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We have investigated the structural properties, vibrational spectra, and electronic band 
structures of crystalline cellulose allomorphs and chemically modified cellulose with 
quantum chemical methods. The electronic band gaps of cellulose allomorphs Iα, Iβ, II, and 
III1 lie in the range of 5.0 to 5.6 eV. We show that extra states can be created in the band gap 
of cellulose by chemical modification. Experimentally feasible amidation of cellulose Iβ with 
aniline or 4,4’ diaminoazobenzene creates narrow bands in the cellulose band gap, reducing 
the difference between the occupied and empty states to 4.0 or 1.8 eV, respectively. The 
predicted states 4,4’diaminoazobenzene-modified cellulose Iβ fall in the visible spectrum, 
suggesting uses in optical applications. 

Keywords: cellulose; electronic properties; band structure; density of states; quantum 
chemistry; density functional calculations  

 

1. Introduction 

The increasing environmental, societal, and economical awareness have stimulated research 
towards the utilization and recovery of renewable bioenergy sources and environment-
friendly functional materials. Cellulosic biomass is one of the material solutions when aiming 
towards more sustainable functional materials. Cellulose, the most abundant organic 
substance on earth, is found in plants, animals (tunicates), bacteria, algae, and fungi (Habibi, 
Y., Lucia, L. A., & Rojas, O. J.; Heinze, 2015; Mohanty, A. K., Misra, M., & Hinrichsen, G., 
2000). However, the main source of cellulose is plant fiber: wood, bamboo, cotton, hemp, 
flax, jute, and other plant-based materials. The cell wall of all plants is mainly composed of 
cellulose, and it provides tensile strength, rigidity, and structure to the cell wall. In addition to 
being abundant, other properties such as nontoxicity, renewability, flexibility, 
biodegradability, light weight, transparency, and processability make cellulose and its 
derivatives potential materials for tackling industrial as well as environmental challenges. 
Future application areas for cellulose are envisaged in bioenergy, biotechnology, bio-
composites, photonics and, potentially, in optoelectronics (Berglund, 2005; Habibi et al., 
2010; Heinze, 2015; Ingrao et al., 2015; Mohanty et al., 2000; Nogi, M., Iwamoto, S., 
Nakagaito, A. N., & Yano, H.; Simão et al., 2015).  
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Cellulose is a linear homopolysaccharide polymer, in which β-D-anhdroglucopyranose units 
are linked by 1–4 glycosidic bonds (Fig. 1 (a)). These D-glucopyranose rings within the 
cellulose chain prefer to be in a 4C1 chair conformation, with all three (primary at C6 and two 
secondary at C2 and C3) hydroxyl groups in an equatorial positions and all hydrogen atoms 
in axial positions. The two ends of the cellulose chain are chemically different, the non-
reducing end having an anomeric carbon bonded with glycosidic bonds while the reducing 
end has a D-glucopyranose unit in equilibrium with a cyclic hemiacetal. The three most 
probable conformations of hydroxymethyl groups about the C5-C6 bond are gauche-gauche 
(gg), trans-gauche (tg) and gauche-trans (gt). Newman projections of all three conformations 
are shown in Fig. 1(b) (Perez & Mazeau, 2005). 

 
Fig. 1. a) Molecular structure of cellulose; b) 4C1 conformation of a D-glucopyranose ring and 
Newman projection of three most probable conformations of the hydroxymethyl groups in cellulose. 
Here, g is abbreviation of gauche (160°) and t is abbreviation of trans (180°) representing qualitatively 
the value of a dihedral angle. The first and second characters indicate the angle of O6-C6-C5-O5 moiety 
and O6-C6-C5-C4 moiety, respectively.  

Important characteristics of cellulose are the crystallinity and the crystal symmetries. Six 
crystalline forms of cellulose have been identified. The native cellulose I is found in two 
crystalline forms, Iα and Iβ, which both are usually co-present in cellulose. The ratio of Iα and 
Iβ within the sample depends on origin of the sample. Cellulose Iα is predominantly available 
in algae and bacterial cellulose, while cellulose Iβ is predominantly available in tunicin and 
higher plants. Nishiyama et al. used X-ray and neutron diffraction techniques to investigate 
the crystal structure of cellulose Iα and Iβ (Nishiyama, Y., Langan, P., & Chanzy, H., 2002; 
Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P., 2003).  

Cellulose Iα is triclinic (P1) and the unit cell contains one cellulose chain with all glucosyl 
linkage and hydroxymethyl groups being identical. Iβ is monoclinic (P21) with two 
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conformationally distinct parallel chains (corner and center chains). In both cellulose Iα and 
Iβ, all hydroxymethyl groups adopt trans-gauche conformation, and the structure contains 
sheets of cellulose chains stacked in a parallel-up fashion. The trans-gauche conformation 
allows the formation of intrachain hydrogen bonds and hydrogen bonds between the cellulose 
chains within a sheet. There are no O-H…O hydrogen bonds between the sheets and the 
sheets in Iα and Iβ are held together by only weak C-H…O interactions and van der Waals 
interactions. The main differences between Iα and Iβ structures are in the conformation of 
anhydroglucose residue, the glucosyl linkage, and their hydrogen bond network.  

Other crystalline forms of cellulose, namely, II, III1, III2, IV1, and IV2 are synthesized 
through chemical processing of natural cellulose I.  Cellulose II can be synthesized from 
cellulose I by two different processes: regeneration and mercerization (Habibi et al., 2010). In 
the regeneration process, cellulose I is dissolved in an appropriate solvent (heavy-metal-
amine complexes), then reprecipitated in water.  Mercerization process includes swelling of 
cellulose I in concentrated aqueous NaOH and cellulose II is produced after removing the 
swelling agent.  Cellulose II has a monoclinic P21 crystal structure with two antiparallel 
chains having different conformations (Langan, P., Nishiyama, Y., & Chanzy, H., 2001). 
Unlike cellulose I, in cellulose II the hydroxymethyl groups adopt gauche-trans 
conformation. Therefore, in cellulose II there is only one intrachain hydrogen bond between 
secondary OH at C3 and ring oxygen of another anhydroglucose residue (O3-H...O5), while 
in cellulose I, there are two intrachain hydrogen bonds O3-H...O5 and between OH at C2 and 
O at C6 (O2-H…O6). Cellulose II shows hydrogen bonds between the sheets. 

Cellulose III1 and III2 can be obtained by exposing cellulose I and II in gas/liquid ammonia or 
various amines, respectively. Cellulose III1 is monoclinic (P21) with one chain in the unit 
cell. In cellulose III1, chains are parallel like in cellulose I, but hydroxymethyl groups are in 
gauche-trans conformation, and the inter-sheet hydrogen-bonding is similar to cellulose II 
(Wada, M., Chanzy, H., Nishiyama, Y., & Langan, P., 2004; Wada, M., Nishiyama, Y., 
Chanzy, H., Forsyth, T., & Langan, P. 2008). The crystal structure of cellulose III2 is not 
well-established yet. Cellulose III1/III2 reverts to its parent cellulose I/II in high temperature 
and humid environment. Cellulose IV1/IV2 may be produced by heating cellulose III1/III2 up 
to 260C in glycerol (Habibi et al., 2010).    

We use quantum chemical methods to study the crystal structure, electronic properties, and 
vibrational spectra of bulk cellulose Iα, Iβ, II, and III1. The computational results are carefully 
compared to experimental data reported in the literature to find out the most suitable 
methodology to describe the structural and electronic properties of cellulose. Electronically, 
cellulose allomorphs are known to be insulators, but little is known from their actual 
electronic band structures. Our hypothesis is that crystalline cellulose can possess a 
dispersive band structure, opening the possibility to tune the electronic and optical properties 
by controlled chemical modification. We investigate the chemical modification of cellulose 
by amidation, using slab models that reproduce the electronic properties of the bulk material. 

 

2. Computational methods 

We carried out periodic density functional theory (DFT) calculations using both DFT-PBE 
generalized gradient approximation (GGA) exchange correlation functional Perdew, J. P., 
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Burke, K., & Ernzerhof, M., 1996) and DFT-PBE0 hybrid functional (Adamo & Barone, 
1999). All calculations have been performed using the CRYSTAL17 program package 
(Dovesi et al., 2018). We used Gaussian-type triple-ζ-valence plus polarization level basis set 
(TZVP) derived from the molecular def2 basis set (basis set details are available in 
Supporting Information) (Weigend & Ahlrichs, 2005). Van der Waals-type dispersion 
interactions were described using Grimme’s semiempirical DFT-D2 and DFT-D3 (zero-
damping) dispersion corrections (Grimme, 2006; Grimme, S., Antony, J., Ehrlich, S., & 
Krieg, H., 2010). In the case of bulk cellulose, the older DFT-D2 approach performs better in 
comparison to DFT-D3 when the experimental crystal structures are used as a benchmark. 
DFT-D3 underestimates the inter-sheet lattice constant by more than 4%, while DFT-D2 
yields lattice constants with error less than 2% (see Table 1 in Supporting Information for 
detailed structural information of bulk cellulose allomorphs obtained with PBE-D3, PBE0-D3 
and PBE0-D2 functionals). All calculations reported in the main paper were performed at the 
DFT-PBE-D2/TZVP level of theory.  

The structures of the studied bulk cellulose allomorphs were fully optimized within their 
respective space groups. We modelled the chemical modification of cellulose Iβ by using two 
cellulose sheets parallel to (100) plane (2D bilayer slab model). While optimizing the 
adsorbates on the cellulose Iβ bilayer slab model, the bottom cellulose sheet was kept fixed, 
while the top layer adsorbate was optimized freely. The default CRYSTAL17 convergence 
criteria were used in the structural optimizations. Coulomb and exchange integral tolerances 
were set to tight values of 8, 8, 8, 8, and 16. The reciprocal space was sampled with 
Monkhorst-Pack k-meshes that are reported in SI (Pack & Monkhorst, 1977). Brillouin zone 
paths for the band structure diagrams were obtained from SeeK-path web service (Hinuma et 
al., 2017). 

The vibrational frequencies at the Г-point were calculated within the harmonic approximation 
by evaluating the second derivatives of the potential energy with respect to atomic positions, 
as implemented in CRYSTAL code (Pascale et al., 2004; Zicovich-Wilson et al., 2004). In 
the evaluation of Gibbs free energy, phonon q-sampling beyond Г-point was not considered. 
Infrared (IR) and Raman intensities were calculated using the Coupled Perturbed Kohn-Sham 
method implemented in CRYSTAL (Maschio, L., Kirtman, B., Rérat, M., Orlando, R., & 
Dovesi, R., 2013a, 2013b, 2013c). The vibrational spectra were interpreted by visual 
inspection of the normal modes using the Jmol program package (Jmol, 2019).  

3. Results 

3.1. Structures and energetics of bulk cellulose allomorphs.  

The optimized lattice parameters of all studied cellulose allomorphs are listed in Table 1 and 
their optimized crystal structures are illustrated in Fig. 2. For all cases, DFT-PBE with D2 
dispersion correction describes the lattice parameters very well, showing in most cases 
differences smaller than 2% in comparison to experiments. The only exception is cellulose 
III1, where the c parameter is underestimated by 3.2%. The good performance of DFT-PBE-
D2 for the cellulose allomorph structures is in line with the previous literature findings for 
allomorphs Iα and Iβ (Kubicki, J. D., Mohamed, M. N. A., & Watts, H. D., 2013). 

The cellulose Iβ allomorph shows the lowest total energy and total Gibbs free energy (at 300 
K) per cellulose chain. We define ΔΕ for each allomorph as:  
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ΔE = E(allomorph)/Z(allomorph) – E(cellulose Iβ)/Z(cellulose Iβ) (1) 

Where E(allomorph) is the total energy of a cellulose allomorph and Z(allomorph) is the 
number of cellulose chains in the unit cell. ΔG at 300 K is defined analogously to ΔE, with 
G(allomorph) being defined as  

G(allomorph) = Ee + E0 + ET + pV – TS,    (2) 

where Ee corresponds to total electronic energy, E0 is the zero-point energy, ET is thermal 
contribution to vibrational energy, p is pressure, V is volume, T is temperature, and S is 
entropy. The ΔE and ΔG values listed in Table 1 show that the consideration of Gibbs free 
energy does not change the relative stability order of the cellulose allomorphs. 

Table 1. Optimized structural parameters, indirect energy band gaps (Eg), and relative energies (ΔΕ 
and ΔG) of crystalline cellulose allomorphs Iα, Iβ, II and III1 at the DFT-PBE-D2/TZVP level of theory. 
The corresponding experimental values of the lattice parameters are reported in parentheses. The 
experimental references for cellulose allomprphs are given in the header row.  

 Iα (Nishiyama et 
al., 2003) 

Iβ (Nishiyama 
et al., 2002) 

II (Langan et al., 
2001) 

III1 (Wada et al., 
2004) 

Crystal system Triclinic Monoclinic Monoclinic Monoclinic 

Space group P1 P21 P21 P21 

a (Å)  6.03 (5.96)  7.91 (7.78)  8.01 (8.10)  4.47 (4.45)  

b (Å) 10.42 (10.40) 10.42 (10.38) 10.35 (10.31) 10.40 (10.31) 

c (Å) 6.62 (6.72) 8.15 (8.20) 9.09 (9.03) 7.60 (7.85) 

α (°) 116.9 (118.1) 90 90 90 

β (°) 114.9 (114.8) 95.6 (96.5) 111.9 (117.1) 100.6 (105.1) 

γ (°) 80.0 (80.4) 90 90 90 

Eg (eV) 5.5 5.5 5.2 5.4 

ΔΕ (kJ/mol per Z) 3.7 0 84.8 8.1 

ΔG (kJ/mol per Z) 3.8 0 74.2 7.7 

 

3.2. Electronic structure of bulk cellulose allomorphs.   

The electronic band structures and density of states of the studied cellulose allomorphs are 
shown in Fig. 3. All the studied crystalline forms of cellulose are insulators with relatively 
flat bands, indicating localized charge carriers (see Table 1 for calculated band gaps). The 
band gap of 5.5 eV predicted for both Iα and Iβ allomorph is in good agreement with previous 
DFT band gaps of 5.7 eV for Iα and 5.4 eV for Iβ (Li, Y., Lin, M., & Davenport, J. W., 2011). 
Even though the electronic bands are relatively flat, there are both valence and conduction 
bands showing some dispersion. The density of states at valence band maxima and 
conduction band minima show rather sharp features.  

Because the DFT-PBE functional is known to underestimate the band gaps of insulators and 
semiconductors, we also calculated the band gap with hybrid PBE0 functional. The computed 
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band gaps are 8.2, 8.1, 7.8, and 8.1 eV for cellulose Iα, Iβ, II, and III1, respectively. The 
optical band gap of nanofibrillated cellulose is 4.5 eV based on absorption and 
cathodoluminescence measurements(Simão et al., 2015). The band gap predicted by DFT-
PBE is much closer to the experimental value compared to DFT-PBE0. To summarize, both 
the structural and electronic properties of cellulose obtained at the DFT-PBE-D2/TZVP level 
of theory are in line with the experimental data.  

 
Fig. 2. Optimized crystal structures of cellulose allomorphs Iα, Iβ, II, and III1. Gray, red, and white 
spheres represent C, O, and H atoms, respectively. Hydrogen bonds are represented with dashed lines. 
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Fig. 3. Electronic band structures and density of states for a) cellulose Iα, b) cellulose Iβ, c) cellulose 
II, and d) cellulose III1. The top of the valence bands is at 0 eV. 

 

3.3. Infrared and Raman spectra of bulk cellulose allomorphs. 

Infrared (IR) and Raman specroscopy are powerful tools for investigating the structural 
characteristics of cellulose allomorphs. The predicted IR and Raman spectra for the studied 
cellulose allomorphs are shown in Fig. 4. A detailed assignment of the vibrational bands is 
available in Table S3 of the Supporting Information, together with comparisons to previous 
literature (Lee, C. M., Mohamed, N. M. A., Watts, H. D., Kubicki, J. D., & Kim, S. H., 2013; 
Maréchal & Chanzy, 2000). In the illustrated vibrational spectra, peaks in the lower 
wavenumber region (below 1500 cm–1) are attributed to CH bending and peaks in region 
around 2800 to 3000 cm–1 are assigned to CH stretching. Modes around 3000–3500 cm–1 are 
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attributed to OH stretching. OH vibrations in cellulose are highly coupled due to intra- and 
inter-chain hydrogen-bonding interactions. 

 
Fig. 4. a) Infrared spectra and b) Raman spectra of cellulose allomorphs Iα, Iβ, II, and III1. 

 

3.4 Geometry and electronic structure of chemically modified cellulose Iβ 

Even though the cellulose allomorphs are insulating materials with relatively large band gaps, 
chemical surface modification provides a way to tune their optoelectronic properties. Here, 
we investigate the electronic structure of pristine and chemically modified cellulose by using 
a bilayer (100) slab of the lowest energy allomorph cellulose Iβ (see Computational details). 
The electronic properties of the pristine bilayer slab model are very close to the bulk material 
(see below). This finding is in line with previous DFT-PBE calculations where it was 
observed that the surface energy and the electronic gap of cellulose Iβ (100) surface 
converged rapidly with the number of layers (Li et al., 2011). 

We modify the cellulose Iβ with aniline (C6H5NH2) and 4,4’ diaminoazobenzene (C12H12N4) 
molecules (two aniline rings joined via an azo group, N=N) to evaluate the effect of the 
chemical modification on the band structure.  
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The chemical surface modification approach adopted here is based on the experimentally 
known amidation approach of TEMPO-oxidized cellulose, illustrated in Fig. 5 (Hakalahti et 
al., 2016).  

 
Fig. 5. TEMPO-oxidation and amidation of cellulose.  

The first step is to obtain TEMPO-oxidized cellulose (Isogai, T., Yanagisawa, M., & Isogai, 
A., 2009), followed by amidation with a primary amine (here aniline or 
4,4’diaminoazobenzene). TEMPO-mediated oxidation can selectively oxidize primary 
alcohol groups of cellulose to carboxyl groups (Isogai et al., 2009) and here we only consider 
amidation at the C6 position of cellulose. A schematic representation of the chemical 
modification is shown in Fig. 6. In the case of 4,4’ diaminoazobenzene, only one of the 
amino groups forms a bond with the cellulose. Fig. 7 displays the optimized structures 
resulting from the chemical surface modification.  The amides bind to the cellulose surface 
with an angle of around 115° (C5-C6-N). For both molecules, the bond length between C6 
and N is 1.36 Å and the C=O bond between C6 and O is 1.23 Å. 

 
Fig. 6. Schematic representation of bonding of aniline molecule and (b) 4,4’ diaminoazobenzene 
molecule with C6 primary alcohol of cellulose. 
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Fig. 7.  Chemical modification of TEMPO-oxided cellulose Iβ by amidation with (a) aniline and (b) 
4,4’ diaminoazobenzene. 

 

Fig. 8 shows the electronic band structure and density of states for pristine, aniline-modified 
and 4,4’diaminoazobenzene-modified cellulose Iβ (100) bilayer slab. The band gap in pristine 
cellulose Iβ (100) bilayer slab is 5.7 eV, in line with bulk cellulose Iβ (5.5 eV). The amidation 
introduces new electronic states into the band gap of cellulose. The gap between the occupied 
and empty states is reduced to 4.0 eV or 1.8 eV when the cellulose is modified with aniline or 
4,4’diaminoazobenzene, respectively. The valence band maxima (VBM) and conduction 
band minima (CBM) of the pristine system occur at -5.81 and -0.14 eV, respectively. In the 
case of aniline, VBM and CBM occur at -5.46 and -1.5 eV, while for 4,4’diaminoazobenzene 
VBM is -4.68 and CBM is -2.82 eV.  

The atom-projected density of states in Fig. 9 illustrate clearly how the aniline and 
4,4’diaminoazobenzene introduce new states into the band gap of cellulose. In the aniline-
modified system, the lowest-energy conduction band arises from C and N atoms of the 
aniline, while the band around 4.5 eV is due to the aniline phenyl ring only. In 
4,4’diaminoazobenzene-modified system, the states around 1.8 eV and 3.3 eV are due to the 
azo group (N=N) and C6H4NH2 ring, respectively. The band structures of the modified 
cellulose indicate that the band gap of cellulose can be tuned through well-controlled 
chemical modification.  
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Fig. 8. Electronic band structure of (a) pristine, (b) aniline-modified and (c) 4,4’-diaminozaobenzene-
modified cellulose Iβ (100) bilayer slab. The top of the valence bands is at 0 eV. 
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Fig. 9. Total density of states (DOS) and atom-projected DOS for (a) aniline-modified and (b) 
4,4’diaminoazobenzene-modified cellulose Iβ (100) bilayer slab. The top of the valence bands is at 0 eV. 

 

4. Conclusion 

We have investigated the structural, electronic, and vibrational properties of cellulose 
allomorphs Iα, Iβ, II and III1 using quantum chemical methods. The electronic band structure 
calculations show crystalline cellulose to possess a dispersive band structure, opening up the 
possibility to tune the electronic and optical properties by experimentally feasible chemical 
modifications. Chemical modification of cellulose Iβ with aniline and 4,4’diaminoazobenzene 
creates states at energies of 4.0 and 1.8 eV above the valence band, respectively. These 
findings demonstrate that the optical absorption of cellulose can be tuned from ultraviolet to 
visible range with controlled amidation reactions, making nanocellulose an interesting 
material platform for photonics applications. 
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