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Radio-frequency (rf) coils are used in all clinical and research magnetic-resonance-imaging (MRI) sys-
tems to excite nuclear spins and to receive signals from them. The quality of imaging depends strongly on
the signal-to-noise ratio (SNR) and the transmit efficiency of the coils. The birdcage volume coils used in
most MRI scanners for homogeneous imaging of a sample are typically shielded from the external systems
of the MRI scanner, i.e., the gradient coils, to confine the rf field within the region of interest. However, the
near magnetic field of a conventional copper rf shield surrounding a birdcage coil interferes destructively
with the primary field of the coil in the sample, which significantly limits the SNR and the transmit effi-
ciency. In the work presented here, we theoretically study and experimentally demonstrate the possibility
of creating an artificial magnetic rf shield for a birdcage coil with constructive interference in a sample.
This effect is similar to the in-phase reflection of antenna far fields from a magnetic shield but affects the
near field in MRI. We build an analytical model of a birdcage coil shielded with a cylindrical impedance
boundary and analyze the conditions for increasing the efficiency of the coil by means of the shield. We
conclude that by replacing a copper shield with an artificial magnetic one, it is possible to reduce the dis-
sipative intrinsic losses of the coil and increase the power absorbed by the sample, which improves the
efficiency. To demonstrate the effect, we perform a detailed numerical simulation and an experiment with
a small birdcage in a 7-T 19F MRI system with a magnetic shield implemented as a periodic cylindrical
metal structure with corrugations filled with a ceramic.

DOI: 10.1103/PhysRevApplied.13.064004

I. INTRODUCTION

The quality of magnetic resonance imaging (MRI)
depends strongly on radio-frequency (rf) fields created by
coils, that is, antennas specially designed to operate in
the presence of a strongly conductive sample (the body to
be imaged). In particular, the resolution of MRI requires
a high signal-to-noise ratio (SNR). This means that the
signal from the sample must be distinguished from the
thermal noise produced by both the sample and the coil.
The intrinsic coil noise is associated with dissipation losses
in the metal and dielectric components of the coil and

*redha.abdeddaim@fresnel.fr

needs to be minimized. The best SNR is achieved when
the noise comes mostly from the sample [1]. However, it is
complicated to achieve this condition in many MRI appli-
cations. In particular, for so-called volume coils that image
the entire sample, the latter may occupy only a small part
of the coil. In this case, the intrinsic noise of the coil can
dominate, leading to a poor SNR. For a single transceive
coil, due to the reciprocity principle, the SNR is propor-
tional to the transmit efficiency. For a linearly polarized
field, the efficiency is defined as

η = |H |/
√

Pacc, (1)

where |H | is the magnitude of the rf magnetic field cre-
ated by the coil in the transmit mode in the center of
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the sample, and Pacc is the power accepted from the
transmitter. Commonly, clinical and research MRI sys-
tems employ volume coils based on so-called birdcage
resonators for rf excitation [2]. Volume coils can also be
used in a transceiver mode, that is, for both transmission
and reception. The birdcage resonator shown in Fig. 1(a)
is based on a periodic cylindrical arrangement of par-
allel straight conductors (rungs) with two end rings, in
which capacitors are connected periodically. This structure
supports a slow wave propagating around its circumfer-
ence [3,4]. In the low-frequency approximation (when
the diameter of the resonator is electrically small), its
two polarization-degenerate fundamental modes produce
homogeneous linearly polarized magnetic fields in the
whole cylinder volume. When driven from two ports in
quadrature, the coil produces a homogeneous circularly
polarized magnetic field. Birdcage coils can be efficient
only when properly loaded with a conductive sample. It
has been shown [1] that the efficiency [Eq. (1)] is related
to the ratio between the unloaded (QU) and loaded (QL)
quality factors of the resonator. QU is the quality factor of
the empty coil, while QL is that with a sample in the coil.
Poor loading, with small and weakly conducting samples,
is associated with QU/QL ≈ 1. In this case, the intrinsic
loss dominates over the sample loss, and the coil becomes
inefficient. The desired situation is QU/QL � 1, in which
the coil is properly loaded and its efficiency is maximized.

Another issue that reduces the efficiency of birdcage
coils is shielding. Typically, birdcages are surrounded by a
cylindrical copper shield with an electrically small gap to
isolate the coil from the gradient system, reduce radiation
losses, and make their performance stable [5].

From skin-depth theory, a copper shield can be char-
acterized by a complex surface impedance with a very
low absolute value ZC = (1 + i)

√
μ0ω/2σs, where σs is

the conductivity of copper, ω = 2π f is the angular fre-
quency, and μ0 is the permeability of free space [6]. This
boundary condition requires an almost zero tangential E-
field component at the shield, and so the shield reflects
electromagnetic waves out of phase and causes significant
alteration of the primary magnetic and electric fields of
the birdcage coil. The total field can be considered as the
sum of a primary field due to currents in the coil and a
field due to their image currents, representing the shielding
effect. As a result, both the electric and the magnetic fields
inside the coil are sharply reduced, increasing within the
gap between the coil and the shield [7]. In the quasistatic
approximation, this field reduction in the center of the coil
reads 1 − R2

coil/R2
shield, where Rcoil and Rshield are the radii

of the coil and the shield, respectively [8]. This field redis-
tribution effect may considerably decrease the efficiency.

An evident way to mitigate the destructive interfer-
ence between the birdcage and the shield is to modify
the surface impedance of the shield. From antenna the-
ory, it is well known that for radiative fields, destructive

interference can be even turned into constructive interfer-
ence when the surface impedance is switched from zero to
infinity (for a perfect magnetic conductor, PMC) [9]. In the
case of a birdcage resonator, the current in the conductors
of the coil induces an in-phase image current in a surround-
ing PMC shield. Hence, there are no field concentrations in
the gap, and the field level inside the coil (i.e., in the sam-
ple) is expected to be almost independent of the gap width
Rshield − Rcoil.

Image magnetic currents do not exist in nature, but
the behavior of PMC shields can be approximated using
resonant periodic structures. Anisotropic PMC operation
for both polarizations of an incident plane wave can be
achieved using a mushroom-type high-impedance struc-
ture [10]. The effect of high-impedance shields, on which
the tangential H -field component becomes small, on the
radiation patterns of simple wire antennas has been investi-
gated [11,12]. High-impedance surfaces have been used to
design miniaturized reflectarrays [13], leaky-wave anten-
nas [14], and absorbers [15,16], but their most popular
application has been in artificial magnetic shields (AMSs)
for low-profile unidirectional antennas. As has been shown
in the literature, AMSs allow placing an antenna with a
horizontal polarization, e.g., a dipole [17] or a microstrip
patch [18], at an electrically small distance from the plane

z

x

End-ring 
capacitor

Metal shield

Rshield

R
co

il

z
y

x

I

II

III

Is

Ic

R sa
m

pl
e

Effective surface 
current source

Lossy dielectric 
cylinder

nI-II

Impedance
shield

Rcoil

R sh
ie

ld

y

(a)

( )

Birdcage coil

Sample

R sa
m

pl
e

(b)

α

w

FIG. 1. Real geometry (a) and homogenized two-dimensional
model (b) of a birdcage coil with a conductive cylindrical sample.
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of the shield. Unlike the case for a metal shield, at the
resonance of the AMS, the antenna can approach the
shield with a very narrow gap without its radiation effi-
ciency being damaged, due to constructive interference
[17]. Furthermore, AMSs and similar resonant structures
have been used as walls for microwave cavities and waveg-
uides to allow miniaturization of them and below-cutoff
propagation [19,20].

Recently, the approach of using AMSs has been applied
to individually driven dipole elements in a head array for
use at 7 T [21]. The dipoles provided a 7% higher rf mag-
netic field in the center of a sample compared with a copper
shield for the same overall accepted power, although the
mutual coupling between the dipoles was increased. More-
over, a high-impedance surface has been applied as a
shield for a surface-loop coil in a 7-T MRI system, also
improving its field level [22].

One practical realization of a PMC is in the form of a
corrugated surface [23]. This structure, with grooves of a
quarter-wave depth, behaves like a perfect magnetic con-
ductor for one linear polarization of the incident waves.
Corrugated surfaces can be miniaturized and made into
electrically thin structures by filling the grooves with a
high-permittivity dielectric material [24].

In this paper, we study analytically the near-field effect
of a PMC on the performance of a birdcage coil. Based
on the analytical model, we investigate the possibilities for
improving the efficiency. The possibility of using AMSs
with a birdcage coil has not been previously studied. A
birdcage itself is a complex multimode resonator. As we
show in this paper, the presence of a resonant AMS con-
siderably changes the resonant frequencies and fields of
the different eigenmodes of the birdcage, including its fun-
damental mode. However, in an appropriate regime of
coupled oscillations, the AMS provides constructive inter-
ference with the birdcage and an improvement in its field
level [25]. In Sec. II, we analytically model a birdcage
in the presence of a PMC to investigate the possibili-
ties for improving the efficiency of the coil. After that,
in Sec. III A, we investigate numerically the correspond-
ing regime of near-field constructive interference between
the coil and the AMS based on a periodically corrugated
surface filled with a ceramic. Finally, we demonstrate that
our AMS behaves similarly to a PMC and allows one
to improve the efficiency and loading of a birdcage, as
confirmed experimentally in Sec. III B.

II. THEORY OF BIRDCAGE COIL WITH AN
ARBITRARY IMPEDANCE SHIELD

A. Approximate analytical model

To simplify the analysis of a birdcage in the presence of
an AMS, we start with an approximate analytical descrip-
tion, which is, however, capable of predicting the possible
benefits in terms of efficiency, and the conditions required

to achieve them. In all expressions, we use harmonic time
variations of the form exp(j ωt).

It is well known that linear currents flowing in the
straight conductors (rungs) of a birdcage at the resonance
of its fundamental mode have a sinusoidal distribution
around the circumference, with the total phase shift being
equal to 360◦. In other words, the current in the nth conduc-
tor, at an axial angle φn, as shown in Fig. 1(a), reads In =
I0 cos(φn)g(z), where I0 is the common complex magni-
tude of the mode, and g(z) is a smooth function describing
the current distribution along the z axis, which depends
mainly on the coil length L; n = 0, 1, . . . , N − 1, with N
being the number of rungs. If the period of the rungs
2πRcoil/N is much smaller than the coil radius Rcoil, the
field of the fundamental mode can be calculated using a
continuous surface current distribution instead of discrete
currents [26]:

Ic = I0 cos(ϕ)g(z). (2)

To qualitatively study the effect of an impedance shield on
the field of a birdcage, we consider the two-dimensional
model shown in Fig. 1(b), in which the coil is infinite in
the z direction [g(z) is constant], while the source is given
by Eq. (2).

The model consists of the cylindrical surface current
described above, an impedance shield, and a conductive
circular cylinder representing the sample, with relative per-
mittivity εr and conductivity σ . In our model, we neglect
the end-ring currents and allow all currents to flow only
in the z direction, which means that we consider only a
TM-polarized field. In particular, there is only a nonzero
longitudinal electric field component Ez, while the mag-
netic field has only two transverse components, Hφ and Hρ .
To calculate the field components due to the given current
source, we set boundary conditions on coaxial cylindrical
surfaces as follows. The shield is defined by an impedance
boundary condition, where the tangential component of the
electric field is proportional to the induced surface cur-
rent, i.e., IsZs = Ez at ρ = Rshield, with an arbitrary surface
impedance Zs. Both Ez and Hφ must be continuous at the
air-dielectric boundary at ρ = Rsample. In each of three vol-
umes I, the sample (ρ < Rsample), II, the space between
the sample and the coil (Rsample < ρ < Rcoil), and III, the
gap between the coil and the shield (Rcoil < ρ < Rshield),
Ez satisfies the Helmholtz equation,

1
ρ

∂

∂ρ
ρ

∂Ez

∂ρ
+ 1

ρ2

∂2Ez

∂ϕ2 + k2Ez = 0, (3)

where k = k0 = ω/c is the wave number in free space and
k = k1 = k0

√
ε̂r is that in the sample medium, with com-

plex permittivity ε̂r = εr − j σ/ε0ω. Equation (3) is solved
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by separation of variables:

Ei
z =

∞∑

m=0

[Ai
mJm(kρ) + Bi

mYm(kρ)]
[

cos mϕ

sin mϕ

]
, (4)

where Jm(kρ) and Ym(kρ) are Bessel functions of the first
and the second kind, respectively, of order m, and Ai

m, Bi
m

are complex coefficients to be determined for the three
volumes i = I, II, III.

The given current source flowing in the cylindrical sur-
face of the coil (ρ = Rcoil) can be taken into account by
writing the boundary condition as a jump in the tangential
component of the magnetic field equal to H III

ϕ − H II
ϕ = Ic.

The corresponding tangential component of the electric
field remains continuous:

EIII
ϕ = EII

ϕ . (5)

Because of the symmetry of the problem and the particular
shape of the excitation, cos φ, the field in each volume has
the same angular dependence (only one fundamental-mode
contribution is kept),

Ei
z = [

AiJ1(kρ) + BiY1(kρ)
]

cos ϕ. (6)

The magnetic field components can be derived from
Eq. (5) using the Maxwell equation ∇ × E = −j ωμ0H.
After substituting all the field components into the five
boundary conditions, and given that Ez must have no sin-
gularity at ρ = 0 (Bi is zero), only five unknowns are left
to be found. This is done by solving the matrix equation

[A] = [M ]−1 · [I ], (7)

where [A] is the vector of the unknown coefficients, [I ]
is a vector depending on the source currents of the bird-
cage, and [M ] is a 5 × 5 matrix with coefficients expressed
through Bessel functions depending on the coil parame-
ters, including the shield impedance. The expressions for
[I ] and [M ] are given in the Appendix.

Based on the fields calculated using the unknowns once
they have been determined, it is possible to characterize
the efficiency of the coil using Eq. (1). Assuming that all
power accepted from the transmitter is dissipated in the
sample, i.e., the coil is lossless (Pacc = Psample), the effi-
ciency can be calculated as the volume integral of the
power-loss density [1,27]:

η = |H(ρ = 0)|√
Psample

= limρ→0 |Hρ |√
1
2

∫ 2π

0

∫ Rsample
0 σ |Ez|2ρ dρ dϕ

. (8)

Since BI is zero, both the electric and the magnetic field in
the sample volume are proportional to the same coefficient
AI , which in turn depends on the shield impedance. As a

result, the efficiency in Eq. (8) does not depend on ZS. After
some simple derivations, it can be shown that the efficiency
depends only on the size and material parameters of the
sample and is determined by the expression

η = (cμ0Rsample)
−1|

√
ε̂r|√

πσ
[
J 2

1 (k1Rsample) − J0(k1Rsample)J2(k1Rsample)
] .

(9)

This allows us to conclude that if all transmit power is
absorbed in the sample, the shield impedance does not
affect the shape of the distribution of either the E or the
H field within the sample, and, consequently, it does not
affect the efficiency. In fact, the shield impedance dramat-
ically affects the ratio between the magnetic field and the
current: if a metal shield is replaced by a PMC one, this
ratio is increased. However, the electric field also increases
proportionally to the given source current, which holds the
efficiency at the same level. Therefore, if a volume coil is
properly loaded (all input power is absorbed by the sample
and QL 	 QU), it cannot be improved by using a magnetic
shield. However, as shown in the following, if the coil is
insufficiently loaded by the sample and intrinsic coil losses
are relevant, an AMS can improve the efficiency.

It is possible to extend our model by taking into account
the losses in the birdcage rungs as well as the losses in the
impedance shield. The boundary condition on the shield
already contains an arbitrary surface impedance, which, for
the reference coil, is equal to the surface impedance of the
corresponding metal (e.g., copper). A PMC shield has an
infinite surface impedance, while an AMS with losses has
a high but finite purely real impedance at the resonance.
So far, the given surface current Ic has been equal to a
step in the tangential magnetic field component, and this
given source only generates power. In the case of a lossy
coil, the total complex power due to the current IC con-
tains generated, dissipated, and reactive power. The latter
two types of power can be introduced by using a nonzero
internal complex impedance in the distributed source. This
impedance has the meaning of a surface-averaged complex
grid impedance Zcoil of the periodic structure of copper
birdcage rungs. Thus the total complex power per unit
length of the coil in the z direction at a given current
density [Eq. (2)] reads

Ṗ = −1
2

∫ 2π

0
EzI∗

CRcoil dϕ + 1
2

∫ 2π

0
|IC|2ZcoilRcoil dϕ.

(10)

The impedance response of a real coil, which is in practice
a discrete structure of N thin copper strips of width w peri-
odically arranged on a cylindrical surface with a period of
α = 2πRcoil/N , can be determined according to the Kon-
torovich method of averaged boundary conditions [28,29]
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as

Zcoil = Zwα + j η0
α

λ0
log

α

2πrw
, (11)

where rw is the effective radius of a thin strip conductor of
width w [30] (rw = w/4), and Zw is the linear impedance
of a circular wire. In the approximation in which the thick-
ness of the conductor is large compared with the skin
depth, the impedance of the wire can be calculated as
Zw = (1 + j )/δπrwσs, where δ = √

2/ωσsμ0 is the skin
depth and σs is the conductivity of the birdcage rungs.
The expression for the complex power [Eq. (10)] can be
conveniently rewritten as

Ṗ = π |I |2
2

(
−EII

z (ρ = Rcoil)

I
+ Zcoil

)

= Ṗsample + Ṗcoil + Ṗshield, (12)

where EII
z (ρ = Rcoil) = AIIJ1(k0Rcoil) + BIIY1(k0Rcoil) is

the tangential component of the electric field on the sur-
face of the coil, Pcoil is the complex power due to the coil
rungs, Psample is the power absorbed by the sample, and
Pshield is the complex power due to the shield. All parts of
the power are assumed to be per unit length in the z direc-
tion. The complex power Ṗshield can be calculated based on
the previously found field components as

Ṗshield = πRshield

2Z∗
shield

|AIIIJ1(k0Rshield) + BIIIY1(k0Rshield)|2.

(13)

Equations (12) and (13) allow us to determine separately,
for a given surface current, the power absorbed in the
sample as

Psample = �(Ṗ) − �(Ṗshield) − �(Ṗcoil) (14)

and the total intrinsic dissipated power in the coil as

Ploss = �(Ṗcoil) + �(Ṗshield). (15)

We assume the birdcage rungs and the conventional shield
in the reference case to be made of copper with a conduc-
tivity of σs = 59.5 S/m. As discussed above, the efficiency
of a birdcage in the absence of intrinsic losses does not
depend on the shield surface impedance and should be
the same in the cases of rf electric and magnetic shields:
ηelec = ηmagn. Therefore, one can write

ηmagn = |H magn(ρ = 0)|√
Pmagn

sample

= |H elec(ρ = 0)|√
Pelec

sample

= ηelec. (16)

With the same source current, in the presence of losses,
the same signal levels |H elec(ρ = 0)| and |H magn(ρ = 0)|

are provided as for the lossless coil, but the total power
consumed is changed, and so the efficiency levels become
different:

ηmagn = |H magn(ρ = 0)|√
Pmagn

sample + Pmagn
loss

�= |H elec(ρ = 0)|√
Pelec

sample + Pelec
loss

= ηelec. (17)

On the basis of the last two expressions, it is easy to show
that the efficiency gain G = ηmagn/ηelec due to replacement
of an electric shield with a magnetic one is

G =
√√√√ 1 + Pelec

loss/Pelec
sample

1 + Pmagn
loss /Pmagn

sample
. (18)

The best possible gain is achieved for an initially weakly
loaded coil with high intrinsic dissipation losses. By
replacing the metal shield with a PMC one, one can
make the power dissipated in the sample much larger than
the intrinsic loss power of the coil. In this scenario, the
best efficiency gain can be estimated from our theoretical
model as

Gmax =
√

1 + Pelec
loss/Pelec

sample. (19)

As can be seen from the last expression, the efficiency
gain is limited by the initial ratio between the levels of
the intrinsic loss and the sample power. Therefore, an
AMS is worth applying in the case of birdcage coils
with weak loading, e.g., due to a small sample. In other
words, the closer the loaded and unloaded quality factors
of the birdcage are to each other, the higher the efficiency
improvement.

To compare the efficiency of a birdcage coil with a
copper shield and the same coil with a PMC shield, let
us consider a small birdcage configuration for preclinical
MRI at 7 T. In this application, small animals (e.g., a rat or
a mouse) of very different sizes can be used as samples.
Using our model, it is possible to study how the effi-
ciency gain depends on the diameter of a lossy cylindrical
sample and on the frequency. In efficiency-gain calcula-
tions based on the formula in Eq. (18), for the sample,
we use the following dielectric parameters of a commer-
cially available liquid for calibration of body coils: εr =
58, σ = 0.95 S/m. The same liquid is also used in mea-
surements. The coil radius Rcoil is assumed to be 36 mm,
which corresponds to a commercially available transmit-
receive birdcage coil for a 7-T preclinical scanner made by
Bruker [31].

In Fig. 2(a), the calculated gain is shown versus the
sample diameter and the frequency for a shield radius
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FIG. 2. Analytically calculated efficiency gain due to an ideal
magnetic shield (PMC) for a preclinical birdcage coil operating
at 7 T (280 MHz): (a) Rshield = 40 mm; (b) Rshield = 57.5 mm.
Analytically calculated maps of magnetic field (c),(e) and electric
field (d),(f) for Rshield = 57.5 mm with a copper (left) and a PMC
(right) shield.

Rshield = 40 mm. To show that the radius of a copper shield
can strongly affect the performance of the coil, a similar
dependence is presented for Rshield = 57.5 mm in Fig. 2(b)
for comparison. The arrow indicates 280 MHz, which is
the Larmor frequency of 19F nuclei at 7 T, and the sam-
ple radius is 11.5 mm. A sample of this size corresponds
roughly to the dimensions of a laboratory mouse. As can
be seen from a comparison of the plots in Figs. 2(a) and
2(b), the smaller the shield radius and the narrower the gap
between the shield and the coil, the higher the efficiency
gain. A narrower metal shield makes the birdcage less
efficient due to destructive interference. However, with
the PMC shield, this is not the case. Moreover, one can
observe in Figs. 2(a) and 2(b) that the magnetic shield
improves the efficiency better at lower frequencies, which

can be explained by a reduction of the effect of losses in
the sample compared with losses in the coil conductors.
Finally, for the same reason, the smaller the sample, the
higher the gain is.

The distributions of the electric and magnetic fields in a
transverse section of the coil for a copper shield of radius
Rshield = 57.5 mm are depicted in Figs. 2(c) and 2(d), and
corresponding distributions for a PMC shield are depicted
in Figs. 2(e) and 2(f). The fields are normalized by the
square root of the accepted power per unit length in the
z direction. This power is calculated as a volume integral
of the power-loss density within the sample based on the
E-field distribution. In other words, the absolute values of
the H field in Figs. 2(c) and 2(e) are proportional to the
efficiency according to Eqs. (16) and (17).

From a comparison of the analytically calculated field
maps, it is clear that replacing a copper shield with a PMC
one changes the magnetic and electric field distributions.
In particular, in the presence of a PMC shield, the mag-
netic field for the same accepted power becomes weaker in
the gap between the coil and the shield, while it increases
in the center of the coil. This means that the magnetic
shield increases the efficiency of the coil in the transmit
mode. However, the shapes of the E- and H -field distri-
butions in the sample do not change; instead, they remain
homogeneous.

B. Numerical solution for a birdcage coil with an ideal
rf magnetic shield

The above conclusions are valid for a model (infinite)
coil with a smooth distribution of surface current. To
validate them for a realistic birdcage resonator, numerical
simulations are performed. We consider a high-pass
birdcage coil made of N = 8 copper rungs, surrounded
by a cylindrical PMC shield. The results are compared
with the case of a conventional copper shield. All simu-
lations are done using the frequency-domain solver in CST
Microwave Studio 2017 (using the finite-element method).
As an example, a preclinical small coil is considered, with
the same radius Rcoil = 36 mm as in the analytical calcu-
lations. The length of the rungs is taken as 110 mm. In
all simulations, a single discrete port is placed in parallel
with one of the end-ring capacitors for excitation of the
birdcage, as shown in Figs. 1(a) and 3(a). With only one
port, we compare the operation of the birdcage in the pres-
ence of different shields in the linear-polarization regime.
In all cases considered in this section, the coil is tuned to
280 MHz by adjusting the capacitors in the end-ring con-
ductors. In the simulations, the sample is represented by
a homogeneous dielectric cylinder with a length of 80 mm
and the same material properties as in the analytical model.

First, we study the dependence of the efficiency on the
shield radius for a sample radius of 11.5 mm. The results
are shown for a copper and a magnetic shield in Fig. 4(a).
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FIG. 3. Setup for simulation of a small birdcage inside an
AMS (PISA): (a) cross section; (b) perspective view; (c) con-
ventional planar corrugated structure filled with dielectric.

These results demonstrate that the efficiency of the bird-
cage with the PMC shield is almost independent of the
size of the shield. This can be explained by constructive
interference with in-phase mirror currents induced by the
birdcage rungs in the shield. In contrast, the efficiency
with a copper shield decreases rapidly when the shield
approaches the coil (i.e., Rshield becomes close to Rcoil =
36 mm), due to destructive field interference. Noticeably,
when the radius of the copper shield is changed, there is a
point Rshield = 57.5 mm from which a further increase in
the shield radius has almost no effect on the efficiency. So,
for a copper shield, this is the smallest shield radius for
which one can obtain the maximum efficiency. This value
is taken for the reference coil to make comparisons with in
the simulations and measurements.

Figure 4(b) shows the dependence of the efficiency of
the same coil on the sample radius for a fixed Rshield. It can
be observed that the efficiency gain is higher for smaller
sample sizes, and the gain is highest when the coil is empty
(contains no sample). For the sample radius of 11.5 mm
considered, the PMC shield gives a gain of 33%. For larger

Printed 
metal ring

ZX
Y

(a) (b)

(c)

Sample

Rring

lring

hring

Birdcage

Ceramic 
ring

Metal wire

Feed

FIG. 4. (a),(b) Numerically calculated magnitudes of the mag-
netic field created by a birdcage coil at an accepted power of
0.5 W (i.e., efficiency): (a) level at the center of the sample for
copper and PMC shields versus the shield radius; (b) level at the
center of the sample for copper and ideal magnetic shields ver-
sus the sample radius. (c),(d) Power dissipated in the sample and
the coil and radiated power with (c) copper shield and (d) PMC
shield. Rshield = 57.5 mm and Rsample = 11.5 mm. (e),(f) Distri-
bution in transverse plane with (e) copper shield and (f) PMC
shield.

radii of the sample, the gain due to the PMC shield is
reduced, and becomes negligible when Rsample > 20 mm.
This means that, as in the analytical model, a PMC shield
does not improve the efficiency of a properly loaded coil.
Numerically calculated magnetic field patterns in the cen-
tral transverse plane of the coil for an accepted power of
0.5 W are shown in Figs. 4(e) and 4(f) for a copper and
a PMC shield, respectively. As in the analytically calcu-
lated plots, the magnetic shield concentrates most of the
magnetic field energy within the coil, while in the case of
the copper shield the concentration takes place in the gap
between the coil and the shield. This difference in field pat-
terns is similar to that obtained from the analytical model
[compare Figs. 2(c) and 2(e) with Figs. 4(e) and 4(f)].
The efficiency gain observed in the simulations is due to
a change in the ratio between the power absorbed by the
sample and the power dissipated in the copper conductors
of the coil. The plots given in Figs. 4(c) and 4(d) show
that when the sample is small and the loading is weak
(QU/QL ≈ 1), the power absorbed by the sample can be
considerably increased by a PMC shield. In contrast, for
large samples, almost all the accepted power of 0.5 W is
absorbed by the sample no matter which shield is used.
Therefore, as expected from Eq. (19), the magnetic shield
improves the efficiency only when the coil is poorly loaded
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and initially a large portion of the power is dissipated
within the coil. In terms of the receive mode, the role of
the magnetic shield is to increase the signal received from
the sample and also to increase the noise from the sample
proportionally, but keeping the same intrinsic noise from
the coil. As a result, the importance of the intrinsic noise
decreases considerably, and the overall SNR increases. It
should be noted that the quantitative gain predicted by
Eq. (19) differs from that obtained from the numerical sim-
ulations (10% vs 30%) because our analytical model is
approximate and only qualitatively describes the effect of
the shield.

III. IMPROVEMENT OF A BIRDCAGE MRI COIL
WITH AN ARTIFICIAL MAGNETIC SHIELD:

PROOF OF CONCEPT

As follows from the results presented above, an ideal
magnetic shield can improve the efficiency of an under-
loaded birdcage coil, for instance in the case of a small
sample, when it replaces a conventional copper shield. To
prove this effect experimentally, we design an AMS based
on a cylindrical axially symmetric corrugated surface filled
with a high-permittivity ceramic. The AMS, placed around
a small birdcage coil, is shown in Figs. 3(a) and 3(b). A
corrugated structure [Fig. 3(c)] is known to demonstrate
high-impedance properties and in-phase reflection for inci-
dent waves polarized perpendicularly to the corrugations,
at its quarter-wave resonance. Since the main component
of the E field of a birdcage is the z component, the corruga-
tions should be axial. In the AMS, we bend the corrugated
surface so that it produces an axially symmetric structure
with an internal radius Rring surrounding the birdcage to be
improved.

A. Design and numerical simulation of an artificial
magnetic shield for a birdcage

Hereinafter, we use the same birdcage as in the simula-
tions presented the previous section, with the size of a com-
mercial preclinical birdcage coil. We call this birdcage coil
together with the above AMS, based on a cylindrical cor-
rugated structure with axial symmetry, PISA (Preclinical
Improved Signal Antenna). In the numerical simulations,
the corrugations have thin copper walls and are partially
filled with a dielectric with the material properties of a
commercially available CaTiO3-based ceramic [32] (εr =
160, tan δ = 0.0005). This is done by inserting ceramic
rings into the corrugations as shown in Figs. 3(a) and 3(b).
The inner radius of the dielectric ring is Rring = 47 mm,
the thickness is hring = 11 mm, and the length of every
ring is lring = 26 mm, which is equal to the period of the
corrugations in the z direction.

Although the conventional corrugated structure shown
in Fig. 3(c) has a solid ground plane, a copper sheet

connected to every wall of the corrugations, this design
cannot be applied in MRI. This sheet is in fact incom-
patible because it supports unwanted eddy currents [33],
excited during pulse sequences with rapidly changing gra-
dient magnetic fields, which may cause imaging artifacts.
To suppress eddy currents while keeping the same
functionality at the Larmor frequency, we use a cylindri-
cal grid of 32 parallel 2-mm-thick brass wires, as shown
in Fig. 3(a). The wires are arranged with an axial period-
icity around the ceramic rings at a radius of 70 mm and
placed parallel to the birdcage rings by connecting each
wire to all corrugation walls. The walls are 0.5-mm-thick
copper rings. The number of wires is chosen to approxi-
mate the behavior of a solid metal shield, i.e., to confine the
resonant field in each corrugation; this field can spread out-
side to a distance of approximately one interwire spacing.
More wires would complicate the assembly of the AMS
too much.

The birdcage itself is a multimode resonator, with a
particular fundamental mode with maximum power dissi-
pation in the sample at the corresponding resonance. For
the high-pass birdcage considered here with a conventional
copper shield, this mode has the highest frequency [3].
This resonant frequency can be tuned with the end-ring
capacitors to the Larmor frequency. The dielectric-filled
AMS also has a particular eigenmode, which has a mag-
netic field distribution and polarization similar to those of
the fundamental birdcage mode. The two field distributions
are shown in Fig. 5(a) together with numerically calcu-
lated values of S11 at the birdcage port in the presence of
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a copper shield. In this case, the fundamental resonant fre-
quencies of the birdcage and the AMS are both made close
to 340 MHz. When the copper shield is replaced by the
resonant AMS, the birdcage mode splits into two coupled
modes: an even mode at 280 MHz and an odd mode at
395 MHz. This hybridization effect occurs due to strong
mutual coupling between the two resonators. The coupled
mode resonances can be seen in Fig. 5(b) on the frequency
curve of S11 for the birdcage in the presence of the AMS.
The corresponding field distributions are given in Fig. 5(b)
as insets. Note that both the even and the odd modes
have identical cosinelike field distributions over the angu-
lar coordinate and similar homogeneous profiles along the
Z axis. However, while the even mode has a maximum
of the H field in the center of the coil, the odd mode has
a null at the same point. By comparison with Fig. 4(f), it
is clearly seen that the effect of the even mode within the
birdcage is similar to that of an ideal magnetic shield. In
other words, the proposed structure provides constructive
near-field interference at the even-mode resonance. In our
case, this resonance is obtained at 280 MHz, which is the
Larmor frequency of 19F fluorine nuclei in 7-T MRI.

In Fig. 6, we numerically compare the performance of a
birdcage with a copper shield of radius 57.5 mm and PISA.
Also, we compare the performance with results for an ideal
PMC shield. All coils are tuned to 280 MHz and matched
to 50 � with lumped capacitors at the input port using cir-
cuit cosimulation with CST Design Studio. Figure 6 shows
the magnetic field patterns for a fixed accepted power of
0.5 W (the efficiency) for a sample of radius 11.5 mm
and four different shields: an AMS without losses, an ideal
PMC, an AMS with losses, and, finally, a copper shield.
As can be seen from Fig. 6, for this sample, the field
level obtained with the PMC shield is well above that
with the copper shield (13.5 vs 10.8 A/m) for the same
power, which means an efficiency improvement of 25%.
At the even-mode resonance of the lossless PISA, the effi-
ciency level is the same as for the PMC shield. Comparing
Figs. 6(a) and 6(b), one can conclude that PISA realizes
the same efficiency improvement. Moreover, although the
magnetic field is enhanced within the corrugated structure
in the real resonant AMS, the shape of the field distribu-
tion inside the birdcage is the same as that obtained with
the ideal PMC. Therefore, the effect of the AMS when its
losses are neglected is the same as that of the PMC. When
losses in the commercially available ceramic material of
the rings and the finite conductivity of the metal elements
of the corrugated structure are considered, the simulation
still predicts an efficiency gain, though lower than for
the PMC (it is only 13%). Despite the reduced gain, the
losses do not cancel the near-field constructive interference
between the birdcage and the corrugated structure, and the
gain is still observable.

In order to validate our numerical results, we check that
the observed efficiency gain is consistent with the main
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FIG. 6. Numerical comparison of the efficiency of a birdcage
with different types of shield: magnitude of H field for 0.5 W
of accepted power in the central transverse plane. (a) Lossless
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realistic material losses; (d) conventional copper shield; (e) ratio
between unloaded and loaded quality factors of PISA with real-
istic material losses and for birdcage with conventional copper
shield.

parameters of the loading, such as the ratio of the loaded to
the unloaded quality factor and the ratio of the coil to the
sample power. For any coil, the ratio QU/QL has a simple
relation with the ratio Pcoil/Psample [34]. From the simula-
tion, we determine the quality factors from the bandwidth
of the resonance excited with a small test loop. The results
are presented for PISA and for the birdcage with a copper
shield in Fig. 6(e) as circles. In the same figure, the theoret-
ical dependence is given by the blue curve. When QU ≈ QL
(weak loading), the transmit power is redistributed in favor
of the sample, and so the efficiency is improved. When
the loading is strong (QU/QL ≥ 2), the efficiency is not
improved.

B. Experimental demonstration

To experimentally demonstrate the efficiency improve-
ment and the near-field interference effect investigated
here, an AMS is fabricated and used as a shield for a small
birdcage for 7-T MRI. For comparison, a conventional
copper shield is built and combined with another instance
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FIG. 7. Prototype of birdcage coil with AMS (PISA) (a) and its
main parts: small high-pass birdcage with SMD end-ring capaci-
tors (b); CaTiO3 ceramic ring (c); perspective view of assembled
coil (d); thin-wire external ground-plane structure of corrugated
surface (e).

of the same birdcage. The corrugated structure is formed
from five ceramic rings of the same dimensions as in the
simulations. The rings are specially manufactured from a
CaTiO3 ceramic having the measured material properties
tan δ = 0.0005 and εr = 160. The disks are separated by
corrugation walls, realized as copper rings printed on both
sides of Arlon 25N 0.5-mm-thick substrates. The thin-wire
structure on the periphery of the AMS contains 32 brass
2-mm-thick threaded studs, which are fixed to each cop-
per ring of the corrugated structure using a pair of nuts.
By tightening all nuts, each ceramic ring is fixed between
two copper rings so that the whole AMS is mechanically
robust. The birdcage, with the same geometry as in the
simulations, is made of a bent 0.5-mm-thick single-sided
printed circuit board (PCB) on an FR4 substrate wrapped
around a polycarbonate tube with an outer radius Rcoil =
36 mm. The birdcage with the AMS and that with the
conventional copper shield, of radius 57.5 mm, are both
tuned with soldered end-ring surface mount device (SMD)
capacitors and driven through a coaxial cable connected in
parallel with one of those capacitors. The assembled PISA
and its parts are shown in Fig. 7.

To investigate the field distribution and efficiency of the
empty birdcage in the presence of the AMS and the cop-
per shield, the magnetic field is measured in the ZX and
ZY planes. The measurements are done by mechanically
positioning a properly oriented small pickup-loop probe
connected to a port of a vector network analyzer (VNA).
The other port of the VNA drives the birdcage at one port
(in the linear-polarization regime). The efficiency, propor-
tional to the magnetic field normalized by the square root
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FIG. 8. (a) Schematic illustration of setup for field-probing
measurements. (b) Measured efficiency map for PISA and cop-
per shield (reference coil) in XZ plane. (c) Measured efficiency
gain. (d) Measured efficiency map for PISA and copper shield
(reference coil) in YZ plane.

of the accepted power, is calculated from the S-parameters
measured by the VNA as |S12|/

√
1 − |S11|2. To evaluate

the efficiency versus the radius of the sample, we make
two cylindrical phantoms from thin-walled polyethylene
cans of radii 7.5 and 13.5 mm filled with a commer-
cially available liquid [35] with the same permittivity and
conductivity as in the simulations. In this case, the same
formula is used to compare the efficiency, but the S-
parameters are measured with the probe inserted into the
liquid and positioned along the axis of each sample. A
schematic illustration of the field-probing experiment and
a photograph of the probe near the prototype are shown in
Fig. 8(a).

In Figs. 8(b) and 8(d), color maps of the measured effi-
ciency in the XZ and YZ planes, respectively, are shown
for PISA and the reference coil. It is seen that replac-
ing the copper shield with the AMS gives an efficiency
improvement of 12.8% for the empty birdcage, which is
the same as in the simulation of the real structure with
all material losses included. Moreover, the two coils have
the same homogeneous shape of the field pattern. There-
fore, an efficiency gain due to the near-field constructive
interference effect, without a change in the shape of the
field distribution in the birdcage, has been proven without
a sample. In the presence of the two prepared samples with
radii of 7.5 and 13.5 mm, the gain reduced to 10% and
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5%, respectively. From the comparison with the numer-
ical results in Fig. 8(c), one can see that the measured
dependence of the gain on the sample radius is similar to
our theoretical expectations. For every Rsample considered,
there is a good correspondence between the experiment
and the simulation for PISA with realistic material losses.

To demonstrate the capability of the AMS to operate
under conditions of ultrahigh-field MRI, a prototype of
PISA [Fig. 9(a)] is used as a coil in transceiver mode to
map the field pattern at 280 MHz (the Larmor frequency
of 19F nuclei), in a Siemens 7-T MRI system (CEA Neu-
rospin, France). The XFL method [36] is used to measure
a map of the flip-angle (FA) distribution with a reference
voltage of 40 V, which is proportional to the magnetic field
produced by the coil during transmission. The coil contains
a homogeneous cylindrical sample of radius 27 mm con-
taining a water-fluorine mixture. In Fig. 9(b), the PISA coil
is shown inside the MRI system, while Fig. 9(c) shows the
measured FA pattern. Based on Fig. 9(c), one can confirm
that the image of the sample is homogeneous. This means
that PISA operates correctly in both the transmit and the
receive modes in MRI and is capable of imaging 19F.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we investigate the effect of an artificial
magnetic shield on the operation of the most common type
of rf coil for MRI, i.e., the birdcage coil. First, it is demon-
strated that the transmit efficiency of a birdcage depends
significantly on the size of the scanned conductive sample
placed in its center and also on the distance to the copper
cylindrical shield surrounding the coil. The best efficiency
of the birdcage can be achieved when all transmit power is
dissipated in the sample. In the receive mode, this means
that the coil receives all noise from the sample. In the case
of a small sample or a small gap between the coil and the
shield, the transmit power is partially dissipated inside the

coil due to the finite conductivity of its conductors. In such
conditions, the coil cannot reach its peak efficiency.

Our analytical model and simulations show that an ideal
magnetic shield, i.e., a PMC boundary, surrounding the
coil significantly increases the magnetic field in the sample
per unit current, but also increases the electric field per unit
current. Theoretically, in the case of a lossless coil, both the
electric and the magnetic field are increased by the same
coefficient when a conventional metal shield is replaced
with an ideal magnetic one. As a result, a magnetic shield,
despite causing near-field constructive interference in the
sample, provides no efficiency improvement. Generally,
the efficiency in the absence of intrinsic losses (or radia-
tion losses) does not depend on the properties of the shield.
Otherwise, in the case of a relatively small sample or a
small gap between the coil and the shield, our theory pre-
dicts a certain efficiency gain due to an ideal magnetic
shield, given by Eq. (19). It is also demonstrated that the
gain becomes larger at lower operational frequencies. This
can be explained by the fact that the losses in a conduc-
tive sample are frequency dependent and always dominate
over the intrinsic coil losses at higher frequencies. There-
fore, the improvement due to a magnetic shield could be
higher in high-field MRI (up to 3 T) than in ultrahigh-field
MRI (7 T and above). On the other hand, since a magnetic
conductor can be approximated only by a resonant struc-
ture, operation at very low frequencies is complicated due
to the requirement for strong miniaturization of the res-
onators that need to be contained between the coil and the
gradient system of the scanner.

To demonstrate the constructive interference effect for
the fields inside a sample, we propose a practical realiza-
tion of an AMS for a small birdcage 7-T MRI system. We
employ an axially symmetric corrugated structure filled
with a high-permittivity ceramic material. In contrast to an
ideal PMC boundary, the AMS is a finite-sized resonator
and operates only due to excitation of a particular reso-
nant mode. Our structure supports multiple coupled modes
of five mutually coupled resonant corrugations. The fun-
damental mode of the AMS corresponds to the in-phase
summation of the fields of all of the corrugations, and
therefore has a homogeneous field in the center of the res-
onator, as shown in the inset of Fig. 5(a). This field has a
similar distribution to the fundamental mode of the bird-
cage to be improved. When the birdcage is inserted into
the AMS, in the case where both of them resonate at the
same frequency, mode hybridization occurs. As a result,
the whole coil (referred to as PISA) has two main coupled
resonances. The lower-frequency mode implies construc-
tive interference of the near magnetic field of the birdcage
and the secondary field created by induced currents in the
corrugated structure. By inspecting the calculated field pat-
terns for the AMS and the PMC [Figs. 6(a) and 6(b)], one
can ensure that the lossless AMS has an almost identi-
cal effect on the field inside the birdcage to that of the
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ideal magnetic shield at the resonance of the even coupled
mode. Interestingly, for a relatively small sample, both the
ideal and the real magnetic shield provide the same effi-
ciency gain, and the resulting field has the same shape of
its distribution. This behavior is also in agreement with
the analytical model. Thus, only the efficiency of the coil
can be modified, and not the homogeneity of imaging. The
only difference from the ideal boundary in terms of the
field distribution is observable outside of the birdcage: the
magnetic field is resonantly enhanced inside the corrugated
structure. It is also observed, both in the simulations and
then in the measurements, that there is no change in the
axial field distribution. In PISA, the even mode discussed
above is tuned to the Larmor frequency of 19F nuclei at
7 T (280 MHz) for a further proof-of-principle experiment.
The odd coupled mode of PISA leads to destructive inter-
ference of the magnetic fields of the coil and the AMS at
the center of the sample and therefore is useless in MRI.

Additionally, by numerical simulations, we investigate
the effect of losses in the real materials from which the
structure is made. Thus, when we consider the dielectric
losses in the CaTiO3 rings and the finite conductance of
the copper walls of the corrugated structure and its 32 brass
rods at the periphery, it is found that the efficiency gain is
reduced by almost a factor of 2 (13% instead of 25% for
the geometry considered) but is still noticeable, so that an
experimental proof is done. Another important conclusion
from the simulations is that radiation losses are negligible
for either a copper or an AMS shield. This means that the
magnetic shield changes only the ratio between the power
absorbed in the sample and the power dissipated in the coil,
which in sum give the power accepted from the transmitter
[0.5 W in Figs. 6(c) and 6(d) for the simulations].

In the experiment, a PISA exactly similar to the model
used in the numerical simulations is compared with the
same birdcage with a conventional copper shield (the refer-
ence coil). The results precisely confirm the efficiency gain
of 13% for a sample with a radius of 7.5 mm in the case
where the losses of the corrugated structure are included in
the simulation. Also, we experimentally demonstrate that
the shapes of the magnetic field distributions of the refer-
ence coil and PISA are identical in two orthogonal planes.
Therefore, in our experiment, the AMS replaces the cop-
per shield when the birdcage is underloaded, resulting in
improved efficiency and no modification of the imaging
homogeneity. The proper operation of the proposed shield
is additionally confirmed by obtaining a phantom image on
a 7-T MRI system.

The constructive near-field effect due to the corrugated
AMS demonstrated for a birdcage coil has practical impor-
tance only in the case of insufficient loading with a conduc-
tive sample. In ultrahigh-field MRI methods for biomedi-
cal research, poor loading of a birdcage may occur with the
relatively small diameter of the head of a volunteer. Also,
for preclinical coils, a considerable variation of sample

size may take place for laboratory animals such as rodents.
Finally, it is possible to translate this concept to clinical
MRI at 1.5–3 T to increase the loading by the patient’s
body and reduce the losses in the conductors of the coil,
which are significant at lower frequencies. For instance,
insufficient loading of a whole-body birdcage becomes a
problem in clinical MRI when scanning children in a full-
size bore. The proposed method could also be applicable
for extending a transmitting birdcage for use with a human
head while keeping the efficiency relatively high. Such
coils are usually placed very tightly around the object to
be imaged, which is uncomfortable, limits the space for
placing receive arrays between a head and the birdcage,
and leads to a high specific absorption rate (SAR) in local
electric field hotspots. However, tight-fitting coils maxi-
mize the transmit efficiency if they are properly loaded,
that is, the most of the transmit power is dissipated in
the sample. With an AMS, it becomes possible to create
an extended birdcage coil that is much more comfortable
for a patient and creates a lower local SAR but has the
same efficiency. Because of the requirement for stronger
miniaturization at the frequencies used for clinical MRI,
the corrugated structure filled with ceramic presented here
cannot be employed at 1.5 and 3 T. Instead, one needs to
develop another resonator to be coupled to the birdcage,
based on PCB metal structures with structural capacitance
or lumped capacitors. Such designs are the subject of future
work. Nevertheless, there is an important area for practical
application of the effect investigated here to improve the
efficiency and, therefore, the imaging quality of MRI.
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APPENDIX: EXPRESSIONS FOR THE
BOUNDARY PROBLEM

For the boundary problem of a homogenized infinitely
long birdcage, we apply five boundary conditions. At
the impedance shield (ρ = Rshield), the following surface
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boundary condition is valid for the tangential field compo-
nents:

EIII
z = ZSH III

ϕ . (A1a)

Next, at the interface between the dielectric material of
the sample and the air, i.e., at ρ = Rsample, the tangential
components of both the H and the E field are continuous:

EI
z = EII

z , (A2a)

H I
ϕ = H II

ϕ . (A2b)

Finally, at the surface carrying the equivalent surface cur-
rent of the homogenized birdcage, the step in the tangential
H -field component is equal to the given surface current of
the source, while the tangential E field is continuous:

H III
ϕ − H II

ϕ = Ic, (A3a)

EIII
ϕ = EII

ϕ . (A3b)

The five unknown coefficients in the equation for Ez
[Eq. (6)] can be found using the five boundary conditions

[Eqs. (A1a), (A2a), (A2b), (A3a), and (A3b)], and Hϕ

can be calculated using the Maxwell equation ∇ × E =
−j ωμ0H:

H i
ϕ = − j cos ϕ

ωμ0

{
kAi

[
J0(kρ) − J1(kρ)

kρ

]

+ kBi
[

Y0(kρ) − Y1(kρ)

kρ

]}
. (A4)

Substitution of Eqs. (6) and (A4) into the five boundary
conditions gives a matrix equation [Eq. (7)], the solution
of which can be written in the following form:

⎡
⎢⎢⎢⎣

AI

AII

BII

AIII

BIII

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

⎤
⎥⎥⎥⎦

−1

︸ ︷︷ ︸
M

·

⎡
⎢⎢⎢⎣

0
0
0
I0
0

⎤
⎥⎥⎥⎦ .

(A5)

The matrix involved is calculated as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 J1(k1Rb) k1J0(k1Rb) − J1(k1Rb)

Rb
0 0

0 −J1(k0Rb) −k0J0(k0Rb) + J1(k0Rb)

Rb

j
ωμ0

[
k0J0(k0Rc) − J1(k0Rc)

Rc

]
J1(k0Rc)

0 −Y1(k0Rb) −k0Y0(k0Rb) + Y1(k0Rb)

Rb

j
ωμ0

[
k0Y0(k0Rc) − Y1(k0Rc)

Rc

]
Y1(k0Rc)

k0J0(k0Rs) − WJ1(k0Rs) 0 0 − j
ωμ0

[
k0J0(k0Rc) − J1(k0Rc)

Rc

]
−J1(k0Rc)

k0Y0(k0Rs) − WY1(k0Rs) 0 0 − j
ωμ0

[
k0Y0(k0Rc) − Y1(k0Rc)

Rc

]
−Y1(k0Rc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(A6)

where the parameter W = 1/Rs − j ωμ0/Zs is introduced.
Having calculated the unknown coefficients of the matrix
equation [Eq. (7)] by substituting into Eq. (6), it is easy
to calculate Ez at every point of the entire volume of the
coil.

Hϕ can be calculated from Eq. (A4), while Hρ can be
defined using the following equation:

H i
ρ = − j sin ϕ

ωμ0ρ

[
AiJ1(kρ) + BiY1(kρ)

]
. (A7)
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