.
Potential transition periods may include instances where a

disturbance causes the flagging, instead of an intended grade
change. In order to exclude such instances, we, finally, mark
those of the potential transition periods, during which the set
point signal of the representative paper weight signal changes,
as transition periods (see the last subplot of Figure 4). The
procedure avoids marking short-term disturbances falsely as
transition periods. An example of such an instance is the first
potential transition period in Figure 4. It is worth noticing that,
in our approach, if a disturbance causes flagging within the
settling time tsettle of a transition period, it is included in the
transition period. Such disturbance, occurring soon after a
grade transition, might well be caused by the transition.
Therefore, its inclusion in the transition period is also
appropriate.
Thus, our signal processing approach involves three

hyperparameters, which need to be chosen before analyzing
a dataset. The hyperparameters are the anomaly threshold ra,
the minimum batch duration tbatch and the settling time tsettle.

4.2. Data Clustering. As a result of the signal processing,
described in the previous section, we obtain the start and end
times of the transition periods. The time windows in between
the transition periods are referred to as production periods. We
enumerate the production periods between the transition
periods and determine the average value for the representative
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paper weight during each period. We then cluster these values
using k-means clustering28 with a priori defined number of 20
clusters. The k-means clustering is implemented using the
Python module Scikit-learn29 (version 0.19.1). Figure 5
visualizes the clustered production periods, according to their
representative paper weight, as well as the centers of the
clusters.
We then assign each transition their source and destination

grades. The grade identifiers are arranged in an increasing
order of representative paper weight. Finally, we filter
transitions with the same source and destination grade or
unrealistically long duration (>3 h). With this procedure, we
are able to identify 498 grade transitions in the dataset. Figures
6 and 7 show matrices of transition occurrences from a source
to a destination grade and their average durations, respectively.

4.3. Constraints Derived from Data Analysis. The main
goal of this work is to show how data analytics methods can
support the solution of large-scale scheduling models. Figure
8a shows all possible sequences between grades (some

sequences are forbidden), whereas Figure 8b is a directed
graph based on the grade change table in Figure 6. It can be
seen that historical data help to transform a dense graph into a
sparse one, by omitting a significant number of links
(sequences) between grades.
Taking into consideration the sparse graph, one can see that

if, for instance, run r is processing grade 1, then the next run
should process either grade 3 or grade 5. Now if we assume
that Ii is a set of grades that can follow grade i, constraint 33
which is derived from logic proposition 32 can be added to the
problem formulation.

∑≤ ∀ ∈ ∈ |−
′∈

′ ≥x x i I r R,i r
i I

i r r, 1 , 2

i (33)

By incorporating constraint 33 in the full-space model, we
can guarantee that no forbidden sequence will occur during the
production sequence. Note that constraint 33 also ensures that
any dummy runs will place at the start of the production
sequence. Moreover, constraint 33 enables us to reduce the
domain of variable xi,i′,r

GChange, replacing i′ ∈ I by i′ ∈ Ii.

≥ + − ∀ ∈ ′ ∈ ∈ |′ − ′ ≥x x x i I i I r R1 , ,i i r i r i r i r, ,
GChange

, 1 , 2

(34)

∑ ∑ τ= ∀ ∈ |
′∈ ∈

′ ′ ≥TT x r Rr
i I i I

i i i i r r, , ,
GChange

2

i (35)

Note that again we can replace constraints 34 and 35 by a
single inequality constraint 36. Except Ex 2, we will use
constraints 34 and 35 in our implementations.

τ≥ × + −

∀ ∈ ′ ∈ ∈ |
′ − ′

≥

TT x x

i I i I r R

( 1)

, ,

r i i i r i r

i r

, , 1 ,

2 (36)

Note that hereafter the full-space model with constraints
33−35 and without constraints 8 and 16 is called data-driven
model. Therefore, the data-driven model for cost minimization
consists of eqs 2, 4−6, 14, 18−20, 24−28, 30, and 33−35. For
the makespan minimization, constraint 30 is replaced by 29
and 31.

5. COMPUTATIONAL RESULTS
To illustrate the capabilities of the proposed data-driven
model, a case study based on an industrial size test case with
different demand scenarios has been considered. In all cases,
the paper machine produces 20 different types of paper grades
(G1−G20), and the processing time of a jumbo reel of paper is
16.70 min (pti = 0.2778 h). The MILP models were
implemented in GAMS 24.9.1 and solved with CPLEX
12.7.1 running in parallel deterministic mode using up to
four threads. The hardware consisted an Intel i5-7300U (2.60

Figure 5. Clustering of production batches based on the average value of the representative paper weight signal. The centers of the clusters are
marked by vertical black ticks. The colors indicate the points that belong to the same cluster.

Figure 6. Occurrences of changes from a source to a destination
grade.

Figure 7. Average transition durations from a source to a destination
grade.
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GHz, 8 GB of RAM), running Windows 10, 64-bit operating
system. The termination criteria were either a relative
optimality tolerance of 10−6 or a maximum computational
time of 3 h for data-driven model and 5 h for the full-space
model.
Remark: Note that, our observation on historical data

indicates that no two consecutive runs have processed the
same grade and this is why the diagonal elements of grade
change table in Figure 7 are zero. This limitation, which is not
considered in the full-space model, will be relaxed for the data-
driven model in Ex 1 and Ex 4, replacing 0 with 1 in the
diagonal of grade change table in Figure 6.
5.1. Ex 1. In this example, the aim is to manufacture a

certain number of jumbo reels during a horizon of 300 h. The
number of grades that should be produced is given in Table 1.
The grade change transition duration between two grades
(based on Figure 6) is given in Table 2. For a pair of grades
that there is no link between them in the sparse graph in Figure
8b, the grade transition time is set to 3 h. Some grade
transitions indicated with the cross mark (×) in Table 2 are
forbidden. We assume that the minimum and maximum
number of jumbo reels that can be produced during a process
run are 4 and 240, respectively. Moreover, the fixed cost for
performing a run is $1000, and the cost resulting from a 1 h
transition is $10,000. The unit inventory cost is set to zero.
Note also that in this example, we allow two consecutive runs
to process the same grade, leading to replacing 0 with 1 in the
diagonal of the occurrence matrix in Figure 6.
Here, we first solve Ex 1 for makespan minimization using

data-driven model with both big-M and convex hull
reformulations of due dates timing constraints. As can see
from Table 1, 14 paper grades should be manufactured.
Because each run can process one grade at a time, the
minimum number of process runs |R| is fourteen (|R| ≥ 14).
The results in Table 3 indicate that both big-M and convex
hull need the same number of discrete and continuous
variables as well as constraints for the same number of process
runs. However, the convex hull reformulation performs quite
well when we use constraints 34 and 35 instead of eq 36. The
convex hull also exhibits a tighter LP relaxation, as expected. In

the remainder of this paper, we will use the convex hull type of
due dates timing constraints.
Table 4 shows the model statistics and computational results

for the full-space and data-driven models. For makespan
minimization, it can be observed that both full-space and data-
driven models yield the same solution with 14 runs and
confirm it with 15 runs. However, the data-driven model is
much faster, that is, about three times faster with 14 runs and
six times faster for 15 runs. From the results, both formulations
need the same number of binary variables, but there is a
considerable difference in the number of continuous variables
and constraints. The latter is because in the data-driven model,
the set I in the domain of changeover time constraint 11 and
variable xi,i′,r

GChange is replaced by Ii, that avoids duplicating the
number of continuous variables and constraints.
For cost minimization, both models generate the same cost

of $41,961.1 with 14 runs in a reasonable CPU time. The data-
driven model performs quite well with 15 processing runs,
being able to improve the solution to $40,213.8 in 231.2 s.
This represents a one-order-of-magnitude time saving
compared to the full-space model, which needs about 2 h to
reduce the cost to $40,213.8. To prove the solution optimality,
both models with 16 runs are again solved. From Table 4, it
follows that the same optimum is found with both models.
However, the data-driven model is roughly two times faster
than the full-space model.
Figure 9 depicts optimal schedules for Ex 1 using data-driven

and full-space models. The sequences of grades in both models
when minimizing cost are identical (see the middle part of
Figure 9). When minimizing the makespan, the grade
sequences are quite different, but correspond to the same
makespan and total changeover transition times. This indicates
that the problem can suffer from symmetric solutions.

5.2. Ex 2. Ex 1 is tackled again in Ex 2, but this time, we add
an intermediate due date for demand at time 168. Therefore,
Ex 2 considers two due dates for grades to be manufactured,
with the first one being at 168 and the second one at 300. The
number of grades that should be produced in each period is
given in Table 5. All the values presented in Table 5 (also in
Table 7) are generated based on historical data. In this

Figure 8. Data analysis helps to omit a significant number of links between grades.

Table 1. Number of Jumbo Reels Needed during the Scheduling Horizon

grades

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

40 28 120 24 170 45 40 80 218 51 45 40 48 83
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example, (i) no consecutive runs can process the same grade
when applying the data-driven model, and (ii) eqs 11 and 12
are replaced by eq 13 in the full-space model and eqs 34 and
35 with 36 in the data-driven model.

Table 6 shows the model statistics and computational results
of Ex 2 for the full-space and data-driven models. For
makespan minimization, we again start by solving the models
with 14 runs. As can be seen from Table 6, setting |R| = 14

Table 3. Results of Ex 1 for Minimum Makespan Using Big-M and Convex Hull

data-driven model with constraint 36 data-driven model with constraints (34 and 35)

big-M convex hull big-M convex hull

|R| 14 15 14 15 14 15 14 15
CPU (s) 64.50 380.90 40.23 305.73 337.0 2148.4 52.04 287.5
discrete variables 574 615 574 615 574 615 574 615
total variables 957 1021 957 1021 3095 3325 3095 3325
constraints 3978 4271 3978 4271 3958 4251 3958 4251
objective 289.48 289.48 289.48 289.48 289.48 289.48 289.48 289.48
LP-relaxation 1.00 1.00 286.68 286.68 1.00 1.00 286.68 286.68

Table 4. Computational Results for Ex 1

|R| CPU (s) discrete variables total variables constraints MILP Rgap
a (%)

Makespan Minimization
full-space model 14 198.2 574 5383 6753 289.48 0

15 1018.6 615 5789 7261 289.48 0
data-driven model 14 64.9 574 3095 3958 289.48 0

15 166.1 615 3325 4251 289.48 0
Cost Minimization ($)

full-space model 14 290.1 574 5382 6752 41,961.1 0
15 7122.5 615 5788 7260 40,213.8 0
16 8350.4 656 6194 7768 40,213.8 0

data-driven model 14 53.6 574 3094 3957 41,961.1 0
15 231.2 615 3324 4250 40,213.8 0
16 3200.15 656 3554 4543 40,213.8 0

aRelative gap.

Figure 9. Schedules for Ex 1 using data-driven and full-space models.

Table 5. Number of Jumbo Reels Needed during Each Period in Ex 2

grades

time period G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

T1 28 24 66 20 40 0 160 51 40 48 83
T2 40 120 104 25 80 58 45
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leads to an infeasible MILP using data-driven model and
returns no solution in 5 h using the full-space model. The same
situations are observed when considering 15 process runs.
Increasing the number of process runs to 16, both models yield
roughly the same feasible solution. The data-driven model,
however, performs very fast, enabling to find a makespan of
290.48 in 680 s, that is, one order of magnitude faster than the
full-space model that cannot close the optimality gap within 5
h. With 17 runs, the data-driven model generates the same
makespan encountered in 16 runs, but the CPU time increases

by a factor of two. However, the full-space model with 17 runs
did find a slightly better solution (289.93 vs 290.48) up to
maximum time limit. This is because unlike the data-driven
model, the full-space model is allowed to process the same
grade in two consecutive runs. This is apparent from Figure 10
where the full-space model for minimum makespan processes
grade 13 in two consecutive runs 11 and 12 while the data-
driven model processes the same grade in run 4 and run 11.
For the cost minimization, the full-space model generates a

solution of $58,536.1 with 16 runs but cannot close the

Table 6. Computational Results for Ex 2

|R| CPU (s) discrete variables total variables constraints MILP Rgap
a (%)

Makespan Minimization (h)
full-space model 14 18,000 588 1291 7640 no solution

15 18,000 630 1376 8207 no solution
16 18,000 672 1461 8774 290.15 1.02
17 18,000 714 1546 9341 289.93 1.09

data-driven model 14 25.64 588 1291 4598 infeasible
15 316.2 630 1376 4931 infeasible
16 680.1 672 1461 5264 290.48 0
17 1342.2 714 1546 5597 290.48 0

Cost Minimization ($)
full-space model 16 18,000 672 1460 8773 58,536.1 76.08

17b 18,000 714 1545 9340 50,613.8 72.14
data-driven model 16 4143.4 672 1460 5263 53,988.8 0

17 6974.6 714 1545 5596 50,338.8 0
18 9842.12 756 1630 5929 50,338.8 0

aRelative gap. bRun 17 is dummy at termination.

Figure 10. Schedules for Ex 2 using data-driven and full-space models.
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optimal gap in 5 h. On the other hand, the data-driven model
generates almost 8% better solution with the same number of
runs in 4143.4 s of CPU. Considering one more processing run
(|R| = 17), the data-driven model improves the solution to
$50,338.8 and confirms it with 18 runs in 9842.12 s. The full-
space model improves the solution by 13.5% but is again
unable to close the optimality gap. Figure 10 shows the best

found schedules for minimum makespan and cost using the
data-driven and the full-space models.

5.3. Ex 3. This example is hard to solve and considers three
due dates, where ept = 168 and ept = 336 and ept = 450. The
number of grades that should be produced in each period is
given in Table 7. In this example, we set the computational
time limit for the full-space model to 36,000 s and |R| ≥ 19.

Table 7. Number of Jumbo Reels Needed during Each Period

grades

time period G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

T1 100 18 51 21 50 69 32 25
T2 4 160 72 71 72
T3 60 10 80 112 63 84 30 18 64

Table 8. Computational Results for Ex 3

|R| CPU (s) discrete variables total variables constraints MILP Rgap (%)
a

Makespan Minimization
full-space model 19 36,000 817 8311 11,673 no solution

20 36,000 860 8699 12,241 no solution
data-driven nodel 19 10,800 817 4723 7383 355.39 0.65

20 10,800 860 4975 7776 355.39 0.65
Cost Minimization

full-space model 19 36,000 817 8250 11,612 no solution
20 36,000 860 8698 12,240 no solution

data-driven model 19 10,800 817 4722 7382 45,844.5 60.72
20 10,800 860 4974 7775 46,844.5 61.56

aRelative gap.

Figure 11. Best-found schedule for Ex 3 using the data-driven model with 24 runs.

Table 9. Impact of the Number of Demand Points in Computational Effort of Data-Driven Model

|T| |R|min
b CPU (s) discrete variables total variables constraints MILP ($) Rgap

a (%)

1 10 2.7 410 2174 2785 27,783.3 0
2 13 1939.7 546 3157 4464 38,058.3 0
3 14 10,800 602 3722 5677 42,677.7 65.87
4 14 10,800 616 4036 6537 46,375.0 36.46
5 12 2662.9 540 3722 6331 30,983.3 0
6 12 3312.8 552 3994 7071 33,161.1 0
7 12 10,800 564 4226 7811 34,275.0 52.34

aRelative gap. b|R|min is the minimum number of production runs needed to generate a feasible solution.
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Table 8 shows the model statistics and computational results
of Ex 3. When choosing 19 runs, the solver is unable to return
a feasible solution using the full-space model in the
computational time limit of 36,000 CPUs. The data-driven
model finds a makespan of 355.39 and a cost equals
$45,844.44 within 3 h of computational time. With 20 runs,
the full-space model again fails to generate any feasible
solutions for the problem. No improvement is observed using
the data-driven model with 20 runs. The best-found schedules
for Ex 3 using the data-driven model with 19 runs is depicted
in Figure 11.
5.4. Ex 4: Sensitivity Analysis on the Number of Due

Dates. In this example, we analyze the impact of the number
of demand points (due dates) on the computational effort of
the data-driven model. The aim is to produce 976 units of
jumbo reels with minimum cost. We consider seven scenarios
for the production of 976 jumbo reels during a time horizon of
two weeks featuring multiple due dates (|T| = 1,2,...,7). Data
for each scenario is presented in Tables S1−S7 (see the
Supporting Information). The initial inventory is set to zero for
all grades, except for the grades 19 and 20, which is considered
to be 70 and 60, respectively. Table 9 shows the computational
results for Ex 4. When there is only one due date (|T| = 1), the
data-driven model requires 10 production runs to generate the
first feasible solution worth $27,783.3. By adding an
intermediate due date at time point 168 h, the minimum
number of runs raises to 13 and the CPU time increases to
1939.7 s. When demands need to be considered in three due
dates (|T| = 3), the data-driven model cannot close the
optimality gap within 3 h of CPU time. This also happens
when the number of due dates is considered four and seven (|
T| = 4, 7). Overall, it can be seen from Table 9, both the
solution quality and CPU time highly depend on how the
required number of jumbo reels (967) is distributed among
different due dates.

6. CONCLUSIONS
This paper has presented a data-driven decision support tool
for the production scheduling of different paper grades in a
paper machine. Some of problem constraints were first
modeled using disjunctive programming and propositional
logic and then translated into a MILP model that relies on
continuous-time representation. We identified pairwise grade
transition occurrences and their durations from a historical
dataset. The former led to constraints appended to the full-
space model, which reduce the domain of variables having a
profound impact on the CPU time of the full-space model. The
data-driven model was illustrated by four real-world test
problems and was shown to be very efficient, allowing the
solution of a large-scale problem where the full-space model
fails to generate even a feasible solution. In future work, the
proposed data-driven model will be generalized to tackle the
long-term planning and scheduling problem arising at an
integrated pulp and paper mill.
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■ NOMENCLATURE

Sets/Indices
I/i,i′ paper grades
R/r process runs
T/t time periods
Parameters
h time horizon (h)
ept upper extreme of period t
τi,i′ transition time between grades i,i′
pti the length of processing one jumbo reel of grade i
vmin,i/vmax,i min/max number of jumbo reels of grade i that can

be produced during a run
ivi

0 initial inventory of grade i
nwi,t minimum number of jumbo reels of grade i that

should be produced during period t
fsi,i′ 1 if grade i′ cannot be processed after grade i′; 0

otherwise
ra anomaly threshold (signal processing)
tsettle settling time (signal processing)
tbatch minimum batch duration (signal processing)
ci unit inventory cost ($/unit)
ct unit changeover cost ($/h)
cr cost for performing a production run ($/run)
Boolean variables
Xi,r True if grade i is being produced during run r
Xi,i′,r
GChange True if grade i is changed to grade i′ during run r

Yr,t True if run r ends during period t

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://dx.doi.org/10.1021/acs.iecr.9b06907
Ind. Eng. Chem. Res. 2020, 59, 8281−8294

8293

http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.9b06907/suppl_file/ie9b06907_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06907?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.9b06907/suppl_file/ie9b06907_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Iiro+Harjunkoski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:iiro.harjunkoski@aalto.fi
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hossein+Mostafaei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4761-3037
http://orcid.org/0000-0002-4761-3037
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Teemu+Ikonen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jason+Kramb"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tewodros+Deneke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Keijo+Heljanko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06907?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.9b06907?ref=pdf


Binary variables
xi,r 1 if grade i is being produced during run r
xi,i′,r
GChange 1 if grade i is changed to grade i′ during run r (can be

treated as a continuous 0−1 variable, see Subsection
3.3)

yr,t 1 if run r ends during period t
Discrete variable
VYi,r,t number of jumbo reels of grade i produced by run r

during period t
Continuous variables
LRr duration of run r (h)
SRr start time of run r (h)
TTr transition time between run r − 1 and r
Vr number of jumbo reels of grade i produced during run r
IVi,t number of jumbo reels of grade i at the end of period t
MS makespan
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