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ABSTRACT Deep learning has been widely used for implementing human activity recognition from
wearable sensors like inertial measurement units. The performance of deep activity recognition is heavily
affected by the amount and variability of the labeled data available for training the deep learning models.
On the other hand, it is costly and time-consuming to collect and label data. Given limited training data, it is
hard to maintain high performance across a wide range of subjects, due to the differences in the underlying
data distribution of the training and the testing sets. In this work, we develop a novel solution that applies
adversarial learning to improve cross-subject performance by generating training data that mimic artificial
subjects - i.e. through data augmentation - and enforcing the activity classifier to ignore subject-dependent
information. Contrary to domain adaptation methods, our solution does not utilize any data from subjects
of the test set (or target domain). Furthermore, our solution is versatile as it can be utilized together with
any deep neural network as the classifier. Considering the open dataset PAMAP2, nearly 10% higher cross-
subject performance in terms of F1-score can be achieved when training a CNN-LSTM-based classifier
with our solution. A performance gain of 5% is also observed when our solution is applied to a state-
of-the-art HAR classifier composed of a combination of inception neural network and recurrent neural
network. We also investigate different influencing factors of classification performance (i.e. selection of
sensor modalities, sampling rates and the number of subjects in the training data), and summarize a practical
guideline for implementing deep learning solutions for sensor-based human activity recognition.

INDEX TERMS Human activity recognition, deep learning, adversarial learning, data augmentation, cross-
subject performance.

I. INTRODUCTION
Deep learning techniques such as Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM)
have recently been applied to implement human activity
recognition (HAR) using wearable sensors, and have proved
to outperform shallow learning techniques like Support
Vector Machine (SVM). Examples, as listed in Table 1,
include recognition of hand gestures (e.g. raise, lower)
and body movements (e.g. walking, sitting) from readings
of inertial measurement unit (IMU). Among the activities
which have not been well studied, the ones involving hand-
object interaction are essential for implementing emerg-
ing augmented/mixed reality applications, such as cognitive
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assembly and maintenance assistance. In this work, we will
take activities involved in the process of elevator panel main-
tenance as an example, and investigate the challenges and
practical solutions of deep learning-based hand-object inter-
action recognition.

One key challenge in applying deep learning for HAR is
the cross-subject performance degradation. As different
subjects conduct the same activities in different ways, the gap
in data distribution between the training and testing sets often
causes significant performance degradation when testing the
trained deep learning models on subjects not included in the
training set. Ideally, this issue could be addressed by having
a training set composed of data recorded with tens, or possi-
bly hundreds, of different subjects. However, data collection
and labeling is a laborious and time-consuming task. As a
matter of fact, existing open datasets, such as PAMAP2 [29],

90542 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5681-181X
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-0038-9816


C. F. Souza Leite, Y. Xiao: Improving Cross-Subject Activity Recognition via Adversarial Learning

TABLE 1. Recent works on sensor-based human activity recognition.

FIGURE 1. Overview of our work.

Opportunity [3] and Daphnet [1], typically contain no more
than 10 subjects. Therefore, the question is how to improve
cross-subject performance having limited subject-variability
in the training set. To the best of our knowledge, the works
of Jiang et al. [10] and Khan et al. [14] are the only ones that
propose to address this problem. However, as we will discuss
in Section 2, their solutions present limitations that we aim
to overcome with our method: 1) the need for training with
data from subjects pertaining to the test set and 2) a different
model must be trained for every different single or group of
test subjects.

Implementing HAR is also a choice of different sensor
modalities, sampling rates, and the number of subjects to
collect data with. It might sound plausible that maximizing
these three factors would also result in the maximization of
the classification performance at the end. However, above
a certain point, further maximizing them provides negligi-
ble or nonexistent performance gains. Instead, it may cause
practical issues as increased resource consumption and pro-
cessing delay. Even though this is a key trade-off in imple-
menting HAR systems, there is a lack of practical guidelines
on the selection of a minimal sensible setting for the afore-
mentioned factors, which characterizes another challenge to
be addressed in HAR.

This paper aims to solve both challenges. Our key
contributions in this paper are summarized as follows.

1) We develop a novel deep learning solution for bridging
the gap in performance across different subjects in HAR
with wearable sensors. To achieve this goal, while training
the activity classifier, our solution generates additional train-
ing data that mimic artificial subjects - with the purpose
of increasing subject variability - and instructs the activity
classifier to ignore subject-dependent information in the data.
Our solution is versatile since there isn’t any restriction on
which activity classifier to use. Taking a CNN-LSTM base-
line as the classifier and PAMAP2 as the dataset, our solution
provides a gain of nearly 10% in cross-subject performance
(in terms of mean F1-score) compared to the sole use of the
CNN-LSTM baseline. Applied to the state-of-the-art Inno-
HAR [36] classifier, the leap in performance reaches almost
5%, also for the PAMAP2 dataset. These improvements cor-
respond to a decreased need for variability of subject behavior
in the training set, which can be translated into fewer subjects
with which to collect and label data. 2) We provide deep
insights into the impact of different influencing factors on
classification performance and summarize a practical guide-
line based on our findings from experiments.

Figure 1 illustrates the blocks that form the structure of
this work, as well as their corresponding sections. The rest
of this paper is organized as follows. Section II introduces
the background. Section III presents the method proposed
in this work. Section IV describes the datasets, with the
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experimental results presented in Section V. Section VI sum-
marizes the practical guideline and further discusses our
method and the remained issues. Section VII presents the
related work before we conclude this work in Section VIII.

II. BACKGROUND
A. HUMAN ACTIVITY RECOGNITION (HAR)
HAR refers to the class of methods used for automati-
cally understanding what task humans are performing by
analyzing video, readings of wearable sensors, or wireless
signals reflected by the human body [35]. The algorithms
for HAR can be classified into shallow and deep learn-
ing methods. Common shallow methods in HAR include
SVM [13], [20], [23], k-nearest neighbors (kNN) [16], [24],
linear discriminant analysis (LDA) [9], and random forest
(RF) [21]. Deep learning approaches, such as LSTM [7], [15],
CNN-LSTM [25], [27], CNN [22], and convLSTM [26], have
shown impressive leaps in performance compared to their
shallow counterparts by learning to automatically extract
features from raw sensor data, thus dropping the need for
having human experts to provide hand-engineered features.
A summary of recent works is listed in Table 1. Regarding the
activities to be recognized, our work also serves to reinforce
the scarce attention that is being given to activities involving
hand-object interactions.

B. DOMAIN SHIFT
In computer vision, one often faces the problem of perfor-
mance degradation when the training and the test sets present
differences in terms of illumination, pose and image quality
[34]. Such differences in the underlying data distribution of
the training set (i.e. source domain) and the test set (i.e. target
domain) are named domain shift (or domain gap) and may
bring huge discrepancies in performance when testing the
model.

In HAR, when training a deep learning model on the
labeled source domain data, since the distribution of the raw
data depends on the subject, it is expected that the part of
the network responsible for the feature extraction process
outputs subject-dependent information (features) to the clas-
sification layers. That is, the extracted features depend on the
behavioral style of the subjects of the training set. Hence,
the domain shift problem is also present in HAR as a result of
the difference between the behavioral styles of the subjects in
the training set and those in the test set. There are a few factors
that determine the behavioral style of a subject.

• Different subjects might perform the same activity in
significantly distinctive ways. The activity of walking,
for instance, presents enough differences across subjects
such that it is possible to identify people by their gait.

• The level of dexterity and speed of performing the activ-
ities also differ from subject to subject. For instance,
one can observe clear differences (e.g. in speed) in the
behavior of a maintenance engineer when disassembling
elevator buttons in comparison with a non-technician.

• In energy-demanding activities, different subjects may
experience varying levels of tiredness that change in
distinctive ways how they perform the activity.

• By performing the activities, the subjects can involun-
tarily shift the placement of the sensors.

C. DOMAIN ADAPTATION AND DATA AUGMENTATION
We envision that the cross-subject performance degradation
can be minimized by reducing the domain shift through
domain adaptation or by augmenting the subject variability
in the training set through data augmentation.

Domain adaptation (DA) techniques aim at reducing this
performance degradation by bridging the domain gap. While
there exists a handful of DA methods in the literature [4],
the so-called adversarial DA methods (a subset of DA
methods) have recently shown impressive results [42] and
increasingly attracted the interest of many researchers [31].
In adversarial DA, a network - the discriminator - is trained
to distinguish data between domains, while another network
- the generator - learns to generate domain-indistinguishable
data, thus confusing the discriminator. These two networks
pit against each other - hence the term ‘‘adversarial’’.
Following this concept, the generator could be the feature
extraction layers of the activity classifier trying to learn
subject-indistinguishable features, whereas the discriminator
could be a network that tries to predict the subject given
the extracted features. A limitation of DA methods is that
they require the use of labeled or unlabeled target domain
data during the training phase. In this work, we follow the
concept of adversarial learning to address the cross-subject
performance degradation, however, we drop the need for
utilizing any data pertaining to the target domain during the
training of the classifier.

Data augmentation techniques generate artificial data that
are combined with the real data during the training of the clas-
sifier. Simple techniques include adding noise to the sensor
readings or increasing/decreasing their magnitude. Adversar-
ial learning have also shown impressive results in generating
artificial data [12]. Again, two networks - a discriminator
and a generator - are pitted against each other. The generator
receives random noise as input and is required to learn how
to transform such noise into an output that resembles the
real data. The generator’s output is fed into the discriminator,
which is trained to distinguish between real and artificial data.
This adversarial learning method does not guarantee that the
training set - formed by artificial and real data - contains a
higher subject variability, since the artificial data created by
the generator should exhibit the same data distribution as the
real training data. In our work, we utilize adversarial learning
to generate artificial data. However, in our method, the artifi-
cial data are generated to present a different distribution from
the real training data such that they mimic synthetic subjects.

III. ADVERSARIAL LEARNING
We divide this section into two parts. First, we explain the
architecture of the method that generates artificial data with
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FIGURE 2. The architecture of the subject variability-oriented data augmentation. During training, this architecture is required to extract
subject-dependent and subject-independent characteristics from the original data and merge these characteristics back together to reconstruct the data.
During the artificial data generation, the architecture is fed with original data from which subject-dependent characteristics are extracted and altered,
thus generating data from an artificial subject performing the same activity as in its original counterpart.

rich forms of subject variability. Such artificial data are com-
bined with the original training data and used to train the
activity classifier, explained in the second part of this section.

A. GENERATING ARTIFICIAL SUBJECT VARIABILITY
Denoting x as a sequence of time-series data, our goal is to
find which activity (among a set of predefined activities) is
performed in x. We start from the premise that x contains
subject-dependent characteristics, i.e. information that can be
used to classify which subject (among the set of subjects
in the training data) generated x, and subject-independent
characteristics. Also, let us presume that there exist functions
ESDC (·) and ESIC (·) that can extract from x subject-dependent
and independent characteristics,respectively. Moreover, let
M(ESDC (x),ESIC (x)) be a so-called merger function whose
goal is to reconstruct the original data x from its constituents
ESDC (x) and ESIC (x).
If we perturb ESDC (x), we can theoretically create data that

can represent artificial subjects. We refer to as A(x, η) (given
in Eq. 1) the data created from x representing an artificial
subject given a disturbance η to ESDC (x).

A(x, η) = M(ESIC (x),ESDC (x)� η) (1)

where � represents the Hadamard product - also known as
the element-wise product - and η is an injected noise.
The functions ESDC (·), ESIC (·) and M(·) are characterized

by neural networks. Given that the goal of M is to reconstruct
the split-data, we define the reconstruction loss function as in
Eq. 2.

LRECONS = E
x∼px

[‖M(ESIC (x),ESDC (x))− x‖2] (2)

To split x into its two constituents, we utilize two discrim-
inator networks denoted as DSDC (·) and DSIC (·). We require
both discriminators to learn to predict, in a supervised way,
the subject to whom the input is related and to achieve
maximum certainty about the prediction. Hence, the classes

predicted by the discriminators are subject IDs. However,
differently from DSDC (·), DSIC (·) establishes a mini-max
game with ESIC (·). That is, ESIC (·) tries to confuse DSIC (·) by
outputting information such that it is impossible for DSIC (·)
to predict which subject the information is related to, while
DSIC (·) does its best to learn to distinguish between subjects
in its input. This mini-max game is employedwith adversarial
training. Before detailing how the weights of the networks
are learned with adversarial training, let us define the cross-
entropy and entropy loss functions for subject classification,
respectively LCES and LH.

LCES(O,P) = E
x∼px

[
N∑
i=1

ui log(Oi(P(x)))] (3)

where N is the number of subjects in the training data, ui
and Oi(P(x)) are the label and the probability prediction for
subject i given by a function O(·) to a transformation P(x) of
x, respectively.

LH(O,P) = E
x∼px

[H (O(P(x)))] (4)

where H (·) is the Shannon entropy function.
From these functions, the weights of ESIC (·) and DSIC (·)

(Eq. 5 and Eq. 6) are learned in an adversarial approach as
in the vanilla GANs [6], with the exception that the concept
of source and target domains is not valid here. Instead, each
subject represents a domain and ESIC (·) learns to map differ-
ent domains (subjects) into a common domain as in categor-
ical GANs [30]. Note that the ESIC (·) and DSIC (·) networks
represent respectively the generator and the discriminator in
the common GANs scheme. In our notation, the weights of
a network O are expressed as θO and the asterisk as in θ∗O
expresses the optimal values for θO.

θ∗ESIC = argmin
θESIC

λRELRECONS − λHELH(DSIC ,ESIC ) (5)

VOLUME 8, 2020 90545



C. F. Souza Leite, Y. Xiao: Improving Cross-Subject Activity Recognition via Adversarial Learning

θ∗DSIC = argmin
θDSIC

λCELCES(DSIC ,ESIC )

+ λHDLH(DSIC ,ESIC ) (6)

where λRE , λHE , λCE and λHD are positive real-valued con-
stants.

The weights of ESDC (·) and DSDC (·) are given similarly
(Eq. 7 and Eq. 8), however there isn’t a mini-max game
between these two networks - which is seen by the positive
sign before LAH in Eq. 7.

θ∗ESDC = argmin
θESDC

λRELRECONS + λHELH(DSDC ,ESDC )

(7)

θ∗DSDC = argmin
θDSDC

λCELCES(DSDC ,ESDC )

+ λHDLH(DSDC ,ESDC ) (8)

Finally, the optimal weights of the merger network (Eq. 9)
are simply given as the result of the minimization of the
reconstruction loss function. Figure 2 illustrates the scheme
of the generation of artificial subject variability.

θ∗M = argmin
θM

LRECONS (9)

B. THE CLASSIFIER
We indicate as F(·) and C(·) as the feature extraction and
the classification layers, respectively, of the activity classi-
fier. First, let us the define the cross-entropy function of the
activity classification LCL.

LCL = E
x∼px

[
K∑
i=1

yi(λT log(Ci(x))+ λA log(Ci(A(x, η))))]

(10)

where K is the number of activity classes, yi is the label for
class i of the labeled sample x, and λA and λT are positive
real-valued constants that weigh the importance of correctly
classifying the original and the artificial data, respectively.
Notice that the loss function includes both real data x and
artificial data A(x, η).
The optimal weights of the classification layers (Eq. 11)

can be promptly defined as those which minimizeLCL. Since
the feature extraction layers F(·) are required to learn subject-
independent features, we employ a third discriminator DSIF (·)
whose goal is to play a mini-max game with the feature
extraction layers similar to the case of ESIC (·) and DSIC (·).
Hence, the optimal weights of F(·) and DSIF (·) are expressed
in Eq. 12 and Eq. 13, respectively. Figure 3 illustrates the
scheme involving the activity classifier.

θ∗C = argmin
θC

LCL (11)

θ∗DSIF = argmin
θDSIF

λCELACE(DSIF ,F)+ λHDLAH(DSIF ,F)

(12)
θ∗F = argmin

θF

λCLLCL − λHFLAH(DSIF ,F) (13)

where λCL and λHF are positive real-valued constants.

FIGURE 3. The activity classifier.

It should be noted that once the training has been
completed, all networks, except for the feature extraction and
classification layers, can be discarded as they only served
the purpose of assisting the activity classifier in obtain-
ing robustness against cross-subject performance degrada-
tion. Furthermore, we explicitly differentiate between the
extracted subject-independent characteristics (the output of
ESIC (·)) and the subject-independent features (the output of
F(·)). The reason for this is that the loss functions for learning
ESIC (·) and F(·) differ, hence it is clearly not expected that
ESIC (·) = F(·). The overall step-by-step algorithm is detailed
in Algorithm 1.We used a fixed number of epochs as the con-
vergence criteria for the training of the networks. To improve
the stability of the adversarial training, we have forced Lip-
schitz continuity through spectral normalization [18] on all
networks except for the activity classifier.

Note that there isn’t any restriction concerning the structure
of the activity classifier. This is the versatility of our method.
As a matter of fact, in Section V, we apply our method with
two different activity classifiers: a CNN-LSTM baseline and
InnoHAR [36].

IV. DATASETS
A. THE USED DATASETS
1) HARD
We collected three different datasets - namely HARD,
HARD2 and HARD3 - of hand activities reproducing an ele-
vator maintenance process. We asked participants to perform
7 different activities: 1) press buttons, 2) unplug the elevator
cables, 3) plug the elevator cables back in, 4) remove the
panel’s button, 5) insert the buttons on the panel, 6) use a
screwdriver to loosen and tighten screws in the panel and
7) use a hammer with the purpose of only mimicking the
movement of hitting an object. Moreover, the null class is
also considered, resulting in 8 different classes. Each partic-
ipant took roughly 15 minutes to perform all the requested
activities. The first setup (i.e. HARD) uses flex sensors on all
fingers of both hands, thumb pressure sensors on both hands,
and accelerometers on the back on each hand. The data were
recorded at 25Hz with 19 different subjects. In the second
setup (HARD2), gyroscopes on the back of each hand were
used in addition to those sensors of the first setup, however,
now the data were recorded at a sampling rate of 16.67Hz
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Algorithm 1 Training of Our Method
Load training data DTRAIN
Create networks F ,C , ESIC , ESDC , DSIC , DSDC ,M , and DSIF
Define λT , λA, λCL , λCE , λHD, λHF , λHE , and λRE
while not converged do

for all xtrain in DTRAIN do
Compute gradients of
LRECONS,LH(DSIC ,ESIC ),LCES(DSIC ,ESIC ),
LH(DSDC ,ESDC ), LCES(DSDC ,ESDC )
Perform optimization step on
θESIC , θDSIC , θESDC , θDSDC , θM

end
end
while not converged do

for all xtrain in DTRAIN do
Sample random noise η
Compute A(xtrain, η)
Compute gradients of
LCL,LACE(DSIF ,F),LAH(DSIF ,F)
Perform optimization step on θF, θC, and θDSIF

end
end

with 9 subjects. The last setup (HARD3) was only recorded
with 4 subjects using accelerometers on each hand at a rate
of 104Hz.

2) PAMAP2
The PAMAP2 dataset [29] includes data collected from a
heart monitor and three IMUs attached to the chest, hand, and
ankle of the subject, respectively. There are in total 18 differ-
ent physical activities performed by 9 different participants,
as well as transient activities labeled as the null class.

Out of the 18 activities, 6 are rarely present in the data.
To avoid having a heavily imbalanced dataset and follow-
ing previous works [7], only the remaining 12 activities are
considered in our experiments: lying quietly, sitting, stand-
ing, ironing, vacuum cleaning, ascending stairs, descending
stairs, walking, Nordic walking, bicycling, running, and rope
jumping. Furthermore, the sampling rate is reduced from
100Hz to 33.3Hz (higher sampling rates than 33.3Hz do not
show any improvement in the performance, but add further
computational cost and memory footprint), and the missing
values present in the raw data (reported as NaN values),
as well as data originated by transient activities, are discarded.

3) OPPORTUNITY
This dataset was recorded from 4 participants with 23 body-
worn sensors. It incorporates 18 domestic activities: cleaning
a table, opening/closing the fridge, opening/closing the dish-
washer, opening/closing 3 different drawers, opening/closing
2 different doors, toggling lights on and off, and drink-
ing from a standing and sitting position. The sampling fre-
quency was set to 30Hz. When running the experiments,

FIGURE 4. Tasks used in the HARD datasets.

we considered sensory readings (as in [7]) from the upper
limbs, the back, and both feet.

4) DAPHNET
The Daphnet [1] dataset uses three wearable accelerometers
placed on the ankle, thigh, and trunk of eight Parkinson’s dis-
ease patients to detect freezing of gait (FOG). FOG is a condi-
tion that causes sudden impediments of walking elevating the
risk of falls. The Daphnet data was recorded during various
walking tasks of 10 different participants and have three dif-
ferent annotations: 1) transient activities (which are discarded
here), 2) freezing of gait, and 3) normal movements. The
data were recorded with a sampling rate of 64Hz, however,
we downsample it to 32Hz by decimation and discard the
transient activities, following [40].

B. DATA PRE-PROCESSING
As a pre-processing step, all the data is normalized to zero
mean and unit variance. We choose a sliding window of
approximately 2.5 seconds for the HARD, HARD2 and
HARD3 datasets, with 50% of overlapping. Following
other works [8], [26], [40], the PAMAP2 and Daphnet
datasets have, respectively, a window size of approximately
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TABLE 2. Network architectures. The Rectified Linear Unit (ReLU) was
used as activation function after the CNN layers and the first
fully-connected (FC) layer in the DSIC , DSDC , DSFI , and C networks.
In these networks, the second FC layer contains the same number of
neurons as the number of classes and is followed by the softmax
function. The convolutional kernel for all CNN layers was set to 3 × 3,
whereas the max-pooling kernel size was 2 × 2. The number of filters in
the three CNN layers of F, ESIC , ESDC networks are, respectively, 8, 16, and
32. In the three CNN layers of DSIC , DSDC , DSFI , the number of filters are
8, 4, and 2, respectively. 16, 8 and 1 are the number of filters in the
transposed CNN layers of the M network.

5.12 seconds and one second with 78% and 50% of overlap.
Following [8], the sliding window size for the Opportunity
dataset was set to 1 second with 50% of overlap. The label
for each sliding window corresponds to the activity whose
duration occupies the largest percentage of the window.

V. EVALUATION
We implemented the workflow illustrated in Figure 1, and
will present the experimental setup and results of each step
in this section. The experiment contains two parts. The first
part focuses on the evaluation of classification performance
and its influencing factors without applying our proposed
method - i.e. without using artificially generated training
data and without requiring the feature extraction layers to
learn subject-independent features. The second part applies
our novel method and evaluates its effectiveness in improv-
ing cross-subject performance. In both parts, we choose the
mean (over all classes) F1-score as a performance metric
and calculate it following Eq. 14. In cases of imbalanced
class distribution, a common case in HAR, the mean F1-score
can prove particularly more meaningful than the accuracy
metric [26].

F1 =
1
K

K∑
i=1

2TPi
2TPi + FPi + FNi

, (14)

where TPi, FPi and FNi represent the number of true posi-
tives, false positives and false negatives of a class i, respec-
tively. The number of classes is given by K .

A. EXPERIMENTAL SETUP
The network architectures are described in Table 2. Note
that the activity classifier (composed of the feature extrac-
tion layers F and the classification layers C) follows a
CNN-LSTM architecture. This choice was influenced by its
superior performance compared to other basic networks [27].

The hyper-parameters were chosen by trial and error instead
of using any automatic hyper-parameter tuning methods
such as grid or random search for the following reasons.
Firstly, the process of hyper-parameters search requires heavy
computation. Due to limited computational resources, it is
expected to reduce the number of searches during model
training. Secondly, since the methods proposed here can eas-
ily lead to an imbalanced competition between the networks
trained in an adversarial way, we need a human in the loop to
understand the effects of each hyper-parameter and propose
meaningful values for them. In Section VI, based on our
experience in fine-tuning by trial and error, we provide a brief
guideline on how to choose sensible values for the hyper-
parameters.

All the aforementioned networks were coded in Python
3.7.4 using the TensorFlow 2.0 framework. We used an
NVIDIA Tesla V100 to run the code. To guarantee the repro-
ducibility of results, the initial seed for all random operations
was chosen to be zero. We used Adam as the optimization
algorithmwith β1 = 0.9 and β2 = 0.999. As the convergence
criteria, we used a fixed number of epochs - 50 epochs
and 150 epochs for the experiments of Section V-B and
Section V-C, respectively.

B. CLASSIFICATION WITHOUT ADVERSARIAL LEARNING
To evaluate the impact of different factors on the classifi-
cation performance, we compare the performance between
different combinations of sensor modalities, sampling rates
and numbers of subjects in the training set, respectively. The
CNN-LSTM architecture used for the tests in this section is
formed by the F and C networks shown in Table 2.

1) SELECTION OF SENSOR MODALITIES
HARD and HARD2 were collected using the smart gloves
equipped with flex sensors, accelerometer, and gyroscope.
For comparison, we tested the data collected with 7 different
configurations: 1) flex sensors only, 2) accelerometer only,
3) gyroscope only, 4) flex sensors and accelerometer, 5) flex
sensors and gyroscope, 6) accelerometer and gyroscope, and
7) flex sensors, accelerometer and gyroscope.

The effect of each sensor is measured in both cross-subject
and same-subject scenarios. In the cross-subject scenario, one
random subject was chosen to compose the validation set and
another one for the test set. The data from the remaining
subjects formed the training set - that is, 17 and 6 sub-
jects, respectively, for the training set of the HARD and the
HARD2. In the same-subject scenario, the entire dataset was
randomly divided into training (60%), validation (20%) and
test (20%) sets. For both scenarios and for each different
configuration of sensor modality, we performed six different
experiments with varying subjects in the training, validation
and test sets. The results are averaged over these six runs of
tests.

In the cross-subject scenario, as shown in Figure 5,
the accelerometer readings are more informative than those
of the flex sensor or the gyroscope. The significantly low
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FIGURE 5. Violin plots of the effects of accelerometers, gyroscopes and flex sensors in the performance of classification models of
hand activities.

FIGURE 6. The cross-subject performance increase with the number of
subjects in the training set .

performance of the flex sensors can be attributed to the
fact that there exists a huge variability in the ways the sub-
jects move their fingers to perform a certain activity. Also,
we have noticed that during the data collection sessions,
the flex sensors inside the gloves can slide along the finger,
thus constantly changing its position. However, in the same-
subject scenario, the flex sensors can be as informative as the
accelerometer.

Between Figure 5a and Figure 5b, there is an indication of
a trade-off between the cross-subject and same-subject per-
formance. In the cross-subject scenario, with more subjects
in the training set, the classification model becomes more
generalized to maintain high performance across subjects.
However, in the same-subject scenario, training on a large
number of subjects harms the performance. As the number of
subjects in the training set increases, the extracted features of
the deep learning model become more subject-independent.
This is desired when our goal is to have a model that

generalizes better when fed with data from a new subject.
However, the loss of subject-specific features makes it more
difficult for the classification layers to make correct predic-
tions on unseen data of the subjects present on the training
set.

2) THE EFFECT OF THE NUMBER OF SUBJECTS IN TRAINING
SET
Using the CNN-LSTM classifier architecture, we varied the
number of subjects in the training set of the HARD, HARD2,
PAMAP2 and Daphnet datasets, while keeping one subject
in the validation set and a different one in the test set. For
each dataset and for each number of subjects in the training
set, we performed 5 runs. Therefore, 5 different subjects
were present in the validation and test sets considering all
the runs. In each run, the training, validation and test sets
were randomly generated. Figure 6 shows the evolution of
the mean F1-scores as the number of subjects in the training
set grows.

As we increase the number of activities, the addition of
a subject in the training set is likely to impact more the
performance. This can be explained as follows. The more
activities we desire to classify, the higher the chances of
having activities that can be performed in rather different
ways by different subjects. Therefore, to learn features help-
ful in classifying activities irrespective of the subject, the deep
learning classifier needs to be trained on subject-rich data.
As an example, when we vary the number of subjects from
1 to 5 in the training set, for each additional subject included,
the Daphnet dataset (solely 2 activities included) reports an
average F1-score increase of 1.3%, whereas the PAMAP2
(including 12 activities) shows growth of 6.1%. In all cases,
it is noticed an ever slower growth in performance - i.e.
saturation - as the number of subjects is increased.
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FIGURE 7. The impact of the sampling rate on the F1-scores.

3) THE EFFECT OF THE SAMPLING RATE
To evaluate the effect of the sampling rates of sensor readings
on the classification performance, we downsampled the data
from the PAMAP2 and HARD3 - both recorded originally
at 100Hz - to various sampling rates while maintaining the
same window size (5.12 and 2.5 seconds, respectively, for
the PAMAP2 and HARD3 datasets) and overlapping per-
centage (78% and 50% for, respectively, the PAMAP2 and
HARD3 datasets). Subjects 5 and 6 form the validation and
test sets, respectively, for the PAMAP2 dataset. This is a
common choice of subjects in the literature [7], [8], [26], [37],
[40]. Decimation was used as the downsampling method. The
CNN-LSTM classifier is also used here.

From Figure 7, in the range of 100-10Hz, we only observe
very small and random variations in the performance of the
classifier. This indicates that, for the considered activities,
it is unnecessary to sample data at rates above 10Hz (when
the maximum sampling rate available is 100Hz). While there
isn’t any appreciable performance variation in the 100-10Hz
range, the elapsed time for performing a forward and a
backward pass on the network is, respectively, roughly 7x
and 3.5x longer at 100Hz than at 10Hz. It is also highly
dubious that, for these activities, a sampling rate in the range
of 100-1000Hz would provide any benefit in terms of predic-
tion performance.

C. CROSS-SUBJECT PERFORMANCE WITH ADVERSARIAL
LEARNING
In the evaluation of our method for cross-subject perfor-
mance improvement, we utilized four datasets: Opportunity,
HARD, HARD2, and PAMAP2. The Daphnet dataset was
discarded. As discussed earlier, the Daphnet dataset includes
only 2 very simple activities and, according to the experi-
ments of Section V-B2, it did not exhibit appreciable cross-
subject performance degradation. Additionally to having a
CNN-LSTM network as the activity classifier, we also per-
formed tests having InnoHAR [36] - composed of inception
layers followed by GRU layers - as the activity classifier
since it has exhibited state-of-the-art performance in HAR.
The goal is to compare the performance of each of these two

TABLE 3. Number of subjects in each dataset.

activity classifiers with and without our adversarial learning
method.

Denoting n as the number of subjects in a particular dataset,
we have performed n different experiments for the dataset.
Each experiment contains a different subject in the test set.
The same is valid for the validation set. Therefore, the training
set is always composed of n − 2 subjects. Table 3 lists
the number of subjects for each dataset. The performance
of all experiments for a particular dataset is then averaged.
We remind that our method does not utilize any data from
the validation or test set for training. Table 4 presents the
results of all the experiments for all the considered datasets.
The performances for DeepConvLSTM [26] and the LSTM
with Uniqueness Attention [41] are also reported. However,
these classifiers have not been used with our method since
overall they do not perform as good as InnoHAR, which is
already being combined with our method.

We were able to obtain an average improvement of 3.41%
when utilizing our method combined with either the
CNN-LSTM or the InnoHAR classifier. We estimate that
such an improvement may be equivalent to adding 2-6 sub-
jects to the training set. We emphasize that this performance
gain was achieved without utilizing any data from subjects
belonging to the test set. Domain adaptation techniques may
achieve higher improvements in terms of performance. How-
ever, they require unlabeled or partially labeled data from
subjects of the test set, which signifies additional burden in
collecting and partially labeling data. Quantifying the dif-
ference in improvement between our method and domain
adaptation methods is a topic for future research.

Our CNN-LSTM classifier has 2 orders of magnitude
fewer parameters and is 1 order of magnitude computation-
ally lighter compared to InnoHAR. Therefore, our method is
able to provide gains in performance comparable to having
a more complex network architecture. As an example, for
the PAMAP2 case, our CNN-LSTM classifier achieved even
significantly higher performance than InnoHAR when used
with our adversarial learning method.

We hypothesize that 4 different factors can determine the
performance gain for a certain dataset:

1) The nature of the activities in the dataset. Different
activities present distinct levels of variability across
subjects. In general, activities of higher complexity -
e.g. preparing a sandwich - allow for a greater level
of variation across subjects than simpler activities as
pressing a button. The PAMAP2 dataset includes activi-
ties of higher complexity compared to the other datasets
used in this work. As a matter of fact, we believe this
is the main reason for the significantly higher perfor-
mance gain observed with respect to the other datasets.
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TABLE 4. Results on the classification performance. Abbreviations:
OPP - Opportunity, PA. - PAMAP2.

2) The number of sensors. Decoupling subject-dependent
and subject-independent characteristics becomes
harder when the number of sensors increases, since the
data becomes more complex to learn from.

3) The amount of data per subject. Higher amounts of
data per subject help in the learning process of subject-
dependent and subject-independent characteristics.

4) The number of subjects in the training set. The afore-
mentioned learning process is negatively affected when
the number of subjects is scarce. On the other hand,
the purpose of our method is to help the activity clas-
sifier in learning subject-independent features without
resorting to having an exceedingly high number of
subjects. For the HARD dataset - with 19 subjects -
the performance gain is slightly smaller than for the
HARD2 dataset - with 8 subjects - even though both
datasets have the same activities and a similar number
of sensors and amount of data per subject.

With respect to the classifier, the CNN-LSTM classifier
showed a slightly higher performance gain (4.34%) compared
to the InnoHAR classifier (2.48%). We speculate that the
higher dimensionality of the features in the activity classifier
leads to a harder adversarial learning process between the
feature extraction layers of the classifier and the subject-
independent features discriminator. In computer vision, this
is equivalent to the limitation of GANs in generating high-
resolution images and is a well-known open problem [11].

VI. DISCUSSION
Based on the experiments carried out in this work, we sum-
marize the practical guideline for sensor-based HAR. Our
adversarial learning method, along with its limitations and
possible areas for future work, is also discussed.

A. PRACTICAL GUIDELINE
We have seen that among flex sensors, gyroscopes, and
accelerometers, the latter ones are more recommended
for implementing sensor-based HAR since they pro-
vide more helpful and less subject-dependent information
that led to considerably higher classification scores in

cross-subject scenarios. Gyroscopes, when used with
accelerometers, can lead to significantly better results in both
cross and same-subject cases, however, using gyroscopes by
themselves is not recommended. The use of the flex sensors
is not appropriate for cross-subject scenarios, as these sensors
extract quite subject-variant data. We only advise using flex
sensors in combination with accelerometers and gyroscopes
in a same-subject case.

We have seen that the number of subjects to include in
a training dataset depends on how much the activities we
want to classify can differ from one subject to the other.
We recommend using approximately 5 different subjects to
compose the training dataset in sensor-based HAR, as we
have seen that empirically this is a number that balances the
time-consuming task of data collection and labeling and the
performance scores in cross-subject scenarios.

Finally, when the available sampling rate does not exceed
100Hz, a choice of 15Hz keeps both data transmission and
processing times at more suitable values for real-time imple-
mentation of HAR without any degradation in the classi-
fication performance. We have not studied the effects of a
sampling rate above 100Hz. It is possible that, for instance,
in case one desires to recognize activities directly related to
the use of highly vibrating machines (e.g. hairdryer or elec-
tric screwdriver), sampling at lower than 100Hz may not be
enough to correctly distinguish between activities. On the
other hand, the trade-off between transmission delays and
sampling rate also needs to be taken into account in case
of real-time HAR. Future work could revolve around the
inclusion of other modalities of sensors as sEMG, as well as
the effect of the sampling rate in activities related to machine
operation.

B. THE ADVERSARIAL LEARNING METHOD FOR HAR
Regardless of which sensor modalities are present in the
data, our adversarial learning method was able to provide
performance improvements in all cases, especially for the
PAMAP2 dataset. The duration of one epoch of training using
our method is approximately twice as much as solely train-
ing using the activity classifier. Considering the PAMAP2,
the training duration utilizing 150 epochs and run on an
NVIDIA Tesla V100 lasted for approximately 4.2 hours.
Training only the activity classifier for 50 epochs lasted for
roughly 42minutes on the sameGPU. This is acceptable since
the duration of the training represents only a small fraction
of the total time taken to collect, label, and prepare the data
for training. Most importantly, the inference time is never
affected since all other neural networks, except for the activity
classifier (networks F and C), are discarded. Also, there isn’t
any reason to suspect that the practical guideline detailed
previously doesn’t hold true when applying our method.

Our method utilizes 8 networks and 8 real-valued con-
stants. To reduce time and resource-consuming efforts
associated with the search for optimal hyper-parameters,
we have compiled a guide (Table 5) based on all our experi-
ments. It should be noted that the hyper-parameters that led to
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TABLE 5. Recommended values for the hyper-parameters of our
proposed method.

the best validation performance in one dataset might not serve
to a different dataset. Therefore, even though this guide is
based on experiments with diverse datasets, its only purpose
is to serve as a starting point.

Our fine-tuning by trial and error followed the principle
of maintaining a balanced adversarial competition between
networks and we always used the performance on the vali-
dation set to make comparisons between choices of hyper-
parameters. We observed that setting the learning rates of the
networks DSIC and DSIF to lower values compared to those
of the F and ESIC networks resulted in better performance.
This is due to the fact that the first group of networks has
a simpler task than the latter group. Starting with a lower
value for the magnitude of the noise and gradually increasing
it - until a performance drop became evident - also proved
to be a good practice. It was also noticed that assigning
slightly lower values for λCE and λHD compared to λHE and
λHF produced better results. However, we are unsure about
the reasons for this. These relations between the mentioned
parameters showed to be consistent across the datasets used.
Concerning the parameters λRE and λA, we did not observe
consistent relations. Nevertheless, we were able to determine
an appropriate interval for each of them.

As a way to generate artificial subject variability, we have
injected noise into the subject-dependent characteristics
before the reconstruction. It is reasonable to conjecture that,
in some cases, this can result in synthetic data with unrealisti-
cally fabricated subject variability. As future work, we would
like to unravel, at least to some extent, the black-box nature
of this process in order to obtain artificial data that more
faithfully represent the reality. Furthermore, the performance
obtained in the test set is sensitive to the hyper-parameters
used during the training phase. As future work, an automatic
search for sensible hyper-parameters - can be researched.

VII. RELATED WORK
A. DOMAIN ADAPTATION
In [2], the authors used shallow DA approaches to bridge
the domain gaps across people’s age, sensor placement and

the environment in HAR. In some cases, they achieved a
significant increase in performance ranging between 8% and
12%. In other cases, however, the DA approaches reduced the
performance. Their experiments were conducted with public
datasets as PAMAP2.

In the work ofWang et al. [33], the authors developed a DA
method for different scenarios: adaptation between similar
body parts on the same person, different body parts on the
same person, and similar body parts on different people. Their
method was evaluated with public datasets, as PAMAP2 and
OPPORTUNITY, against six common alternatives perform-
ing on average better.

Ye [38], to address the scarcity of labeled data in a certain
dataset, proposed a method to leverages labeled data from
different domains (in this case, datasets), providing a signifi-
cant improvement on the performance of activity recognition
models even when only a small fraction of annotated data of
the target domain is available.

In [14], Khan et al. performed DA in HAR in cross-device
(smartphone to smartwatch and vice-versa) and cross-subject
scenarios. Their method - named HDCNN - consists of first
training a deep learning model on the labeled source domain
data and then adapting it to the unlabeled target domain. In the
adaptation, the authors proposed to minimize the Kullback-
Leibler divergence between the weights of the source domain
model and those of the target domain.

In [10], the authors proposed a device-free HAR system
that uses adversarial DA to bridge the gap between differ-
ent domains, each of which representing different physical
environments and different groups of subjects. Their solution
consists of feature extraction layers that are trained to output
environment and subject-independent information.

The aforementioned works present two unaddressed
issues: 1) during training, they need to utilize data from
subjects onwhich theHAR algorithmwill be tested (i.e. target
domain data), which results in an additional burden even if
their methods do not require such data to be labeled; and
2) a different model must be trained for every single or group
of test subjects. In [10], even if the feature extraction layers
are trained to remove subject-specific information, in prac-
tice, they are still limited to cut out only subject-specific
characteristics seen in the training data. Therefore, it doesn’t
completely solve the problem and still leaves room for
improvement.

In our work, we design a HAR scheme that 1) removes
the need for utilizing any data from the target domain during
training and 2) aims at training the activity classifier to ignore
subject variability present not only in the training data but also
artificially generated subject variability that is never seen in
the training data.

B. DATA AUGMENTATION
Wang et al. [32] used vanilla GANs to artificially generate
data as a data augmentation framework for HAR. The use
of simple vanilla GANs present difficulties in learning to
generate data with rich subject variability since the training
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is performed in such a way that the artificial data exhibit the
same data distribution as the real data from the training set.
Therefore, we don’t find the data generation method of [32]
appropriate for creating artificial subject variability.

Erol et al. [5] also utilized GANs to generate synthetic
data. However, instead of the vanilla GAN approach, they
conditioned the generator to class labels and train the dis-
criminator to predict the class of the synthetic data given by
the generator. With their own dataset, the authors achieved an
improvement of approximately 3% when training the activity
classifier with both real and synthetic data. Their approach is
not compared with the one by Wang et al. [32]. For the same
reason as the previously mentioned work, this one cannot be
used to generate data from synthetic subjects.

Rashid and Louis [28] proposed four distinct data augmen-
tation methods for time-series data: scaling, rotation, time-
warping, and jittering. These methods are limited to IMU
sensors. In scaling, the magnitude of the raw data is changed
while preserving the label. Rotation applies artificial changes
in the data that mimic different orientations of the sensors,
considering that the labels should be invariant to such trans-
formations. Time-warping alters how fast or slow an activity
is performed. Finally, jittering simulates random additive sen-
sor noise to increase the robustness of the classifier to small
variations. Applied to their own dataset, the authors were able
to achieve an accuracy improvement of at least 10%. While
these techniques may help in reducing cross-subject perfor-
mance degradation, it was not designed for such purpose.
The authors did not claim their methods address cross-subject
performance degradation nor did they perform experiments to
evaluate their potential in addressing this issue.

To the best of our knowledge, our work is the first
1) to utilize data augmentation to explicitly increase subject
variability in the training and 2) to perform experiments to
evaluate this data augmentation scheme in addressing the
cross-subject performance degradation.

VIII. CONCLUSIONS
In this paper, we have drawn the attention to an understud-
ied yet a crucial challenge in HAR: cross-subject perfor-
mance degradation. We have then proposed a novel method
for addressing this adverse variance of classification perfor-
mance seen across different subjects in HAR. As a result
of various experiments, we have demonstrated its potential
in providing appreciable performance gains that reduce the
need for larger data collection and annotation procedures with
various subjects, as it is common in HAR. With additional
experiments related to sensor modalities, sampling rates and
the number of subjects in the training set, we have proposed
a practical guideline for implementing more efficient and
better-performing sensor-based HAR solutions.
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