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A group learning curve model with motor, cognitive and waste 
elements

Abstract

Nowadays, workers, individually or in groups, are continually learning new tasks. The speed at 

which they learn directly contributes to the success of their firms in competitive markets. Learning 

curve research has been either on the individual or organizational level. A few papers have 

developed learning curve models for a group of workers, even fewer that used empirical data for 

that purpose.  However, none of the existing models comprises measurable elements from real 

industrial tasks. This paper aims to fill this gap in the literature by proposing a bivariate group 

learning curve model, an aggregation of three learning curves where the number of workers in a 

group and the number of repetitions are the independent variables. The dependent variable is the 

unit assembly time. The three learning curves represent motor, cognitive, and waste per unit 

assembled. The aggregated learning curve was fitted to experimental data consisting of different 

group sizes (1 to 4 students/workers), each performing four repetitions, and later compared to 

two log-linear learning curves, with and without plateauing. The results showed that the 

aggregated model represented the data the best and that segmenting waste into sub-elements 

(job familiarization, errors, and group coordination) improved the performance of the model. The 

parameter values affected by group sizes and repetitions for each task element provided insights 

that managers could use to improve the performance of their workforce.

Keywords: Learning curves; group size; motor/cognitive/waste elements; experimental data
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1. Introduction

Manufacturing firms have increasingly been using workers in groups on the floor level (Moreland 

et al., 2002; Lantz et al., 2015). Working in groups is the practice, especially at the final assembly 

stage of large and complex products (Yazgan et al., 2011; Martignago et al., 2017). Lack of 

coordination and conflicts that might arise between group members impede their performance. 

Resolving those issues before initiating work, results in better worker utilization and, 

subsequently, group performance (Yilmaz & Yilmaz, 2016). Product customization is the trend for 

many manufacturing firms. Frequent changes in product design and production processes are 

the norms in such work environments, requiring workers to continually adapt to such changes and 

learning new tasks as they do through learning-by-doing (Uzumeri & Nemhard, 1998; Tilindis & 

Kleiza, 2017; Letmathe & Rößler, 2019). In such an environment, it is usually uncommon to have 

clear instructions on how to perform tasks effectively and efficiently. Other examples include rush 

orders (Engström et al., 1996) and rework (Badiru, 1995). Additionally, the number of workers 

assigned to a task may exceed the optimum, and group coordination becomes more complicated. 

All the above studies emphasize the importance of group learning, and further, its predictability 

by utilizing learning curve models.

The question about what affects learning has captured the attention of numerous researchers in 

various fields. The purpose has been to mathematically model learning as a function of known 

variables. Manufacturers produce products, typically, in lots. They have been using cumulative 

production, independent variable, as a proxy for measuring experience, which also has been the 

traditional approach for modelling the learning curve (Yelle, 1979; Jaber, 2011; Glock et al., 2019). 

There has been a debate in the literature, whether cumulative production, alone, appropriately 

represents learning. Some researchers have suggested learning to be time-dependent; others 

have stated that cumulative production overstates its persistence (Jaber & Sikström, 2004), while 

few have argued that having it alone underrepresents the learning data. However, none has 
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proposed excluding it (Jaber & Sikström, 2004). The most commonly used univariate model is the 

Wright (1936) learning curve, henceforth WLC (Jaber, 2011). It has been popular among 

managers as it is easy to use; i.e., it could be transformed into a straight line once plotted on a 

log-log paper, and shown to fit many data sets well. However, it has a fundamental drawback as 

its results are not meaningful when learning ceases; i.e., it enters a plateau. Thus, this drawback 

has been an appropriate starting point for further developments of learning curve models (Jaber, 

2011), ones that represent empirically gathered data better. The earliest along this road is the de 

Jong’s model (1957), henceforth DJLC, who introduced a plateauing parameter that represents 

the minimum processing time, which is similar to the plateau model of Baloff (1971). Readers may 

refer to Glock et al. (2019) for a list of learning curves with plateauing. There has not been a 

consensus on what causes plateauing. Researchers have associated it with different causes (e.g., 

Yelle, 1979; Jaber & Guiffrida, 2004; Peltokorpi & Niemi, 2019a). Some researchers have 

modelled learning curves as bivariate or multivariate models (Badiru, 1992). For example, using 

a 4-year empirical data from an electronics manufacturing plant, Badiru (1995) presented a 

learning curve with cost per unit as the dependent variable and production level, the number of 

workers, downtime, and rework as the independent variables. 

Thus, besides the numerical presentation of learning, industrial learning curves aim to show 

where improvement is needed. In this context, Yelle (1979) and Dutton & Thomas (1984) 

concluded that the factors underlying the learning curve are not well understood. Thomas & 

Yiakoumis (1987) continued with the same line of research and introduced a concept of the factor 

model for construction productivity. The model considers a learning curve for a crew of workers 

performing repetitive tasks. It states that many random factors disturb the work environment and, 

subsequently, crew performance. The study advocated that aggregating the factors that cause 

disturbance and representing them mathematically in one learning curve could result in an ideal 

model. Dar-El et al. (1995) and Jaber & Glock (2013), who combined motor and cognitive 
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elements, and Jaber & Guiffrida (2004), who included the additional time to rework defective 

items, are examples of aggregated learning curves for individual performance.

Alongside individual learning, group learning has received growing attention. Argote et al. (2001, 

p.370) defined group learning as “the activities through which individuals acquire, share and 

combine knowledge through experience with one another.” Leavitt (1951) experimented on how 

knowledge sharing occurs among group members. The experiment consisted of a hundred 

students divided into groups of five, with each group member receiving a card having five symbols.  

The group’s task was to find which symbols appeared on all cards. The members were allowed 

to write messages and send them according to a communication pattern. Leavitt (1951) showed 

that not all communication patterns used were effective. Few researchers have expanded upon 

Leavitt’s experiment to explore the effects of group organization (Guetzkow & Simon, 1955) and 

planning (Shure et al. 1962) and to show that the WLC model describes well the performance of 

novice groups when learning tasks (Baloff & Becker, 1968). The above experimental studies on 

group learning did not consider varying group sizes. However, they improved our understanding 

of the dynamics of the transfer of knowledge among group members, implicitly linked to group 

size. In practice, the number of coordination links increases with increasing the group size, making 

a group inefficient (Steiner, 1972).

As per the group learning definition (Argote et al. 2001, p.370), many group learning curve models 

considered the transfer of knowledge as an additional measure to cumulative production or the 

number of repetitions (Ingram & Simons, 2002; Ryu et al. 2005; Wilson et al. 2007; Glock & Jaber, 

2014; Méndez-Vázquez, 2019). Glock & Jaber (2014) proposed a group learning curve model 

that has two components, one describing individual learning and the other the transfer of 

knowledge among the group members. Furthermore, two factors in their model impact the 

success of knowledge transfer. The first is knowledge compatibility, and the second is the 

willingness of group members to share and absorb it among themselves. According to the 
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prevailing theory, the model of Glock & Jaber (2014) assumes an increasing delay in the transfer 

of knowledge as a function of increasing group size. A group learning curve is formed by 

aggregating the learning curves of the individuals in a group (e.g., the sum of all WLCs), which 

happens when knowledge of the members is neither compatible nor transferable. Knowledge 

incompatibility and the unwillingness to share it impede its transfer. Their proposed model fitted 

experimental group learning data rather well. They also compared the fits to a model that was an 

aggregation of individual learning curves and their model outperformed it. However, the data sets 

fitted to models do not consider varying group sizes.

The model of Méndez-Vázquez (2019) is the only model that differentiates the effect of process 

loss from that of knowledge transfer in a group. Process loss occurs when the group’s actual 

performance falls below potential because of coordination, motivation and relational processes 

between group members. Using the data from Peltokorpi & Niemi (2019a), the process loss 

parameter was estimated and assumes a fixed value, which increases with group size. Méndez-

Vázquez (2019) tested various scenarios (degrees, percentages) of knowledge transfer and 

process loss and used the developed model for simulation and optimization purposes. For future 

research, she suggested the development of mathematical models with the effect of knowledge 

transfer derived from experimental data.  

Camm & Womer (1987) developed a bivariate model that has the production rate as the 

dependent variable and crew size and the number of repetitions as the independent variables. 

They estimated the model using empirical production data. They did not fit the model to data as 

they have not mentioned so in their article. The model of Camm & Womer (1987), to the authors’ 

knowledge, is the only one of its form in the literature. 

The paper at hand considers a group task that is divisible into sub-tasks as per Steiner (1972), 

with group performance being the additive and interactive efforts of individuals in a group (Witte 

& Davis, 2013). Previous experimental studies for such assembly tasks (e.g., Ryall et al., 2004; 
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Sando et al., 2011; Staats et al., 2012; Peltokorpi & Niemi, 2019a) verify the diminishing returns 

in output with increasing group size, in line with the hypothesis of Steiner (1972, p.96). The group 

learning curve models in the literature associate diminishing returns in output to either delay in 

the transfer of knowledge (e.g., Glock & Jaber, 2014), process loss (Méndez-Vázquez, 2019) or 

overmanning (Camm & Womer, 1987), i.e., having more workers on a task than its optimal group 

size. However, the above models have not been fitted to empirical data containing varying group 

sizes. More importantly, there is a lack of group learning curve models comprising of measurable 

elements from real industrial tasks. By aggregating, for example, different waste elements into a 

learning curve would provide insights for managers on how to improve working and speed up 

learning.

This paper, therefore, addresses this research gap by proposing a bivariate group learning curve 

model, an aggregation of the motor, cognitive and waste elements. This study achieves this goal 

by conducting additional analysis of the data in Peltokorpi & Niemi (2019a,b). The experiment of 

Peltokorpi & Niemi (2019a) consisted of assembling a product whose components came from real 

industrial products. Students as surrogates for workers did the assembly, including the work 

assignment and management. The conductor of the experiment has not instructed them on how 

to. They measured the time it took to assemble the product by a worker and a group of workers 

of sizes 2, 3, and 4 for four consecutive repetitions. The results first showed that, for novice 

workers, assembly time decreases, and learning occurs rapidly through repetition. The learning 

data for each group size fitted de Jong’s (1957) model almost perfectly, suggesting that learning 

plateaus. Second, productivity per worker decreased smoothly as a function of increasing group 

size, according to the hypothesis from Steiner (1972, p.96). Peltokorpi & Niemi (2019b) conducted 

a further analysis of the data to gain insights into the factors affecting group performance. More 

precisely, by using a video-based activity analysis the assembly time was broken down into the 

following elements: (1) value-added time (refers to part installation), (2) necessary movements, 
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(3) time used to read instructions, and (4) waste (comprising different types of inefficiencies at 

work). The results showed that much of the time for assembling the product for the first time 

contained reading instructions and waste due to inexperience. This further causes productivity 

losses with larger groups at first repetitions. Idleness that large groups experience negatively 

affects performance in later repetitions. This observation was due to a lack of meaningful tasks 

and working space for several workers at the end of processing. 

Data from the aforementioned experiment is the first to account for the size of a group and the 

number of repetitions as independent variables. By utilizing this data, the present paper shows 

the following contributions:

1. The paper develops a bivariate group learning curve aggregated from three task elements: 

motor, cognitive, and waste. This model contributes to current literature that lacks group 

learning curve models comprising of measurable elements of real industrial tasks.  

2. The developed aggregated model represents the data better than two non-aggregated 

models derived from literature. The parameter values for the effects of group size and 

repetition for each task element over the entire learning period provide insights that 

managers could use to improve the performance of their workforce.

The rest of the paper is structured as follows. Section 2 provides a background to the learning 

curves that are relevant to this study. Section 3 presents the group learning experiment. Section 

4 develops five bivariate group learning curve models: three aggregated models and two non-

aggregated log-linear models. The developed models are fitted to experimental data, and their 

results are compared. The parameter values of the models are analyzed to gain insights into the 

effects of group size and the number of repetitions on different elements of assembly work. 

Section 5 presents the conclusions and provides aspects for further research.

2. Background to learning curves
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Learning is a natural phenomenon where human performance improves each time he/she repeats 

a task or activity (Jaber, 2011; Glock et al., 2019). Task repetition reduces the time to recall 

procedural information (Dar-El et al., 1995), improves familiarity with a product and process 

(Peltokorpi & Niemi, 2019b), and eliminates inefficiencies (i.e., errors and unnecessary and faulty 

activities and movements). Numerous learning curve models aim to represent empirically 

gathered learning data, and some of them represent, on average, better for a large number of 

data sets (Grosse et al., 2015). There are mainly three forms of learning curves, which are log-

linear, exponential, and hyperbolic models (Glock et al., 2019). The log-linear learning curve form 

is the most popular for the reasons mentioned above, and relevant to this study. The WLC (Wright, 

1936) is the first known industrial learning curve model. It is of the form:

(1)𝑌𝑥 = 𝑌1𝑥―𝑏

where  is the time to produce th unit,  is the repetition number or cumulative output,  is time  𝑌𝑥 𝑥 𝑥 𝑌1

to produce the first unit, and  the learning parameter, measuring the rate at which  decreases 𝑏 𝑌𝑥

as cumulative output doubles; i.e., . Eq. (1), which is of a power-form, becomes log-2―𝑏 = 𝑌2𝑥 𝑌𝑥

linear as . log (𝑌𝑥) = log (𝑌1)― 𝑏 log (𝑥)

Eq. (1) has a drawback that  as . This result is not meaningful. Although mathematically 𝑌𝑥→0 𝑥→∞

correct, it is incorrect in reality since real learning data shows a plateau (e.g., Jaber, 2006, 2011; 

Glock et al., 2019). De Jong (1957) modified the WLC by forcing to plateau. For this purpose, he 

added an incompressibility factor ( ) to determine the minimum processing or standard 0≤𝑀≤ 1

time. The DJLC model is of the form:

       (2)𝑌𝑥 = 𝑌1(𝑀+ (1―𝑀)𝑥―𝑏)

From Eq. (2), learning plateaus at  when  approaches a very large number.𝑌1𝑀 𝑥
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The learning curves in Eqs. (1) and (2) are univariate models where  is the dependent variable 𝑌𝑥

and  is the independent one. Multivariate models have several independent variables. They have 𝑥

received very little attention in the literature, which is perhaps due to the complexity of 

implementing them as practical productivity assessment tools and multicollinearity problems. 

Bivariate models have been used instead for their simple mathematics and ease of analysis 

(Badiru, 1992; p.180). A bivariate model is of the form , where  has been defined 𝑌𝑥 = 𝛽0𝑥𝛽1
1 𝑥

𝛽2
2 𝑌𝑥

above,  and  are independent variables and , , and  are model parameters. The idea 𝑥1 𝑥2 𝛽0 𝛽1 𝛽2

of having more independent variables is to improve the quality of fits of the learning curve to data 

and the understanding of which factors other than cumulative production explain the behavior of 

. The bivariate learning curve of Camm & Womer (1987) is relevant to this paper. Their model 𝑌𝑥

has the production rate as the dependent variable and the crew size (number of workers in a 

group) and the number of repetitions as independent variables. The model is of the form:

(3)𝑃(𝑥)𝑥𝑗 = 𝐵𝑛1/𝑟𝑥𝑗 𝑥𝛿

where is production rate for repetition  by group , and  size of group  assigned to 𝑃(𝑥)𝑥𝑗 𝑥 𝑗 𝑛𝑥𝑗 𝑗

repetition , r is a model parameter describing the returns to group size,   is the learning exponent 𝑥

and B is a scale constant. The model assumes that knowledge about how to perform a task 

assigned to group  increases through repetition, and the group produces at a faster rate, i.e.  > 𝑗

0. The model also assumes that the attempt to increase the output rate by increasing the group 

size is subject to diminishing returns, due to overmanning, i.e. r > 1. In a later section, a group 

learning curve is developed by aggregating three bivariate learning curves representing motor, 

cognitive and inefficiencies (waste). The three learning curves have group size and the number 

of repetitions as independent variables. 

3. Experiment on group learning
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This section briefly describes the experiment conducted by Peltokorpi & Niemi (2019a). It starts 

with the product structure and assembly steps, followed by an overview of the participants, the 

assembly procedure, and the experimental data, respectively.

3.1 Case assembly product

Fig. 1(a) is a pictorial of the product used in the assembly experiment. It consists of 13 

components in total, assembled into a frame. They comprise pipe sub-assemblies (P1-P5), 

modules (M1-M3), hoses (H1-H3), plate (PL) and valve (V). The product’s size and structure made 

it possible for several workers to work simultaneously. Fig. 1(b) is a pictorial of the five subsystems 

(1-5), assembled in parallel, and their precedence constraints of parts forming the product.

(a)                                                      (b)

Fig. 1. (a) The case assembly product; (b) Precedence constraints of parts

                                                      

3.2 Participants

The number of students, male undergraduates, who participated in the laboratory assembly 

experiment, was 68. They had no prior knowledge of how to assemble the product and which 

members would be in their assigned group. The students were provided with a printed 

2

4

3

5

1
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instructional assembly drawing. The information it contained was sufficient for them to assemble 

the product. 

3.3 Procedure

The 68 participants formed 31 groups. The assignment of participants to groups was random. The 

groups varied in sizes, from 1 to 4 members. Sample sizes, N, for each group size and repetition 

are given in Table 1. Each group repeated the assembly up to four times, with breaks in between. 

While resting, the laboratory staff disassembled the product and placed the parts/components in 

their designated positions. The participants did not show fatigue, and the breaks were of enough 

length to alleviate any. Therefore, this study ignores fatigue effects.

The experimenter briefly introduced the participants to the assembly task, just before performing 

their first repetition. The assembly drawing included a list and descriptions of all parts and the 

tools to be used. The experimenter told the participants that they were free to manage their work 

without him intervening. There was one quality criterion, which is to assemble a complete product 

as described in the instructions. A final quality check included the tightening of screws and bolts. 

The experimenter checked the assembled product and notified each group of any detected faults. 

Groups were video recorded using one camera. The time to perform one repetition is the time 

difference between starting and finishing the assembly. The experimenter controlled the recording 

of sessions, meaning he identified their start and end times. The activity analysis was later done 

manually and solely by the experimenter to maintain consistency. A slow-motion (0.25x) mode of 

the analysis software (AviX) was used to distinguish, with reasonable accuracy, different activities 

(i.e., task elements). The status of each worker was based on the physical activity (and inactivity) 

of that worker over time. The accuracy of activity analysis is subject to variation due to human 

conducting the analysis. Readers may refer to Peltokorpi & Niemi (2019a,b) for detailed 

descriptions of the experiment and activity analysis.
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3.4 Experimental data

Table 1 shows descriptive statistics for specific group size and repetition (Rep), for which N 

defines the sample size. The statistics for total assembly times (in minutes) and subcomponent 

times of the elements, i.e., motor, cognitive, and waste per unit assembled, in terms of the mean 

value (mean), variation (CV), and the minimum (min) and maximum (max) value, are presented. 

Table 2 presents the mean subcomponent times of different waste elements for each group size 

and repetition (Rep). The statistical method used here is similar to that in Peltokorpi & Niemi 

(2019b, Section 3). To illustrate the different task element times, Fig. 2 shows the mean time (per 

worker) to complete each task from the entire learning period (four repetitions) as a timeline for 

specific group sizes. The timelines represent a rough sequence of task elements, as observed in 

the experiments (see a sample timeline in Peltokorpi & Niemi, 2019b; Fig. 6). Different task 

elements are defined as follows: 

 Motor: installing (actual installation movement) parts correctly [value-added time], picking 

(reaching, grasping) correct parts and tools, travelling to the assembly location, aligning parts, 

returning tools (travelling back, leaving tools) [required movements];

 Cognitive: looking at (reading) assembly drawing;

 Waste: the following inefficiencies in assembly work:

o Familiarizing: unnecessary handling of (looking at, turning, etc.) parts, observing 

assembly locations and other’s working, unnecessary travelling;

o Faulty installing: Installing part incorrectly (or installing wrong part) so that part has to 

be disassembled;

o Wrong tools: picking, travelling with and returning a tool that is inappropriate for 

installing the present part;

o Dropping: dropping and picking up tools or parts;
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o Co-worker: waiting for co-worker’s help (e.g., handing out tools, travelling to assembly 

location), or completion of the preceding task;

o Idleness: no meaningful tasks left or working space for the worker at the end of the 

entire process.

<Insert Table 1 about here (provided on p.28) >

<Insert Table 2 about here (provided on p.29) >

Fig. 2. Mean task element times (motor in green color, cognitive in yellow, waste in red) from the 

entire learning period (four repetitions) for specific group sizes.

4. A group learning curve model

In this section, five group learning curve models are developed and fitted, in the next subsection, 

to the experimental data of Table 1 and 2. This is followed by two subsections that provide 

additional analysis of the values of the learning curve parameters and a comparison of the models, 

respectively.

4.1 Models and fits

The bivariate group learning curve models studied and compared in this paper are presented in 

Table 3. For each of the models, the dependent variable is the time to assemble one unit, and the 
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independent variables are the number of workers in a group (group size) and the number of 

repetitions. The first model is the single learning curve, SLC, model, which is the reference model 

similar in form to that of Camm & Womer (1987), in Eq. (3), except for, in their model, the 

dependent variable is the production rate instead of the unit time, and  and  are the independent 𝑛 𝑥

variables, each raised to a non-negative (positive) parameter. The second model is a modification 

of the SLC, where it has a plateau factor, henceforth referred to as SLC-P. Adding a plateau to 

the SLC is in conformance with Peltokorpi & Niemi (2019a), who found that de Jong’s model in 

Eq. (2) fitted the experimental data for each group size almost perfectly.

The last three models aggregate and represent different types of elements of assembly work in 

one learning curve, each of which is a bivariate learning curve contributing a fraction to the total 

unit assembly time. The first aggregate model, ALC, has three learning curves representing 

motor, cognitive and waste per unit assembled (as in Table 1). The second model further divides 

waste into seven sub-elements (as in Table 2), and is henceforth ALC-7W, which follows the 

concept of Thomas & Yiakoumis (1987) who advocated aggregating inefficiency causing factors 

(or waste elements) in one learning curve, as mentioned in Section 1. The third aggregate model 

combines similar waste elements and reduces them into three categories, and is henceforth ALC-

3W, which are workers getting familiar with the job (referred to as familiarization and is described 

in Section 3.4), errors, and group coordination. Errors include faulty installation, using wrong tools, 

and dropping the equipment. Coordination comprises of co-worker related waste, idleness, and 

infrequent and unexpected disruptions, with this approach making the analysis straightforward 

and easy. Table 3 lists the five learning curves, their mathematical expressions, and their 

parameters along with definitions.

<Insert Table 3 about here (provided on p.30) >

For each model, the following constraints hold:  or  > 0, 10 ≤   or  ≤ 10, and, 10 ≤  or 𝛾 𝛾𝑖 ― 𝛼 𝛼𝑖 ― 𝛽

 ≤ 10. In addition, for SLC-P, 0 ≤ M ≤ 1. The fits of the models were compared and the sum-𝛽𝑖
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square of errors (SSE), SSE =  where  and  are the observed and estimated  ∑𝑥𝑖= 1(𝑂𝑖 ― 𝑃𝑖)2  𝑂𝑖 𝐸𝑖

values for repetition , for SLC, SLC-P, ALC, ALC-7W and ALC-3W were found to be  𝑖= 1,⋯,𝑥

SSESLC = 24.685, SSESLC-P = 11.360, SSEALC = 4.449, SSEALC-7W = 4.259, and SSEALC-3W = 4.363, 

respectively. The accuracy of the SLC model improves when the plateauing effect (SLC-P) is 

considered, SSESLC-P = 11.360 < SSESLC = 24.685. The results also show that breaking the 

learning curve data into more elements and then aggregating them into one learning curve 

significantly improves the learning curve accuracy. The more aggregated elements are the better 

the accuracy of the learning curve becomes; i.e., SSEALC-7W = 4.259 < SSEALC-3W = 4.363 < SSEALC 

= 4.449. The values of the parameters and coefficients for those learning curve models are given 

in Table 4.

<Insert Table 4 about here (provided on p.31) >

4.2 Analysis of the parameters of group size and learning

Fig. 3 is a pictorial of the effects of parameter values of group size ( ) and learning ( ) from Table 𝛼 𝛽

4 on each task element.
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Fig. 3. Effects of parameter values of group size and learning on each task element

The negative and positive values of α (group size, grey bar) and β (learning, black bar) in Fig. 3, 

represented by bars, mean that additional workers and repetitions either decrease or increase 

the portion of the unit assembly time each element contributes. The length of a bar represents 

the magnitude of the effect a parameter (α or β) has on a task element. To illustrate and as an 

example, β (learning from repetition) affects (reduces) the cognitive unit assembly time element 

much more than α (group size) does. Noteworthy is that an α > 1 means, on average, groups do 

not perform better than individuals do for each task element.

The analysis begins by examining the first three task elements. Motor learning is the slowest of 

the three, and the parameter value corresponds to motor learning rate LRM = 20.8846 = 83.6%.  

Learning for cognitive (LRC = 25.9%) and waste (LRW = 33.2%) elements are much faster. When 
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fitted separately to the data from each group size, LRC = 30.9% for a single worker, 24.0% for a 

group of two, 19.9% for a group of three, and 12.6% for a group of four. LRC is the speed at which 

workers read the drawings reduces. It becomes faster with each repetition because of a faster 

recall of information; i.e., workers spend less time examining the drawings.  For a single worker, 

the rate is similar to what Watson et al. (2010) observed. Noteworthy is that they used text 

instructions, and their experimental setting was different. Learning for the cognitive element being 

faster for larger groups has to do with the fact that there is less information to recall per worker in 

their dedicated tasks.

The effect of group size is much more than that of learning for the motor element. The reduction 

in motor element-time is proportional to group size. Group performance of a motor task, on 

average, does not exceed the combined performance of individuals, suggesting that one worker 

is sufficient to install the parts. Large group sizes experience more losses due to cognitive and 

waste elements than small ones. Cognitive elements comprise of the group members going over 

the details in the product assembly drawing, as the experimenter did not provide workers with 

dedicated instructions. Waste elements increase the inefficiency of the learning process and 

impede performance, and therefore should be eliminated, which is investigated in much detail 

next. 

Waste is first analyzed for seven sub-elements.  The sub-elements “familiarization” and “faulty 

installation” have the fastest learning rates, LRF = 25.7% and LRFI = 28.7%. In this context, 

learning is largely associated with “successful perception of instructional information about a 

motor task in order to carry out that action quickly and accurately” (Watson et al. 2010). Fig. 4 

shows a strong correlation between cognitive elements and the familiarization and faulty 

installation, with coefficients 0.977 and 0.885, respectively. This finding suggests that, by reading 

instructions, workers learned to identify the assembly parts and their locations, and how to install 

them correctly. See Fig. 4 for other correlations coefficients.
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Fig. 4. Correlation coefficients describing the strength of the relationships between cognitive and 

the other elements. A coefficient value of one (1) shows perfect positive correlation, i.e., element 

times change in the same direction and proportion through repetition. A zero (0) value shows no 

relationship between the elements, and minus one (-1) perfect negative correlation.

Fig. 3 shows that co-worker related waste increases as a function of group size, as expected, but 

reduces even faster through repetition (LRCw = 44%). This finding relates to workers becoming 

more experienced and working better in less congested work areas. The data show that the 

frequency of workers dropping tools and parts became less with each repetition. However, the 

improvement is rather slow (LRD = 78.2%).  Increasing group size results in more idle time due to 

the significant workload imbalance. Idleness in large groups does not disappear with repetition 

(experience). Fig. 4 shows that idleness is, negatively, correlated with the cognitive element 

(coefficient value of 0.104), confirming that the instructions do not provide information on how to 

manage the temporal and spatial coordination of workers. A well-planned division of work among 

group members reduces idleness. This approach includes sequencing and scheduling the tasks 

based on their precedence constraints and work contents. 

According to Fig. 3, larger groups waste relatively more resources in familiarization with a job in 

comparison to single-worker groups do (  = 0.3518). Group members not been given 𝛼𝐹

instructions on how to manage work among themselves may have attributed to this result. It may 

also have to do with supervision conflict, meaning who should instruct whom in the group to do 
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what. This issue is nonexistent in a group of one person as the line of command is clear. In the 

group of most members (i.e., four), workers spent relatively less time reading the instructions, 

especially at the last three repetitions (cognitive element in Table 1). A possible reason for this is 

less space per worker in the assembly drawing. For such group sizes, workers more frequently 

learned from errors (e.g., picking wrong tools). Fig. 3 shows that the reduction in the time for faulty 

installations is proportional to the group size, which suggests that, in general, this element is 

independent of the group size and more dependent on the individual performing it. 

Table 4 shows that the fits of the model to the data of unexpected disruptions are poor (R2 = 

0.2428, very low). Exogenous reasons caused workers disruptions, which were seldom. 

Therefore, an analysis of the unexpected disruptions parameters is not appropriate, if not 

invaluable.

Lastly, Fig. 3 shows the analysis of waste for familiarization, errors and coordination. This 

approach allows for a straightforward and summative analysis of the parameter values for them. 

Familiarization has the fastest learning rate (LRF  = 25.7%) followed by errors (LRE = 38.3%) and 

coordination (LRCO = 67.2%). Larger groups are subject to great loss with familiarization ( = 𝛼𝐹 

0.3518) and less with errors ( = 0.7856). The coordination time-element increases 𝛼𝐸 

proportionally to group size ( = 1.1358, roughly one), and the group size effect is twice as 𝛼𝐶𝑂 

much as the learning effect (  = 0.5739). This result indicates that learning through repetition 𝛽𝐶𝑂

is not sufficient to offset the coordination problems with increasing group size.

4.3 Comparison of models

Fig. 5 presents the deviations (%) of models from the observed data in each experimental setup. 

Fig. 6 illustrates the behavior of the learning curves generated from the observed data and the 

predicted data from SLC, SLC-P and ALC-3W. ALC and ALC-7W behave similar to ALC-3W, and, 

therefore, are omitted from Fig. 6.
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Fig. 5. Deviations (%) of models from the observed data in each experimental setup (1-4 = Rep. 

1-4 for 1 worker, 5-8 = Rep. 1-4 for 2 workers, 9-12 = Rep. 1-4 for 3 workers, 13-16 = Rep. 1-4 

for 4 workers).

As Fig. 5 shows, the predicted performances of aggregate models (ALC, ALC-7W and ALC-3W) 

are much more accurate than those of a single learning curve model, SLC, and its plateau version, 

SLC-P. ALC significantly improved performance by 82% and 60.8% over SLC and SLC-P, 

respectively. Further, dividing waste elements into three (ALC-3W) or seven (ALC-7W) sub-

elements improve the performance by 1.9% or 4.3%, respectively. The accuracy of a learning 

curve model improves when its data comprises of aggregated elements. However, not all sub-

elements would be appropriate for analysis as some of them have insignificant effects of 

performance. 

SLC becomes less accurate for the second repetitions and, especially, the fourth repetition for 

groups of one worker. In general, learning is fastest for the second repetition and slows as 

repetitions increase (observed data in Fig. 6). In this regard, the SLC poorly reflects those 

characteristics that are typical of assembly processes. SLC-P improves the accuracy in general, 
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and especially for one- and two-worker groups. However, it predicts, relatively, poorly the first 

repetition of each group size. It appears that all the models predict a lower learning effect than 

the observed between the first and second repetition for three- and four-worker groups. The SLC 

predicts the worst performance of single-worker groups, while the other models that of the three-

worker groups (Fig. 5 and 6). The observed performance deviates from the predicted values, 

especially for the three-worker groups at the third repetition and for the four-worker groups at the 

second repetition. For the first deviation, Peltokorpi & Niemi (2019a) did not find a practical 

explanation. However, they were able to explain, partially, the second deviation and has to do 

with the small sample size for four-worker groups (N = 3 in each repetition, Table 1).

Fig. 6. Learning curves generated from the observed data and SLC, SLC-P and ALC-3W. The 

topmost curves are for single workers, the second topmost curves for two-worker groups, etc.
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5. Conclusions

This paper developed an aggregated bivariate group learning curve model of motor, cognitive and 

waste elements. The number of workers in a group and the number of repetitions are the 

independent variables for each bivariate model. The dependent variable is the time per unit to 

assemble a unit. Each of the bivariate models contributed a fraction to the time per unit. The fits 

of the developed models were tested using the empirical data of Peltokorpi & Niemi (2019a,b). 

The results showed that the developed aggregated learning curve fits the data better than a non-

aggregated group learning curve and its plateau version. The performance of the aggregated 

curve improved by dividing the waste element data into additional ones. The three sub-elements 

of waste were (1) workers’ familiarization with the job, (2) errors from faulty installation, picking 

the wrong tools, and dropping the equipment, and, (3) coordination of activities among the group 

members. 

The parameter values for the effects of group size and the number of repetitions for each task 

element provided insights into how industrial managers could improve the performance of worker 

groups at the shared task. What is especially valuable are the findings regarding the practical 

effects of group size. Noteworthy is that for each task element of the industrial-like product 

assembly, the performance of the groups did not exceed the combined effect of individuals. The 

unit assembly time of the motor element reduced proportionally to the number of workers in a 

group. Larger groups suffered from more performance losses. This deterioration had to do with 

the time the members spent reviewing the drawings (cognitive) and getting familiar with the job 

requirements (waste). Groups of smaller sizes did better in this regard. These observations 

highlight the importance of group work management and dedicated task instructions. Errors were 

found to have little to do with the group size and more with the individuals. The results showed 

that when groups are self-managed, and working is not standardized, the number of repetitions 

is not sufficient to offset coordination problems with increasing group size. Managing temporal 
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and spatial coordination in groups requires a well-planned division of work among group 

members.

The study presented in this paper has limitations. One is that its results could not be generalized, 

as doing so requires considering a variety of different factors that affect the group learning 

process. Among others, those factors include characteristics of worker groups and individuals as 

well as tasks and environments at which each group operates. Therefore, it is recommended to 

consider the effects of group size and learning on task elements on a case-by-case basis. The 

precision with which the developed aggregate model represents the group learning process 

depends on the available data. When data on appropriate task elements are not available, one 

may use a single learning curve model to assess the effects of group size and learning of the 

entire task cycle. This study developed a group learning curve model based on measurable task 

elements representing the activities of workers. The modelling and analysis approaches used in 

this paper are different from those studies on knowledge transfers in groups (Ingram and Simons, 

2002; Ryu et al., 2005; Wilson et al., 2007; Glock & Jaber, 2014; Méndez-Vázquez, 2019). The 

group learning data used in the present paper gives little evidence on knowledge sharing. For 

example, verbal interaction between the workers, which strongly associates to knowledge sharing 

and learning, was omitted, as the physical activities of workers have been the base of the analysis. 

Despite the limitations, the modelling approach used herein is suitable for predicting 

manufacturing performance for groups where their sizes and the numbers of repetitions affect it. 

The parameter values for the sub-elements in the aggregated model also showed where 

improvement is needed, which is one of the purposes of learning curves. This study, in a way, 

responds to the call of Thomas & Yiakoumis (1987), who advocated that aggregating and 

mathematically representing inefficiency (waste) causing factors in one learning curve could result 

in an ideal model.
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The work presented in this paper seeds for further research. Depending on the research 

environment and interest, one could consider dividing the task elements further (e.g., single 

subtasks). How learning occurs in industrial worker groups is parsimonious, and more research 

is needed. The question returns to knowledge sharing among group members; however, its 

occurrence and practical effects on group learning are not well understood. One interesting aspect 

would be learning-by-observation in groups. A promising research direction is to investigate how 

workers turnover affects group performance and what makes novices learn effectively. Most 

importantly, further developments of group learning curves need more empirical data with a large 

number of repetitions and a variety of group sizes, which is a lack of current literature.
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Table 1. Descriptive statistics for motor, cognitive and waste elements for each group size and 
repetition.

 Group size = 1 Group size = 2 Group size = 3 Group size = 4

Rep. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N 9 9 9 2 10 10 10 7 9 9 9 7 3 3 3 3
 Total Total Total Total
Mean 41.61 25.14 20.75 19.65 25.14 14.30 11.96 10.63 20.65 11.35 7.88 7.78 17.19 8.19 7.15 6.38
CV 0.16 0.11 0.12 0.11 0.33 0.32 0.27 0.23 0.21 0.10 0.11 0.18 0.02 0.09 0.12 0.16
Min 33.44 21.96 16.76 17.42 15.24 8.45 7.96 7.49 13.36 9.56 6.91 6.58 16.73 7.39 6.03 4.96
Max 54.18 31.79 27.11 21.88 47.37 24.40 18.42 15.12 27.20 12.79 9.55 10.37 17.71 9.15 8.20 7.23
 Motor Motor Motor Motor
Mean 25.68 20.17 18.21 18.91 13.38 10.95 10.50 9.55 9.56 8.05 6.75 6.66 8.12 5.94 5.92 4.89
CV 0.11 0.07 0.12 0.12 0.35 0.26 0.24 0.17 0.16 0.10 0.11 0.14 0.07 0.09 0.16 0.08
Min 21.53 17.39 14.76 16.67 9.91 7.77 7.42 7.33 7.40 6.33 5.68 5.75 7.44 5.16 4.58 4.34
Max 30.14 22.30 23.33 21.15 26.35 17.50 14.99 12.65 11.44 9.07 8.11 8.36 8.82 6.45 6.78 5.24
 Cognitive Cognitive Cognitive Cognitive
Mean 8.66 2.90 1.44 0.37 5.64 1.37 0.54 0.35 5.48 1.24 0.24 0.12 3.91 0.48 0.20 0.04
CV 0.28 0.38 0.40 0.48 0.25 0.63 1.13 1.23 0.27 0.37 0.43 0.62 0.10 0.48 0.26 0.60
Min 5.54 1.72 0.88 0.19 3.41 0.31 0.06 0.02 3.07 0.26 0.05 0.03 3.55 0.22 0.15 0.01
Max 13.62 5.22 2.79 0.54 7.80 3.41 2.23 1.33 7.41 1.73 0.46 0.24 4.45 0.78 0.27 0.07
 Waste Waste Waste Waste
Mean 7.28 2.06 1.09 0.37 6.12 1.99 0.93 0.73 5.61 2.07 0.88 1.00 5.17 1.78 1.04 1.43
CV 0.54 0.77 0.68 0.49 0.48 0.56 0.32 0.59 0.40 0.22 0.34 0.61 0.14 0.25 0.24 0.41
Min 2.70 0.58 0.41 0.19 1.93 0.36 0.40 0.14 2.31 1.26 0.34 0.47 4.44 1.15 0.69 0.61
Max 15.53 5.13 2.45 0.55 13.22 3.57 1.45 1.44 9.00 2.69 1.47 2.38 6.17 2.17 1.25 1.92
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Table 2. Mean times (min) of different waste elements per unit assembled for each group size

and repetition.

 Group size = 1 Group size = 2 Group size = 3 Group size = 4

Rep. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Familiarizing 5.59 1.20 0.90 0.33 4.74 1.11 0.49 0.41 3.81 1.09 0.38 0.30 3.30 0.90 0.47 0.22
Faulty installing 1.37 0.60 0.05 0.00 0.37 0.15 0.06 0.01 0.44 0.16 0.00 0.00 0.71 0.01 0.01 0.26
Wrong tools 0.21 0.11 0.11 0.00 0.24 0.12 0.06 0.07 0.11 0.09 0.07 0.05 0.08 0.20 0.11 0.07
Dropping 0.10 0.14 0.04 0.04 0.09 0.06 0.07 0.06 0.05 0.02 0.03 0.04 0.02 0.02 0.02 0.07
Unexpected 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
Co-worker 0.00 0.00 0.00 0.00 0.36 0.28 0.10 0.10 0.80 0.33 0.11 0.14 0.41 0.18 0.04 0.19
Idleness 0.00 0.00 0.00 0.00 0.33 0.22 0.12 0.08 0.39 0.37 0.28 0.27 0.63 0.48 0.38 0.62
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Table 3. The studied group learning curve models

   

Model Formula Definitions (when terms appear first 
time)

SLC 𝑦𝑥 = 𝛾𝑛𝛼𝑥𝛽 = time per unit to assemble the product for 𝑦𝑥
repetition 𝑥

 = group size𝑛
 = repetition number (cumulative output)𝑥
 = parameter𝛾
 = group size parameter𝛼
 = learning parameter𝛽

SLC-P 𝑦𝑥 = 𝛾[𝑀+ (1―𝑀)𝑛𝛼𝑥𝛽] M = plateau factor

ALC 𝑦𝑥 = 𝑦𝑀𝑥 + 𝑦𝐶𝑥 + 𝑦𝑊𝑥 =∑
𝑖
𝛾𝑖𝑛𝛼𝑖𝑥𝛽𝑖 = time per unit for the motor elements;𝑦𝑀𝑥

= time per unit for the cognitive elements; 𝑦𝐶𝑥
= time per unit for the waste elements 𝑦𝑊𝑥

         of repetition  by group j.𝑥
ALC-7W 𝑦𝑥 = 𝑦𝑀𝑥 + 𝑦𝐶𝑥

+ 𝑦𝐹𝑥 + 𝑦𝐹𝐼𝑥 + 𝑦𝑊𝑇𝑥 + 𝑦𝐷𝑥 + 𝑦𝑈𝑥 + 𝑦𝐶𝑊𝑥 + 𝑦𝐼𝑥 =∑
𝑖
𝛾𝑖𝑛𝛼𝑖𝑥𝛽𝑖

= time per unit for the familiarization 𝑦𝐹𝑥
elements;

= time per unit for the faulty installation 𝑦𝐹𝐼𝑥
elements;

= time per unit for the wrong tool 𝑦𝑊𝑇𝑥
elements;

= time per unit for the dropping equipment 𝑦𝐷𝑥
elements;

= time per unit for the unexpected 𝑦𝑈𝑥
elements;

= time per unit for the co-worker related 𝑦𝐶𝑊𝑥
elements; 

= time per unit for the idleness elements𝑦𝐼𝑥
        of repetition  by group j.𝑥

ALC-3W 𝑦𝑥 = 𝑦𝑀𝑥 + 𝑦𝐶𝑥

+ 𝑦𝐹𝑥 + 𝑦𝐸𝑥 + 𝑦𝐶𝑂𝑥 =∑
𝑖
𝛾𝑖𝑛𝛼𝑖𝑥𝛽𝑖

= time per unit for the errors elements;𝑦𝐸𝑥
= time per unit for the coordination 𝑦𝐶𝑂𝑥

elements 
          of repetition  by group j.𝑥
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Table 4. Values of the parameters and coefficients for the models.

SLC 𝛾 𝛼 𝛽 𝑅2

41.7301 0.7165 0.6558 0.9813
SLC-P 𝛾 𝛼 𝛽 M 𝑅2

42.3891 0.7162 1.6093 0.3692 0.9914
ALC i 𝛾𝑖 𝛼𝑖 𝛽𝑖 𝑅2

Motor M 25.1787 0.8846 0.2588 0.9919
Cognitive C 8.7949 0.5595 1.9489 0.9805
Waste W 7.0962 0.2093 1.5924 0.9827
ALC-7W (Waste) 𝑖 𝛾𝑖 𝛼𝑖 𝛽𝑖 𝑅2

Familiarization F 5.6659 0.3518 1.9618 0.9936
Faulty installation FI 1.3203 0.9663 1.8010 0.8167
Wrong tool WT 0.1936 0.1842 0.6590 0.4479
Dropping D 0.1123 0.6461 0.3548 0.4377
Unexpected U 1.1E-05 0.6272 5.7027 0.2428
Co-worker CW 0.1965 0.8148 1.1850 0.6213
Idleness I 0.0622 1.6759 0.2373 0.8855
ALC-3W (Waste) 𝑖 𝛾𝑖 𝛼𝑖 𝛽𝑖 𝑅2

Familiarization F 5.6659 0.3518 1.9618 0.9936
Errors E 1.6201 0.7856 1.3846 0.8629
Coordination CO 0.2524 1.1358 0.5739 0.7670
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Highlights

 An aggregate bivariate group learning curve model was developed.

 The model describes motor, cognitive and waste elements from real assembly work.

 For each element, unit time is dependent on the number of workers and repetitions.

 The aggregate model outperformed a non-aggregate model and its plateau version.

 Segmenting waste into sub-elements further improved the performance of the model.
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