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A B S T R A C T

Photon recollision probability p is a spectrally invariant structural parameter and a powerful tool to link canopy
optical properties at any wavelengths to model reflectance, transmittance, or absorption of vegetation canopies.
The concepts of the p-theory have been reported and examined at the shoot and canopy scales, but not yet for the
crown level. Currently, the p-value is estimated indirectly, such as converted from the spherically averaged
silhouette to total area ratio (STAR) or canopy transmittance measurements. In this work, we first validate the
theoretical considerations of the p concept at the crown level (e.g., its relationship with STAR), and then provide
the first method to directly estimate photon recollision probability using Terrestrial Laser Scanning (TLS) data.
The proposed geometric method is data-driven and avoids explicit reconstructions of tree structures. The p-value
estimated here is the average recollision probability over spatial locations. We showed that the average re-
collision probability can be interpreted as the local spherical openness on phytoelement (leaf or needle) surfaces,
which enabled a simple visibility calculation by avoiding explicit ray tracing. The developed method was tested
on synthetic crowns of needle-leaved tree species, for which the reference p-values were known. Results con-
firmed the validity of the p-STAR relationship at the crown level, and showed that p-values can be accurately
estimated from TLS point clouds with a relative root measure square error of less than 10%. This study displays
the distinct advantage of TLS in delineating detailed tree crown structures and highlights its potential in studies
of forest reflectance modeling.

1. Introduction

Physically-based remote sensing quantitatively predicts the inter-
actions between solar radiation and vegetation (Huang et al., 2007).
Two decades since its introduction, the spectral invariants theory (p-
theory) has been widely applied in modeling the interaction of short-
wave radiation with vegetation canopies (Knyazikhin et al., 1998). The
p-theory states that canopy absorption, transmittance, and reflectance
are determined only by the optical properties of foliage and spectrally
invariant structural parameters. One of these parameters, photon re-
collision probability p, is found to be closely related to the solution of
the classical three-dimensional (3D) radiative transfer equation that
models the interactions between solar radiation and vegetation ca-
nopies (Ross, 1981; Knyazikhin et al., 1998).

The p-theory is a simple but powerful tool to model the canopy
absorption, transmittance, and reflectance at any wavelength using the
structural parameter p and the phytoelement (leaf or needle) albedo
(Smolander and Stenberg, 2005; Stenberg, 2007; Rautiainen et al.,

2009). When woody elements are considered, the albedo can be ad-
justed as an average value of albedos of phytoelement and woody
elements weighted by their areas (Stenberg et al., 2013). Its usefulness,
when applied in forward model simulations, depends on how well the p-
value is related to other measurable vegetation attributes such as leaf
area index (LAI). Stenberg (2007) proposed a simple analytical formula
to calculate canopy average photon recollision probability from the
total canopy interceptance in diffuse radiation. Later, this expression
was validated by Rautiainen et al. (2009), who found a tight relation-
ship between canopy interceptance and the effective LAI using ex-
tensive empirical data measured with the LAI-2000 Plant Canopy
Analyzer. This relationship has also been integrated into the simple
semi-physical forest reflectance model (PARAS), which was successfully
used to simulate the absorption and reflectance of conifer canopies
(Rautiainen and Stenberg, 2005; Manninen and Stenberg, 2009;
Heiskanen et al., 2011; Schraik et al., 2019). So far, the p-value has
been reported and examined both theoretically and empirically at the
shoot and canopy scale (e.g., Smolander and Stenberg, 2003; Stenberg,
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2007). However, crown-level analysis remains unexplored.
The explicit estimation of photon recollision probability relies on

two entries: 3D geometric models and photon tracking, which are im-
possible to materialize in reality (Stenberg et al., 2016). Terrestrial
Laser Scanning (TLS, also known as terrestrial LiDAR), on the other
hand, is able to provide detailed structural information through point
clouds. The unique advantage of TLS for providing millimeter-level
details even inside tree crowns makes it widely used in vegetation
studies (Disney, 2019). These applications include forest inventory
(Liang et al., 2018), tree topological reconstruction (Raumonen et al.,
2013), leaf angle distribution estimation (Vicari et al., 2019b), LAI re-
trieval (Zhao et al., 2015), gap fraction assessment (Danson et al.,
2007), and radiative transfer modeling (RTM) (Calders et al., 2018).
Especially for RTM, TLS enables explicit 3D reconstructions of tree
branching structures (Lau et al., 2018), which significantly improves
the calibration and validation of EO data (Calders et al., 2018). These
applications imply a great potential of using TLS to quantify tree crown
structures. However, such a potential has not yet been explored for
estimating the photon recollision probability.

In this paper, we aim to (a) validate the theoretical considerations of
the photon recollision probability at the crown level (i.e., the re-
lationship between p and STAR), and (b) present the first method that
directly estimates the photon recollision probability from synthetic TLS
point clouds. Our method using TLS data avoids explicit geometric re-
constructions of tree structures. This is important, because individual
leaves or needles are challenging to recover. Instead, we model the
volumetric occupancies of canopies with sphere covering, which leads
to a simple calculation of spherical openness at specific viewpoints. The
proposed method in this study provides a whole new way to directly
estimate the photon recollision probability. Using realistic tree models
and TLS simulations, we quantitatively show that this method is able to
produce accurate p estimates for highly clumped needle crowns.

2. Theoretical background

The photon recollision probability p is a wavelength independent
(i.e., spectrally invariant) structural parameter. Its intuitive inter-
pretation is the probability that a photon will interact with the canopy
again after being scattered from a phytoelement (e.g., leaf or needle)
(Smolander and Stenberg, 2005).

Previous studies have shown that at canopy scale, p is able to link
the canopy albedo (s), i.e., the fraction of intercepted radiation that is
not absorbed, with the leaf or needle albedo (ω) at the specific wave-
length λ by:

=s i p
p

( ) ( ) ( )
1 ( )

,0 (1)

where i0 is the canopy interceptance defined as the fraction of inter-
cepted photons that are entering the canopy from above (Smolander
and Stenberg, 2005; Rautiainen and Stenberg, 2005). Therefore, the
amount of radiation absorbed or scattered by a canopy is determined by
the wavelength-dependent average leaf or needle albedo, canopy in-
terceptance, and the wavelength-independent structural parameter p.

The recollision probability p links the scattering properties at two
consecutive hierarchical levels of a structure (Stenberg et al., 2016). For
example, many broadleaf crowns have two structural levels consisting
of single leaves and the crown itself. A photon scattered from a flat leaf
will not interact with the same leaf again. Therefore, the overall crown
albedo at a specific wavelength can be predicted from the leaf albedo at
the same wavelength with the crown-level p-value. However, in a
conifer crown, the clumping of needles into shoot introduces an addi-
tional hierarchical level. Similarly, the recollision probability can be
defined for shoots (psh), which can be interpreted as the probability of a
photon scattered from a needle interacting with the same shoot again.
More generally, the recollision probability of a structure thus can be
decomposed into different hierarchical levels as:

= + + …+p p p p p p(1 ) (1 ) ,n n1 1 2 1 (2)

where n is the number of hierarchical levels and pi the recollision
probability of a photon that has survived from the level i− 1 (Stenberg
et al., 2016). For a specific hierarchical level i, the lower level i − 1 is
called an element.

The recollision probability of a coniferous shoot was found to be
linearly related to the spherically averaged silhouette to total area ratio
(STAR) in Monte Carlo simulations (Smolander and Stenberg, 2003).
STAR is defined as:

=STAR 1
TNA

1
4

SA( )d ,
4 (3)

where TNA is the total needle area, SA(Ω) denotes the shoot silhouette
area in direction Ω, and 4π represent all directions of the sphere. STAR
(Ω) is thus the silhouette to total area ratio in direction Ω (Oker-Blom
and Smolander, 1988). The STAR of a convex body would be 1/4 (Lang,
1991). The ratio between spherically projected shoot area to spherically
projected needle area is thus STAR4 (Smolander and Stenberg, 2003)
and is defined as the shoot shading factor (Stenberg, 1996). By as-
suming Lambertian reflectance, STAR4 can be interpreted as the
probability that a photon will escape the shoot after first interaction
(Smolander and Stenberg, 2003; Rautiainen and Stenberg, 2005).
Therefore, we have

=p STAR1 4 .sh (4)

The equality of psh and STAR1 4 is realized if the points of inter-
action are uniformly distributed over the needle surfaces of the shoot
(i.e., spatial averaging) (Smolander and Stenberg, 2003).

The theory of photon recollision probability at shoot level was
empirically tested by Rautiainen et al. (2012). They measured shoot
and needle albedo, and shoot STAR (in order to calculate p-values) for
Scots pine. The scaling effect of p-theory was thus examined. Results
confirmed that a single structural parameter STAR (i.e., linearly related
to p-value) could be used to scale the spectral albedos between a needle
and a shoot. However, what remains unclear is the validity and effec-
tiveness of the same method for scaling between shoot and crown le-
vels, especially for structurally complex and very dense crowns
(Stenberg et al., 2016).

3. Materials

Direct measurement of photon recollision probability is impossible,
as it requires the tracking of individual photons inside the tree crown
(Stenberg et al., 2016). Instead, physically realistic 3D models have
been used as inputs for ray tracing approaches to sample and simulate
the photon paths in the canopy. In this study, we created a series of
virtual trees with different characteristics and calculated reference p
values using ray tracing. Then, TLS point clouds were simulated based
on these virtual models.

3.1. 3D virtual trees

In this study, 28 virtual mesh models of Scots pine (Pinus sylvestris
L.) were created using the SpeedTree software (Interactive Data
Visualization, Inc. Lexington, SC, USA). Each needle was shaped by an
elongated triangle (Fig. 1). The average needle width was 4.1 mm, and
length was 12.2 cm (Table 1). Each shoot was assembled by a twig with
needles distributed following a phyllotactic arrangement (e.g.,
Smolander and Stenberg, 2003). For the creation of individual trees, we
simulated different crown structures in order to capture the natural
variations in tree size, leaf area, and clumping levels. Tree height
ranged from 1.05 to 28.15 m, with a mean value of 9.31 m. In average,
each tree was constructed of 281,988 needles, corresponding to 218 m2

total needle area. We intentionally created trees covering an extreme
range of STAR values (Fig. 2). The most clumped crown had a STAR of
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0.02 (i.e., a p-value of 0.92), and the least clumped crown had a STAR
of 0.19 (i.e., a p-value of 0.24). More details of individual trees can be
found in Table 1. An example tree is shown in Fig. 3a. A visualization of
all created trees can be found in Appendix A.

3.2. TLS simulation

TLS point clouds were simulated by using the open-source platform
HELIOS (Bechtold and Höfle, 2016), a software that allows the simu-
lation of various LiDAR sensors and platforms. We scanned each tree
from four scan positions using the specifications of the Riegl VZ-400
(0.3 mrad beam divergence, 0.04° angular resolution, 10 m distance
from the tree) (Fig. 4). The same grid positioning and angular resolu-
tion configurations were recommended for TLS data acquisition in
forests and were deployed by previous simulation studies as well
(Wilkes et al., 2017; Liu et al., 2019b). Point clouds obtained using 1, 2,
and 4 scans were tested in this study (Fig. 4). An exemplary TLS point
cloud with 4 scans is shown in Fig. 3c.

4. Methods

4.1. STAR calculation

For mesh models, STAR can be explicitly determined by using Eq. 3.
Specifically, the total needle area can be calculated by aggregating the
two-sided surface area of each triangle mesh. To estimate the

Fig. 1. Basic structures of a) a needle, b) a shoot (side view), and c) a shoot (top view). Shoot width is determined as the maximum dimension of top view.

Table 1
characteristics of the 28 Scots Pine trees.

TreeID Height (m) CD (m) NW (cm) NL (cm) #Needle TNA (m2) DBH (cm) STARs STARc

1 12.02 7.77 0.47 13.91 469,538 379.22 53.77 0.14 0.07
2 11.69 7.37 0.47 13.91 393,113 317.57 38.62 0.13 0.08
3 11.86 7.68 0.47 13.9 337,256 272.4 41.84 0.15 0.08
4 6.71 4.34 0.26 7.73 433,865 108.22 20.54 0.13 0.08
5 20.17 13.42 0.78 23.04 217,630 482.87 64.43 0.13 0.09
6 16.47 8.8 0.65 19.3 369,192 574.6 54.66 0.14 0.08
7 7.88 4.91 0.31 9.28 178,042 64.02 24.2 0.14 0.1
8 9.52 5.91 0.39 11.57 346,800 194.2 29.37 0.14 0.07
9 10.33 6.64 0.39 11.59 759,646 426.46 32.54 0.15 0.06
10 4.36 2.44 0.18 5.4 166,352 20.27 14.74 0.13 0.09
11 10.35 12.31 0.47 13.93 1,042,992 844.13 33.91 0.14 0.06
12 15.04 9.03 0.78 23.1 58,460 130.56 86.16 0.13 0.11
13 9.32 5.36 0.39 11.59 45,051 25.27 30 0.17 0.13
14 5 2.75 0.26 7.83 515,615 130.94 21.11 0.03 0.02
15 6.28 3.83 0.47 13.93 54,448 44.06 12.62 0.1 0.07
16 4.94 3.05 0.45 13.3 11,845 9.04 10.8 0.18 0.15
17 23.51 16.33 0.53 15.59 660,398 666.4 46.43 0.11 0.09
18 12.03 7.75 0.47 13.99 922,612 750.99 38.06 0.1 0.04
19 2.69 1.45 0.35 10.49 820 0.42 8.17 0.19 0.19
20 2.3 1.85 0.46 13.55 12,591 9.78 6.61 0.15 0.09
21 10.37 5.55 0.46 13.55 215,293 168.22 36.29 0.19 0.09
22 28.15 16.33 0.47 14.01 521,243 424.89 105.75 0.14 0.11
23 4.67 2.99 0.43 12.89 5067 3.74 12.14 0.2 0.17
24 7.49 4.07 0.47 13.86 49,427 39.8 29.64 0.14 0.09
25 2.41 1.56 0.23 6.97 27,399 5.56 6.57 0.14 0.09
26 2.23 1.61 0.23 6.95 54,301 10.96 5.72 0.14 0.07
27 1.79 1.26 0.14 4.17 17,265 1.25 3.69 0.16 0.12
28 1.05 0.59 0.05 1.38 9405 0.07 2.13 0.2 0.18
Mean 9.31 5.96 0.41 12.17 281,988 218.07 31.09 0.14 0.1

CD: crown diameter. NW: mean needle width. NL: mean needle length. TNA: total needle area. DBH: diameter at breast height. STARs : shoot STAR (one randomly
picked shoot from the crown). STARc : crown STAR.

Fig. 2. Distribution of crown STAR values of the modeled trees.
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directional distribution of the silhouette area, the mesh model is pro-
jected in 100 directions uniformly distributed over the hemisphere
(Fig. 5a). For each direction, the explicit silhouette area can be esti-
mated as the area of the union of projected triangles (Fig. 5b). Conse-
quently, STAR of each projection direction is calculated. Integrating
over all directions, STAR can be determined.

To further evaluate the influences of woody materials, we calculated
STAR with and without those triangle meshes representing woody
materials (i.e., twigs, branches and trunks), respectively. The same
strategy was applied to each tree crown and a corresponding shoot
sample that was randomly picked and manually extracted from the
crown mesh models.

4.2. Average photon recollision probability

In this study, we view the concept of average photon recollision
probability by assuming that anisotropic photons have reached phy-
toelement (leaf or needle) surfaces and are uniformly distributed (i.e.,
spatial averaging). This can be pictured as combining all scattering
orders into a single scattering event. This interpretation is consistent
with the assumption made in Smolander and Stenberg (2003), who
derived the relationship between shoot level p-value and STAR, and

Fig. 3. a) A virtual Scots pine tree. b) Point cloud sampled from the mesh model (i.e., for visual comparison with the simulated TLS data). Green: needle. Brown:
wood. c) Simulated TLS point cloud. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Simulated TLS scan configurations.

Fig. 5. Determination of STAR. a) Directional distribution of STAR. b) Silhouette of the projected crown.
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also with Stenberg (2007), who proposed an analytical formula to
calculate an average p-value from transmittance measures by averaging
the recollision probability over points on all leaves. With anisotropic
reflections, this interpretation is further equivalent to the spherical
openness at the surface of a needle. Finally, we can similarly define the
average photon recollision probability for a structure as the probability
that anisotropic photons reflected from the surfaces of its elements in-
teracting with current structure.

To calculate the average p, scattering positions should be first de-
termined. In this study, three points are sampled for a needle surface.
Specifically, each needle triangle is divided into three sub-triangles of
equal area by connecting the vertices to the centroid. Then, the cen-
troids of these three sub-triangles are regarded as the scattering points
for the given needle. The area that a single scattering point occupies is
also recorded (i.e., 1/3 of the needle surface area). For a single scat-
tering point, the spherical openness is tested using virtual rays emitted
into 100 directions uniformly distributed in the sphere (Fig. 6). The
number of intercepted rays implies the localized p-value for current
scattering point. The crown-level p-value is thus the average p over n
scattering points, weighted by the occupied area ai of each scattering
point i as:

= =

=
p

a p
a

.crown
i
n

i i

i
n

i

1

1 (5)

4.3. Recollision probability from TLS point clouds

4.3.1. Sphere covering
A point cloud is inherently a collection of unordered 3D points and

does not contain any topological and shape information, whereas
conceptually the estimation of recollision probability requires the de-
termination of whether a photon is intercepted or not. This requirement
implies that volumetric shape information should be recovered first
from point clouds. Overall, two approaches are available to retrieve
solid shapes from point clouds. The first one is explicit 3D

reconstruction, in which geometric primitives or mesh models are fitted
into original points (e.g., Jenke et al., 2006). However, explicit re-
construction of tree crowns is impossible in practice. Tree crowns have
very complex structures and irregular shapes. Moreover, point cloud
density and quality are low inside crowns, due to severe occlusions
when acquiring point clouds. It is commonly known that single leaves,
especially needles, often cannot be resolved properly in the point clouds
(Pfeifer et al., 2004). The second technique is voxelization that con-
solidates point clouds into 3D volumetric objects (e.g., Lecigne et al.,
2017). Such voxel-based methods are useful in describing tree archi-
tectures. However, voxels produce excessively occlusive spaces, which
is inapplicable for studying photon interceptance. For example, two
connected voxels obstruct the entire space between points inside these
two voxels. The recollision probability thus would be erroneously
higher.

In this study, we use a sphere as the unit geometric primitive to
model the 3D occupancies of point clouds. Specifically, a sphere is
placed between a point and its nearest neighboring point. The sphere
center is thus the mid-point and its radius is half the distance between
two neighboring points. Spheres with very large radii are removed (i.e.,
larger than 99th percentile). This simple method to generate a volu-
metric representation from point clouds is called sphere covering
(Fig. 7).

4.3.2. Recollision probability
We follow the same strategy as in Section 4.2 to estimate the

average recollision probability for the volumetric sphere models.
Scattering points are defined on needle surfaces as well. In this study,
scattering points are directly extracted from corresponding mesh
models. In practice, needle points should be identified first from point
clouds so that the locations of scattering points can be determined.
However, automatic leaf or needle identification is out of the focus of
this study. It is noted that a number of methods are available to auto-
matically extract leaf or needle points from point clouds (e.g., Ma et al.,
2015; Wang et al., 2018, 2020; Vicari et al., 2019a). See Appendix C for
an example.

For each scattering point, its local spherical openness can be cal-
culated by testing the penetrability of virtual rays (Section 4.2).
However, there are two challenges for directly applying such a strategy
on the volumetric sphere model. First, individual needles are hardly
resolved in the point clouds. The resulting volumetric model is thus not

Fig. 6. Estimation of the average photon recollision probability using spherical
openness.

Fig. 7. Point cloud sphere covering. a) Original point cloud. b) Volumetric
representation (colour denotes height, i.e., low = blue, high = red). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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detailed enough to estimate the p-value by regarding needles as the
basic elements (e.g., Fig. 7). Second, the occlusion impact from the
element itself should be eliminated. For example, a photon scattered
from a leaf or needle surface will not interact with the same leaf or
needle again. However, such object-level information is missing in
point clouds and volumetric models.

We solve the first challenge on the level of details of point clouds by
using the scaling property of p-theory (Eq. 2). In practice, shoots are
usually well resolved in TLS point clouds. They can thus be regarded as
the basic elements instead of needles. In particular, if we assume that
psh is known, the crown-level average recollision probability pcrown can
be estimated as:

= +p p p p(1 ) ,crown sh sh cw (6)

where pcw stands for the intermediate level p above shoots in a crown.
This scaling approach uses shoots as elements and can be interpreted as
the probability that a photon leaving a shoot will collide. The value of
psh can be measured destructively or photographically using the pro-
cedure described in Stenberg et al. (2001) and Rautiainen et al. (2012).
Moreover, we note that psh can also be estimated based on the same
point cloud based method presented in this study, using data from high-
precision techniques such as close-range LiDAR or tactile sensors. An
example is given in Appendix B.

Second, to avoid self-occlusions, a simple strategy to exclude
neighboring points is applied. For each scattering point, its neighboring
points whose distances are closer than the shoot width are removed
from collision analysis. The definition of shoot width is shown in Fig. 1.
This simple strategy avoids the reconstruction of individual shoots.

4.3.3. TLS scan mode
The number of TLS scans affects the point cloud density and quality.

Multiple scans provide denser point clouds and may avoid occlusions by
acquiring data from different view positions. However, the density and
spatial coverage of point clouds cannot be always guaranteed in prac-
tice, especially in extremely complex and clumped forests. To assess the
impacts of TLS scans, we respectively tested the proposed method on
TLS data from 1, 2, and 4 scan positions (Fig. 4). With 2 TLS scans, the
scan positions were placed oppositely to ensure a good data coverage.
Assuming that at least a fraction of the tree crown can be well captured
by single-scan TLS, we hypothesized that the p-value can be estimated
based on scattering points from those regions with dense point cov-
erage. Therefore, for single-scan TLS data, only those scattering points
distributed on the same side with (i.e., facing) the TLS scan location
were estimated, as the opposite side was expected to have very sparse
point coverage.

4.4. Assessment

The accuracy of estimated p-values are assessed using relative bias
(Bias%) for individual trees, and the root mean square error (RMSE)
and its relative value RMSE% for the entire dataset, calculated re-
spectively as:

= ×
p p

p
Bias % 100%

| |
,i

i i

i (7)

=
=n

p pRMSE 1 ( ) ,
i

n

i i
1

2

(8)

= ×
p

RMSE% 100% RMSE ,
(9)

where n is the number of observation data, p denotes the reference p-
value and p is the mean value of reference p-values.

5. Results

5.1. Relationship between STAR and p

The relationship between STAR1 4 and p was examined at the
shoot and crown levels. By including woody materials in the STAR
calculation, the discrepancies were large for both shoot and crown
(Fig. 8a and c). On the other hand, a close to one to one relationship
was found between the average recollision probability p and STAR1 4
(Fig. 8b and d, when wood was excluded. These results confirmed the
theoretical considerations of p and were consistent with previous stu-
dies on Scots pine shoots (Smolander and Stenberg, 2003). Our study
showed that woody materials have a negative impact on the corre-
spondence between p and STAR. With the presence of woody materials,

STAR1 4 overestimated the p-value because the contribution of
woody materials was more significant on the total area than silhouette
area. Therefore, the estimated STAR was smaller than it should be. In
addition, results showed that the relationship between STAR1 4 and p
was also valid for highly clumped needle crowns (Fig. 8d).

5.2. Quality of simulated TLS data

A quantitative accuracy analysis of the simulated TLS data showed
that the average point cloud to mesh distance was 5 mm with a stan-
dard deviation of 6 mm. If we consider points with distances farther
than three standard deviations (i.e., 3σ) from the mesh model as outliers
(or ghost points), the point cloud had ~ 4% outliers (Fig. 9).

5.3. Crown-level p from TLS point clouds

We estimated crown-level p-values using the proposed sphere cov-
ering and scaling approach. Using data from four TLS scans yielded an
RMSE of 0.059 (9.5%). The regression line had a slope of 0.99
(Fig. 10a). By reducing the scan positions to two, the RMSE stayed
rather the same of 0.057 (9.1%). The slope was similarly at 0.98
(Fig. 10b). The result from single-scan TLS was marginally worse with
an RMSE of 0.063 (10.1%). The slope of regression was reduced to 0.96
with a R2 of 0.86 (Fig. 10c).

We additionally analyzed the impacts of number of scattering points
by starting with 100 scattering points per crown and increasing the
number to 1000 with an increment of 100. Results showed that the
accuracy was improved with increased number of scattering points
(Fig. 11). This was well expected, as more scattering points will better
capture the overall structure of tree crowns. However, the improvement
was minimal. The difference was smaller than 0.4% between using 100
and 1000 scattering points. Even with 5000 scattering points, the ac-
curacy was only marginally improved. Therefore, 500 scattering points
per tree was used in this study as a trade-off between accuracy and
computational speed.

To further evaluate the impact of point density, we down-sampled
each point cloud using voxels with the size from one to ten times the
original average point spacing. The accuracy of p-value was evaluated
for each down-sampled point cloud (Fig. 12). This analysis showed that
clumped crowns (i.e., with high p-value) are robust against point den-
sity. In general, a minimum point spacing of 2 cm is recommended in
practice.

5.4. Algorithm implementation and efficiency

We implemented our method in Matlab (The MathWorks, Inc.) and
used parallel computing. In average, the processing time was 51 s for 1
million points on a laptop. The processing time had a linear relationship
with the total number of points (Fig. 13). The laptop we used to run the
algorithm has the following specifications: Windows 10, Intel® Core™
i7-8850H and 32 GB RAM.
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6. Discussion

6.1. Photon recollision probability

Overall, the accuracy of spatially averaged recollision probability
depends on how fast the recollision probability can converge to its
limiting value, and how uniformly the points of interaction are dis-
tributed (Stenberg et al., 2016). The average p thus can be pictured as
integrating all scattering orders as one event. In other words, photons
are assumed to be uniformly distributed over the total needle area, and
the scattering directions can be arbitrary. This interpretation leads to a
simple calculation of local spherical openness, and is free from the
impacts of directional distribution and interacting positions of scattered
photons. The close to one to one relationship between p and STAR1 4
for needle crowns also implied that the local spherical openness is in-
deed a good depiction of the average p (Fig. 8d). However, the lim-
itation here is that it does not provide the recollision probability at each
scattering orders, so that the corresponding contribution of each order
is unknown. Moreover, since we did not rely on explicit 3D re-
constructions of tree crowns, the directional distribution of photons
cannot be tracked and determined. Nevertheless, directional p-values
can be estimated by examining the interceptance of emitted photons in
a certain direction in our method. This property might be linked to the
new development of the spectral invariants theory on the directional
area scattering factor (DASF) (Knyazikhin et al., 2013).

6.2. Estimation of p from TLS point clouds

Currently, the canopy-level p is estimated indirectly from LAI and
the canopy transmittance in diffuse radiation (Stenberg, 2007). The

Fig. 8. Relation between STAR1 4 and p for shoots a) with and b) without wood, and for crowns c) with and d) without wood.

Fig. 9. Quality of the simulated TLS point cloud. Blue: inliers. Red: outliers (or
ghost points). (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)
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relationship between LAI and p can be quantitatively described using
optical instruments (e.g., the LAI-2000 Plant Canopy Analyzer)
(Rautiainen et al., 2009). To the best of our knowledge, no studies have
reported direct p estimation methods. Thus, our study is the first at-
tempt to directly estimate the photon recollision probability, which is
made possible by the highly detailed structural information provided in
TLS point clouds. Moreover, the p-values of individual tree crowns have
not yet been properly examined before.

The designed sphere covering method is simple and intuitive.
Intrinsically, it has the same mentality with point cloud voxelization,
but uses spheres to model spatial occupancies. One of the advantages of
using sphere packing is that the sizes of spheres are adaptive to point
cloud density and distribution. This data-driven approach is more

robust than voxelization for which a voxel size should be defined.
Previous studies have shown that voxel size has vital impacts on re-
trieving forest properties such as canopy gap fraction using TLS point
clouds (Cifuentes et al., 2014). Moreover, the sphere covering method
further eases the computation of interaction between virtual rays and
volumetric objects. With spheres, the collision test corresponds to the
calculation of the distance between a 3D point and a line, a step that
could be easily parallelized. Therefore, our method requires light
computational resources and short computation time (Fig. 13).

Although we used the scaling approach to estimate the crown-level
p-value and treated shoots as basic elements (i.e., only above shoot level
p was estimated with TLS), the proposed method is generic. Generally
speaking, the recollision probability is only predictable by regarding
the smallest resolvable structure in a point cloud as the basic element.
In other words, TLS only estimates the p-value of structures at higher
hierarchical levels than the smallest resolvable structure. Needleleaf
crowns have at least three hierarchical structure levels of needle, shoot,
and the crown itself. Since individual needles are almost impossible to
be resolved in a point cloud in practice, the scaling approach has to be
applied by treating shoots as basic elements. Indeed, if such a scaling
approach is used, the shoot level recollision probability psh needs to be
known in advance. For broadleaf crowns, this framework is straight-
forward as usually only two hierarchical structure levels exist (i.e, leaf
and crown). The scaling approach is not necessary and the crown-level
p can be directly calculated using leaves as basic elements, given that
leaves are indeed resolved in the point clouds. Although we only tested
our method on highly clumped needle crowns in this study using the
scaling approach, the proposed generic framework is also applicable to
leaf or needle level estimates without scaling, such as for broadleaf
crowns or even needle crowns if needles are resolved in the point cloud.
An example is given in Appendix B.

Fig. 10. Results of p estimation using TLS point clouds from a) 4 scans, b) 2 scans, and c) single-scan.

Fig. 11. Relative RMSE of p estimation with different number of scattering
points.

Fig. 12. The impact of point cloud density. Each curve represents an individual
tree.

Fig. 13. The relationship between the runtime of our method with point cloud
size.
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6.3. Model and TLS simulations

We relied on simulated tree models and TLS data in this study. The
main reason was that the ‘true’ p-value is only known for synthetic
models. Although in practice, p-values can be estimated from indirect
methods such as measurements of LAI or converted from destructive
measures of STAR, their accuracies depend on the goodness of the p-
theory itself and involve a certain level of uncertainty. Therefore, they
cannot be used in this study to validate the concept of the estimated
average recollision probability. However, future works should empiri-
cally look into the correspondences between p-values estimated from
LAI measurements and our method using TLS data. It is also noted that
in practice, the difficulties in detecting individual trees from TLS point
clouds may introduce additional uncertainties in estimating the p-va-
lues at the single tree level. Despite the highly realistic tree models
created in this study, our method in fact does not depend on the actual
geometric characteristics of leaves/needles. We showed that the
average recollision probability of uniformly distributed points in a tree
crown is analogous to the local spherical openness, thus is independent
from the actual shape or orientation of leaves/needles. Principally, this
generic method only tests the spherical visibility from leaf or needle
surfaces.

On the other hand, the HELIOS simulator used in this study re-
sembles the real configurations of the Riegl VZ-400 scanner by con-
sidering the beam divergence, energy of the emitted pulse, atmospheric
attenuation and the bidirectional reflectance distribution function
(BRDF) surface reflectance model (Bechtold and Höfle, 2016). The re-
sulting point clouds are expected to be very similar to real TLS point
clouds and have been used in previous studies for estimating and va-
lidating leaf angle distributions (Liu et al., 2019a, 2019b). The quan-
titative accuracy analysis of the simulated TLS data (5 mm in Section
5.2) showed that the simulated accuracy lies within the manufacturer's
specifications. Calders et al. (2017) showed that in practice, the range
accuracy of the Riegl VZ-400 scanner is at the level of 1 to 2 mm at
10 m distance. Therefore, our simulation did not exaggerate the quality
of TLS point clouds. This simulated quality is also consistent with real
point clouds and previous analysis (Previtali et al., 2019). However, we
note that the impacts from terrain accessibility, wind, atmospheric
moisture, and occlusions are very difficult to simulate, which in prac-
tice, may cause additional challenges for the estimation of p-values.
Nevertheless, the analyses on different TLS scan positions in this study
partially mitigated this deficiency. We showed that even with single-
scan TLS, the accuracy was still high with a relative RMSE of ~ 10%.
This implies that our method does not require a very high density point
cloud. The recommended minimum point spacing of 2 cm in this study
(Fig. 12) can be easily fulfilled by modern TLS instruments. Moreover,
several trees in this study had very dense and clumped crowns, which
led to occluded TLS point clouds inside crowns. The results were not
affected, indicating that the proposed method is somewhat robust to
occlusions as well, as long as the overall crown structure is captured by
TLS.

6.4. Links to retrieval of biophysical variables from satellite data

Currently, clumping has not yet been rigorously included in many
physically-based canopy reflectance (or radiative transfer) models that

are used to retrieve biophysical variables from satellite data.
Incorporating the effects of clumping in canopy reflectance models has
posed a true challenge as very detailed canopy descriptions cannot
readily be integrated into models operating at regional or global ex-
tents. Thus, especially for global applications, it is important to search
for one or more key parameters that can capture the structure of a forest
stand. Photon recollision probability has already been applied in the
retrieval of biophysical properties from medium resolution Landsat 8
OLI and Sentinel-2 MSI data for entire forest stands (Schraik et al.,
2019). Now, our new results show that it is possible to estimate directly
p also for single trees from TLS data. This means, in turn, that the ca-
nopy reflectance modeling approach based on recollision probability
has potential to be applied also in interpretation of higher spatial re-
solution remote sensing data.

7. Conclusion

The spectral invariants theory states that canopy scattering depends
only on the optical properties of foliage and a spectrally invariant
structural parameter - photon recollision probability p. This study
presents a generic method that directly estimates the photon recollision
probability from TLS point clouds. We interpret the concept of average
photon recollision probability from a new perspective as the spherical
openness on leaf or needle surfaces, which further enables a simple
visibility test in TLS point clouds. The proposed method is free from
restricted assumptions of tree architectures. We tested this method on
synthetic models of needle-leaved trees and TLS data with 100% certain
p-values. Results showed that the relationship between the photon re-
collision probability and STAR is valid for highly clumped needle
crowns, and p-values can be accurately estimated from TLS point clouds
with a relative RMSE of less than 10%. Future studies should aim to
empirically evaluate the correspondences between p estimates from TLS
and LAI measurements. With increasingly available TLS data for forests,
this study strives to introduce a new approach to accurately estimate
the photon recollision probability, and can facilitate the application of
the spectral invariants theory in modeling the shortwave radiation re-
gime of vegetation. Moreover, accounting for vegetation clumping
through concepts such as STAR is fundamental in producing oper-
ationally e.g., more accurate global maps of vegetation from satellite
data.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.111932.

Appendix B. Shoot p estimation from point clouds

In this section, we report experiment results of p estimates for shoots. The purpose of this experiment was to evaluate the universality of the
proposed method using point clouds without scaling.
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Fig. B.14. An exemplary Shoot model (left) and its corresponding sampled ‘perfect’ point cloud (right).
In this example, the basic element was a needle. In practice, individual needles are unlikely resolved in a TLS point cloud, due to the small size

and data occlusions introduced by mutual shading. Therefore, we directly sampled point clouds from the mesh models. Specifically, for each triangle
polygon (i.e., needle), a point was sampled per mm2. The resulting point cloud was thus denoted as a ‘perfect’ point cloud (Fig. B.14). This sampling
routine was to simulate those point clouds in which individual leaf or needle is resolved.

Fig. B.15. Results of shoot photon recollision probability estimation with needles as elements.
We then applied the proposed method on such ‘perfect’ point clouds, and treated needles as basic elements. The same sphere covering and

spherical openness test were exercised. This test yielded a RMSE of 0.063 with a relative RMSE of 7.3%. The results in Fig. B.15 showed a high
agreement between point clouds estimated and reference p-values, implying that our method is indeed generic.

In summary, our method treats the smallest resolvable structure in the point clouds as basic elements, and estimates the photon recollision
probability of the structures at higher hierarchical levels than the smallest resolvable structure. If the smallest resolvable structure is beyond
phytoelements (leaf or needle), the scaling approach (Eq. 2) has to be applied.

Appendix C. Automatic determination of scattering points

In this section, we report experiment results of crown p estimates based on scattering points that were automatically determined from TLS point
clouds.

In this study, the scattering points are theoretically defined on phytoelement (leaf or needle) surfaces. Therefore, in order to determine the
locations of scattering points, leaf or needle points should be detected first. We applied an unsupervised and automatic leaf-wood separation method
to exclude wood points in TLS point clouds (Wang et al., 2020). This method successfully separated dominant woody structures from phytoelement
(Fig. C.16).
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Fig. C.16. Examples of automatically separated woody structures (brown) and phytoelements (green) in TLS point clouds. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. C.17. Results of crown photon recollision probability estimations with automatically defined scattering points.
To be consistent with the number of scattering points sampled from mesh models used in the main body of this paper, 500 random points per tree

were selected from those detected phytoelement points as scattering points. Subsequently, the same spherical covering and scaling methods were
applied to estimate the crown-level p values.

Results were first compared with reference values (Fig. C.17). This experiment yielded an RMSE of 0.057 with a relative RMSE of 9.2%. The
results were very similar to those using scattering points directly from the mesh models (9.5%) (Fig. 10). We thus conclude that the exact locations of
scattering points are not significant, and they can be determined fully automatically in point clouds, without the help of mesh models. Moreover, this
observation was also partially justified by the results obtained from using only single-scan TLS data (Fig. 10).
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