
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Seppälä, Otto; Korhonen, Ari; Malmi, Lauri
Observations on student errors in algorithm simulation exercises

Published in:
Koli Calling, 17-20.11.2005, Koli, Suomi

Published: 01/01/2005

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Seppälä, O., Korhonen, A., & Malmi, L. (2005). Observations on student errors in algorithm simulation exercises.
In Koli Calling, 17-20.11.2005, Koli, Suomi (pp. 81-86). Turku Centre for Computer Science.
http://www.kolicalling.fi/old_cms/archive/2005/koli_proc_2005.pdf

http://www.kolicalling.fi/old_cms/archive/2005/koli_proc_2005.pdf


Observations on student errors in algorithm simulation
exercises

Otto Seppälä
Helsinki University of

Technology
PL5400
Finland

oseppala@cs.hut.fi

Lauri Malmi
Helsinki University of

Technology
PL5400
Finland

lma@cs.hut.fi

Ari Korhonen
Helsinki University of

Technology
PL5400
Finland

archie@cs.hut.fi

ABSTRACT
In algorithm simulation exercises, students simulate the steps
of a given algorithm by manipulating data structure visual-
izations on computer screen using a mouse. In contrast to
“typical” data structures and algorithms course exercises,
these exercises are designed to work on an abstraction level
higher than that of the actual implementation. Correspond-
ingly on this higher abstraction level, there exist several mis-
conceptions on how the algorithms work.

We attempted to infer these misconceptions from the stu-
dents’ answers and then implemented corresponding varia-
tions of the algorithm to see what amount of the students’
answers consistently follow each variation. The results sug-
gest that many students are aware of the ultimate goal of
the algorithm but have not studied the algorithm itself well
enough. This often leads to different misconceptions that
can be modelled and recognized using our approach.

1. INTRODUCTION
Data structures and algorithms are among the most im-

portant issues in learning programming. For students, they
are often difficult issues, since capturing the dynamic na-
ture of abstract algorithms is not a straightforward task.
The traditional way of teaching these topics is programming-
oriented, i.e., students on their first or second programming
course are introduced to basic structures such as stacks,
queues and trees in terms of programming exercises. More
algorithms are included in subsequent advanced courses where
also algorithm design and analysis principles are discussed.

At the Helsinki University of Technology we have, how-
ever, chosen a different approach. Following the first in-
troductory programming course, we give a general course
of data structures and algorithms1 that covers basic struc-
tures, important sorting and searching methods, basic pri-
ority queues and a number of basic graph algorithms. We
deliberately approach the theme on a high conceptual level
and aim to give students a broad overview of the field, in-
stead of concentrating on implementation issues.

1.1 Visual Algorithm Simulation
Learning on this higher abstraction level is supported by

a number of visual algorithm simulation exercises [6], which
are carried out in a dedicated learning environment called

1Some 500 students are enrolled each year including CS ma-
jors and minors. The course extent is 5 ECTS credits.

TRAKLA2 [8]. These exercises are a compulsory part of
the course2 and cover most relevant material on the course.
In the exercises, students simulate the working of given al-
gorithms by manipulating the visual representations of the
corresponding data structures on a computer screen through
context-sensitive drag-and-drop operations and push but-
tons. An example exercise is:

“Drag the keys J M R G A B T Z K L from an
array in this order into an initially empty AVL
tree. Perform appropriate rotations by selecting
a node and pushing the correct push buttons in-
dicating which rotation should be executed.”

All changes to the data structures are recorded and the re-
sulting states form a sequence. The states of the performed
algorithm simulation are then compared with the model so-
lution created by an actual implemented algorithm. The
correctness of the student solution is assessed by counting
the number of matching key states in the two solution se-
quences.

TRAKLA2 allows the students to submit their solution
many times. However, each time a new random set of initial
data is given after getting feedback on the previous submis-
sion. In addition, students can view the model answer se-
quence to the exercise instance at hand in terms of algorithm
animation. Again, after viewing the model solution the stu-
dent cannot submit an answer to the same exercise instance
anymore but a new exercise is automatically generated upon
request. These two features should help the student to re-
flect on their understanding and try to find out what went
wrong in the answer if it is incorrect. The features can, of
course, be used to explore the algorithm by just generating
new instances and viewing the model solutions only.

The pedagogical foundation of this approach is to promote
the construction of mental models [1, 9]. The visualizations
act as conceptual models of the working of target systems,
in our case, composed of algorithms and data structures.
These aid students to form an appropriate pattern of the
mind of each target system [9]. This pattern must be accu-
rate, consistent, and complete enough in order to be viable,
i.e., capable of executing and tracking the actions in the
conceptual model as well as in the original target system. If
the mental model is not accurate enough, a student typically

2The other compulsory parts are examination (all students),
analysis and design exercises in closed labs (CS majors only),
and a design project (CS minors only).

81



makes systematical mistakes while executing the conceptual
model. These kinds of errors are symptoms of misconcep-
tions. Of course, other types of errors exist as well that are
non-systematical such as carelessness mistakes.

There are several challenging topics to be tackled here.
First, we should try to recognize and classify various types
of misconceptions from the students’ answers. Second, we
should recognize with some certainty that some specific an-
swer actually belongs to a certain misconception class in
order to give advanced feedback on it. Finally, we should
try to understand how and why the students form the mis-
conceptions and improve our teaching and support material.

In this paper, we shall discuss our first experiences and
results on these lines of research. The paper is structured as
follows. In the next section, we discuss recognition of mis-
conceptions in general, including a review of relevant work
with algorithms in Section 2.1. In Section 3 we present in
some detail data and results from the TRAKLA2 environ-
ment. One assignment on the BuildHeap algorithm is used
as an example case. Section 5 concludes with a summary of
the work and directions for future research.

2. RECOGNIZING THE MISCONCEPTED
ALGORITHMS

Any errors made when solving the exercises can either
be systematic, carelessness errors or result from randomly
trying out the exercise. Our main interest lies with the
students who make mistakes in a systematic way, as this is
often a symptom of a misconception3 that could be corrected
if recognized.

Brown and VanLehn [3] define this systematicity as fol-
lows: A child’s errors are said to be systematic if there exists
a procedure that produces his erroneous answers. As there
are only so many ways to systematically solve a problem
wrong, it should be possible to model each of these proce-
dures. Such an approach was used by Brown and Burton
in the Buggy[2] system and refined by Burton with De-
buggy[4].

2.1 Buggy and Debuggy
The Buggy and Debuggy systems were designed to as-

sist in mathematics education, revealing the kinds of miscon-
ceptions learners have about performing place value subtrac-
tions. Sison and Shimura [11] describe and compare various
approaches and systems for student modeling. The following
description of Debuggy is based on their paper.

Debuggy models the skill to be measured as a network
of subskills Incorrect implementations of a skill can then be
created by replacing one or more of the subskills with their
buggy counterparts from a bug library. The system aims to
find any misconceptions students might have by applying
the following procedure: First a behavior set for each stu-
dent is built from answers to a set of exercises testing the
same skill. The system then tries to recreate all answers that
deviate from the correct ones by replacing a single subskill
in the procedural network by a bug. If the altered network
can explain at least one answer, the system will add it to an
initial hypothesis set H. This set is then reduced by remov-
ing any bugs that are subsumed by others. Any remaining

3In some cases, systematic error-like behavior can emerge
from other sources as well, e.g, misreading the exercise def-
inition.

erroneous answers are then tested with compound bugs cre-
ated as pairs from the remaining hypothesis set. Finally
the system tries to alter some of the remaining bugs with
heuristic perturbation operators to increase the number of
explained answers. When all these steps are finished the
bugs are ranked by their ability to explain the student’s an-
swers, the number and type of predicted misconceptions and
the amount of perturbations made to the original bugs.

Besides Buggy and Debuggy there exist a number of
different approaches to student modeling that are more so-
phisticated than the ones described. For a comprehensive
list of different approaches you can consult the paper of Si-
son and Shimura [11].

2.2 Our Approach
Our approach is similar to that used in Debuggy, with a

few important exceptions. The first one is the data, the stu-
dent’s answers to the exercises, which are already sequences
of smaller steps giving us more information on the under-
lying mental model. We also work in a different domain
and a different set of students. What is similar, is the aim
to find the set of algorithm variants that result from the
different misconceptions and then using these variants for
automatically recognizing possible misconceptions in each
answer sequence.

To know more of the types of errors the students make,
we browsed through the students answer sequences looking
for any typical mistakes for each exercise. Each time we
encountered a sequence that did not match any previously
recognized variants, we attempted to infer and implement
the corresponding algorithm. The new set of algorithm vari-
ants was then tried against the data, narrowing down the
number of cases without explanations.

Implementation of erroneous algorithms by hand is labori-
ous, but as we will see in section 3, some algorithms devised
by the students defy the type of approach used by Debuggy
as some of the new algorithms are not based on the origi-
nal algorithm at all. Working on the algorithms also gives
valuable insight on the different misconceptions less easily
grasped by just reading the final results of an automatic
algorithm.

2.3 Inferring from the model answer
One of the problems in making inferences on the students

answers is that they have to be based on assumptions of
the underlying algorithms. We can never fully eliminate the
possibility of mapping a correct algorithm seeded with some
carelessness to a specific misconcepted algorithm. Slips can
also interfere with the selection between incorrect variants.

While we cannot eliminate this problem altogether, we can
make it less probable. After having found the most likely
variants, we can apply our knowledge of them to generate
problem instances where the erroneous procedures better de-
viate both from the correct procedure and from each other.

2.4 Grading the algorithms
The process of deciding on which algorithm variant best

resembles the student sequence is similar to checking the
validity of the students’ answers (explained in Section 1.1).
We run each of these algorithm candidates with the same
input to get a number of new sequences. These sequences
are then compared to the student’s sequence. The compari-
son procedure iterates over the candidate sequence, selects a

82



single state at a time, and iterates over the student’s states
trying to find that very same state. The candidate that best
explains the student sequence is the one that finds a match
that involves a user state farthest away in the student se-
quence.

This is different from evaluating normal student solutions,
but necessary as the number of steps in each of the algorithm
variants may vary. Thus algorithms with ”smaller” steps
would be favored as more steps would often be explained.
For this reason the student sequence (which has a constant
amount of states) is used as the measure.

In most of the cases, there exist a number of variants that
match the student sequence equally well. In these cases, we
have selected the most conservative option available. Ba-
sically this will be the candidate that best resembles the
original algorithm or the most general one available.

2.5 Implications of easy goal verification
One of the most defining features of the problems in Data

Structures and Algorithms is that the ultimate goal of the al-
gorithm is often something easily accomplished by any non-
algorithmic approach. Whether the goal has been reached
can also be verified with ease in many of the cases. Sorting
a data structure is an obvious example: regardless of any
education in sorting algorithms anyone can both verify if
an array of data is sorted or not and if necessary can also
perform a series of steps that sort the array.

Interestingly, this easy verification works also to our ad-
vantage. One of the clearest clues of a misconcepted algo-
rithm is reaching a legal final state without following the
requested algorithm. This often reveals either a solution
based on a misconception or a slip followed by a correspond-
ing fix later on. Therefore verification can be used to sieve
out likely candidates for misconcepted algoritms as it is a
clear sign of not only blindly imitating an algorithm.

2.6 Error categories
The results from studying a number of exercises indicate

the following categorization of the erroneous answers.

1. Slips, errors created by carelessness. These are always
non-systematic. Such errors include skipping data el-
ements in iterations, non-systematic off-by-one errors,
and any solitary missing operations. In some cases the
student may have also recognized the error and tried
to remedy it later on.

2. Problems related to the mapping from the data struc-
ture to the visualization. Such errors include, for ex-
ample, mirror algorithms where the algoritms work as
the original ones with the left and right elements re-
versed.

3. Applying a wrong algorithm. Some learners, for exam-
ple, execute a preorder traversal in place of an inorder
traversal.

4. Applying a legal variant of the algorithm. When work-
ing with a binary search tree we must be consistent
in how we handle duplicate keys. Essentially we can
have two different implementations of the algorithm
and thus two different variants of which only one is
recognized to be correct by the exercise.

5. Nonrecognizable algorithms, that is, algorithms that
might work systematically, but do not aim for the same
result as the original algorithm.

6. Variants of the original algorithm. These variants fol-
low the overall idea of the algorithm, but make sys-
tematic changes in portions of the algorithm. These
changes can for example simplify a part in the original
algorithm. Such algorithms include omitting recur-
sion, systematic off-by-one errors, looping errors etc.

7. Whole new algorithms that have the same ultimate
(and verifiable) goal as the original algorithm. These
have an air about them that the algorithms used have
been inferred from examples rather than by misread-
ing them from a textbook. We will look into such
algorithms in detail in the next section.

The systematicity of the last two categories allowed us to
automatically classify answers by implementing these “stu-
dent-built algorithms” and then re-evaluating the students’
answer sequences against each hand-implemented new algo-
rithm.

In the following section, we will examine some of these al-
gorithms for an exercise where the students were to execute
the Build-Heap algorithm on a given data set.

3. CASE EXAMPLE: THE BUILD-HEAP
EXERCISE

In the Build-Heap exercise, the students were asked to
create a binary heap from a random set of values by ma-
nipulating a heap depicted as a binary tree. The method of
manipulation is swapping keys initiated by dragging a key
with the mouse onto another one.

The Build-Heap algorithm can be found in most text-
books [5, 12]. The data structure employed by the algo-
rithm is an array, but as it is also an essentially complete
binary tree, it can be illustrated and manipulated as such.
The algorithm begins from the bottom right part of the tree
and iterates through each key until the root of the tree is
reached. If necessary, each key will be swapped recursively
downwards with its smallest child until the heap property for
that key is restored. The learning objectives of the exercise
include the following items:

1. Recursion, i.e., how the algorithm builds bigger heaps
by combining smaller heaps together where the proce-
dure is defined in terms of itself.

2. Necessary swaps, i.e., the algorithm makes compar-
isons among the parent and its two children in order
to do at most one swap in a recursive call.

3. Order of traversal, i.e., the first parent for a subtree
to be heapified is the middle element in the array and
then the tree is traversed toward the first element (root
of the tree).

The textbooks explain this algorithm in form of pseudo-
code (See Algorithms 1 and 2, adapted from [5]). Some
students, however, have difficulties reading the notation. It
is also worth to mention that textbooks use different pseudo-
code styles and have different approaches in terms of naming
algorithms, ordering statements and dividing algorithms to
subalgorithms.

83



Where [5] uses the names Build-Heap and Heapify for the
algorithms, [12] calls them BuildHeap and PercolateDown
and [7] gives a non-recursive algorithm by the name Heap-
BottomUp. Therefore even the textbook which should sup-
port solving the exercises can sometimes act as a source of
misconceptions.

Algorithm 1 Build-Min-Heap(A)

for i ← �heap-size[A]/2� downto 1 do
Min-Heapify (A, i)

end for

Algorithm 2 Min-Heapify(A, i)

l ← Left-child-index(i)
r ← Right-child-index(i)
if l ≤ heap-size[A] and A[l] < A[i] then

smallest ← l
else

smallest ← i
end if
if r ≤ heap-size[A] and A[r] < A[smallest] then

smallest ← r
end if
if smallest �= i then

Swap(A[i], A[smallest])
Min-Heapify(A, smallest)

end if

3.1 Algorithm variants for Build-Heap
While we have explored almost half of our set of exer-

cises the work is still in progress. The Build-Heap exercise
was selected as an example because it displays most of the
phenomena discussed earlier in the paper.

While roughly a third (34.4%) of the answers to this exer-
cise simulate the correct algorithm without errors, there ex-
ist a number of relatively popular student-made algorithms.
One fourth (25.5%) of all answers do not follow the original
algorithm to the point, but still end with a state fulfilling
the heap property.

In the following, we describe the versions that emerge from
the data studied in this project. In the parenthesis, there is
the percentage of occurrences from the overall submissions4.
Discussion on possible reasons for existence of these variants
is also given.

3.1.1 Variant 1 — No-Recursion (6%)

Description
This variant is almost as the original, but the Min-Heapify
method does not call itself recursively.

Discussion
Missing the recursive call in the Min-Heapify can result
from a multitude of different causes. The simplest expla-
nation is that the recursive call is just missed by mistake.
Another possibility is that the recursive behavior was just

4As the total number of examined submissions for this ex-
ercise was 880, a single student repeating his erroneous ap-
proach can have a significant effect on the numbers.

not understood properly. Recursion is generally considered
a hard topic for novices.

For a heap size of 15 items (our typical exercise size)
the probability of randomly generating an exercise instance
without any recursive calls is 1 to 27. This basically means
that some students with no conception of recursion can pass
the exercise. This also means that there exist model answers
which also do not exhibit any recursive behavior. The exer-
cise is to be modified to ensure that each student is tested
for understanding of recursion.

3.1.2 Variant 2 — Heapify-with-father (6%)

Description
In the original algorithm, the smaller of the two children is
swapped with the parent if necessary. In this variant, both
children are compared with the parent and swapped, if nec-
essary, resulting in an algorithm that makes twice as many
swap-operations as the original algorithm in worst case.

Discussion
This variant can easily be distinguished from the original
algorithm due to the additional swaps made. While the
algorithm is clearly incorrect, it will always create a valid
heap if executed recursively. Students who have not studied
the actual algorithm, but still know what kinds of operations
the algorithm uses, can easily imagine up such an algorithm.

As with the non-recursive case, this variant performs iden-
tically with the original algorithm for some special cases of
input data. For the difference to display, there must exist
a state in the algorithm where both children of a node are
smaller than their father node and the right child is greater
than the left child. For randomly generated exercise with 15
elements, roughly 1 in 25 exercise instances never go through
such a state when solved.

3.1.3 Variant 3 — Fix-Levelwise/Iteratively (0.8%)

Description
In this algorithm the recursive heapify-operations are not
executed immediately, but only after a whole level has been
gone through.

Discussion
This variant does every single swap done by the original
algorithm. The order of the operations is just altered. For
this variant to show up, both of the keys on the second
highest level of the heap must be swapped down and the
right one at least two levels.

3.1.4 Variant 4 — Left-To-Right (0.7%)

Description
In this algorithm, each level of the heap is traversed from
left to right instead of right to left. In all other aspects, this
resembles the original algorithm.

Discussion
While rare, the mere existence of this variant tells about
mapping problems between the visualization and algorithm
implementation. The binary heap is often depicted as an al-
gorithm operating on a binary tree although the implemen-
tation works directly on an array, which can cause confusion.

84



In this case running the algorithm from left to right how-
ever does not affect the underlying algorithm, telling that
the algorithm itself was correctly understood.

3.1.5 Variant 5 — Smallest-child-to-correct-place-
instantly (<1%)

Description
This algorithm variant starts from the root node and tra-
verses top-down and left-to-right. At each node, all its chil-
dren are sought recursively for the smallest child, which re-
places the node directly by a swap operation without swaps
with the nodes in between.

Discussion
The most interesting feature of this variant is that while it
has little to do with the original algorithm, they both create
almost the exact same heap in the end. Not swapping with
the immediate children of the node and beginning from the
root both suggest that the student has no understanding
of the original algorithm. The fact that the resulting heap
is often almost identical to the heap created by the real
algorithm indicates the possibility the student has inferred
the version of the algorithm by using only the final state
of the original algorithm sequence. This algorithm always
creates a legal heap.

3.1.6 Variant 6 — Single-Skips (4.3%)

Description
This algorithm variant includes all algorithms where two or
more swaps have been skipped. This tries to model careless-
ness errors although it might subsume other categories.

Discussion
Some students have complained about the exercise using
alphabetic keys. They claim that working with alphabets
is slower and more error-prone than working with numbers.
Some of the skips could therefore be caused by problems
with alphabetic order rather than not understanding the
algorithm.

3.1.7 Other variants

Discussion
While examining the sequences we came by many sequences
that while seemingly non-systematic, still make swaps that
eventually lead to a legal heap. Such answers suggest that
some students possibly just try out the exercise using only
their knowledge that in a valid heap all nodes must fulfil the
heap property or that there exist systematic algorithms we
haven’t yet deciphered.

4. ORIGINS OF MISCONCEPTIONS
While there is no single theory that explains all the erro-

neous behavior observed and all the origins of these miscon-
ceptions, two theories, namely the Imitative Problem Solv-
ing [10] by Robertson the Repair Theory [3] by Brown and
VanLehn both explain much of the observed phenomena.

4.1 Imitative problem solving

Analogical Problem Solving (APS) is a paradigm that
tries to explain how solutions of previously solved prob-
lems are used when solving new problems (and possibly in
new domains). According to Robertson [10] APS however
has a number of built-in assumptions about the knowledge
of the solver. Robertson tries to account for cases where
these assumptions are not met by another paradigm, Imita-
tive Problem Solving (IPS). Robertson claims that novices
mostly solve problems by imitation.

If the student tries to solve a problem through imitation,
he might look for a problem example in the textbook and
then map the surface features onto the target problem. In
our case, finding a correct example is easy and straightfor-
ward as such examples are available not only in books, but
also in the assessment tool itself. The part where the student
faces difficulty is in applying the procedure. When imitat-
ing, the student tries to perform the same operations on the
new data that were done in the example.

Some algorithms, such as No-Recursion and Heapify-
with-Father are explicable with imitation. If the level of
extracting information from the example only goes as far as
recognizing that smaller keys should be swapped upwards
with their parents, the student can proceed to select either
of these variants.

4.2 Repair Theory
The Repair Theory[3] by Brown and VanLehn is a the-

ory that tries to explain the causes of bugs and why only
certain bugs do occur. Their key idea is that bugs result
from repairing impasses. Assume that a learner is for some
reason missing a fragment of a procedure. When applying
this procedure it leads him to a situation where he believes
some step cannot be carried out. In such a case, the learner
will attempt a repair that allows him to continue applying
the procedure. As Brown and VanLehn shortly put it, they
believe that many bugs can best be explained as ”patches”.

In the Heap-Exercise we can easily figure out the potential
impasse - executing a non-recursive variant to the end and
then realizing that the resulting structure still violates the
heap property. One possible fix is of course the original
algorithm, but different iterative fixing schemes can also be
applied to reach a final state.

5. CONCLUSIONS
We have described a procedure for finding incorrect sys-

tematic answers to algorithm simulation exercises. Prelim-
inary results for one exercise, Build-Heap were also pre-
sented. These were collected using the procedure described.
We also discussed possible reasons for the erroneous algo-
rithms and misconceptions found.

While this paper describes a method which only covers
systematic errors through hand-implemented algorithms, we
plan on extending the approach to help find slips and erro-
neous algorithms through automatic means.

The results also pointed out some new guidelines for se-
lecting input for the simulation exercises.

1. Only inputs that result in a sequence showing all the
essential features of the algorithm are to qualify. For
the Build-Heap exercise such a requirement would be
about the use of recursion in the exercise.

2. None of the previously known erroneous variants should
create a sequence identical with the correct sequence.

85



This is particularly important as receiving points with
an incorrect algorithm might reinforce the misconcep-
tion.

3. Two erroneous variants should not create identical se-
quences to make it possible to identify the underlying
misconceptions.

It is still important to point out that the existence of slips
will affect recognition of the misconceptions and can never
be fully eliminated. One of the aims of this research is to
provide the student with better automatic feedback, when
human assistance is not available. Studying the quality of
this feedback on a real course will give us more insight on
how accurate our methodology is.

6. ACKNOWLEDGMENTS
This work was supported by the Academy of Finland un-

der grant number 210947.

7. REFERENCES
[1] M. Ben-Ari. Constructivism in computer science

education. Journal of Computers in Mathematics and
Science Teaching, 20(1):45–73, 2001.

[2] J. S. Brown and R. B. Burton. Diagnostic models for
procedural bugs in mathematical skills. Cognitive
Science, 2:155–192, 1978.

[3] J. S. Brown and K. VanLehn. Repair theory: A
generative theory of bugs in procedural skills.
Cognitive Science, 4:379–426, 1980.

[4] R. B. Burton. Debuggy: Diagnosis of errors in basic
mathematical skills. In Intelligent Tutoring Systems.
Academic Press, 1981.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1990.

[6] A. Korhonen. Visual Algorithm Simulation. Doctoral
thesis, Helsinki University of Technology, 2003.

[7] A. Levitin. the Design and Analysis of Algorithms.
Addison Wesley, 2003.

[8] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267–288,
2004.

[9] D. A. Norman. Some observations on mental models.
In D. Gentner and A. Stevens, editors, Mental Models,
pages 7–14. Lawrence Erlbaum Associates, 1983.

[10] S. I. Robertson. Is analogical problem solving always
analogical?: The case for imitation. HCRL Technical
Report 97. Technical report, HCRL, The Open
University, 1993.

[11] R. Sison and M. Shimura. Student modeling and
machine learning. International Journal of Artificial
Intelligence in Education, 9:128–158, 1998.

[12] M. A. Weiss. Data Structures and Algorithm Analysis
in C. Addison Wesley, 1997.

86


