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Real-Time Identification of LCL Filters Employed
With Grid Converters

Ville Pirsto, Jarno Kukkola, F. M. Mahafugur Rahman, Student Member, IEEE,
and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper presents a real-time identification
method for LCL filters used with three-phase grid converters.
The method can be applied to identify both the inductance
and capacitance values of the filter and the series resistance
seen by the converter. As a side-product, an estimate of the
grid inductance seen from the point of connection is also
obtained. A wideband excitation signal is added to the converter
voltage reference. During the excitation, converter current and
converter voltage reference samples are used for identification.
The samples are preprocessed in real time by removing DC biases
and significant grid-frequency harmonics. Parameters of two
discrete-time models are estimated at each sampling instant with
a recursive estimation algorithm. Depending on the estimated
model, the model parameter estimates are translated to either
the resistance or the inductance and capacitance values of the
system. The method can be embedded to a control system of
pulse-width-modulation (PWM) based converters in a plug-in
manner. Only the DC-link voltage and converter currents need to
be measured. Simulation and experimental results are presented
for a 12.5-kVA grid converter system to evaluate the proposed
method.

Index Terms—Grid converter, LCL filter, real-time identifica-
tion, recursive parameter estimation.

I. INTRODUCTION

In the last decade, the cost of producing electricity using
renewable energy resources, such as wind and solar, has re-
duced greatly. As a result, the penetration of renewable energy
sources in the electric grid has increased enormously. These
renewable energy sources are connected to the grid through
a converter equipped with a filter, typically of an L or LCL
type. The LCL filter has gained popularity due to its higher
attenuation above its resonance frequency compared to an L
filter of equal magnetic volume [1]. However, the resonant
modes of the LCL filter make the control of the converter more
challenging. These resonant modes are typically damped with
active damping methods that are implemented in the converter
control systems. Many of the active damping methods require
knowledge of the reactive filter parameters, e.g., [2]–[5].

Even if the nominal parameters of the LCL filter are
known, manufacturing tolerances and aging phenomena cause
uncertainties in the parameters. Knowledge of the reactive
parameters of the LCL filter could be used for condition mon-
itoring and fault diagnosis, e.g., tracking long-term evolution
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of the filter capacitances for pre-emptive maintenance [6].
Furthermore, the estimates of the reactive filter parameters
could be used to improve the converter control tuning.

Closely related to the identification of an LCL filter, there
are numerous methods proposed for real-time identification
of the grid impedance, e.g., [7]–[13]. The identification has
been carried out using Fourier analysis [7], recursive parameter
estimation [8]–[10], model predictive control [11], extended
Kalman filter [12], and wavelets [13]. The real-time estimates
of the grid impedance can be used, e.g., for islanding detection
and improving the converter control tuning.

Post-processing-based methods for identifying the LCL
filter of a grid converter have been proposed in [14]–[18].
In [14]–[16], methods for identifying a discrete-time state-
space model of the LCL filter are presented. However, these
methods do not yield estimates of the reactive filter parameters
and they are not designed for real-time identification. In [17],
[18], the inductance and capacitance values of the LCL filter
are identified offline using an indirect identification approach.
In this approach, the converter controller needs to be changed
during the identification, as it is part of the identification
model.

In [19], the values of these LCL filter parameters are
identified as an online batch process, yielding a single estimate
of the reactive filter parameters each time the identification
method is run. Despite the number of different methods
proposed for real-time identification of the grid impedance, no
recursive real-time identification method for the parameters of
an LCL filter has yet been proposed. Furthermore, a method
capable of simultaneously identifying both the LCL filter
parameters and indirectly the parameters of an inductive-
resistive grid has not been presented.

The benefits of a recursive approach are significant. In
the batch method approach of [19], all the data used in the
identification has to be collected before the estimation can be
carried out. This requires a considerable amount of memory,
as data spanning several grid-frequency periods is required in
practice, e.g., 0.1 seconds in the case of five grid periods (50
Hz). Furthermore, iterating through the collected data requires
a high number of floating-point operations, in the range of 104,
which can take several seconds to execute as a background
process of a converter [19]. To update the estimates, the whole
identification routine has to be run again. The recursive ap-
proach, on the other hand, is considerably more efficient when
the estimates of the filter parameters are desired on a sample-
to-sample basis, e.g., for real-time tracking of changes in the
filter parameters. With the recursive approach, less memory is
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Fig. 1. Circuit model of an LCL filter connected to an inductive-resistive grid
in stationary coordinates.

consumed and the number of floating-point operations required
to update the estimates are several decades lower, in the range
of 102, as will be shown in this paper.

In this paper, a real-time LCL filter identification method is
proposed. The method is capable of identifying an inductive-
resistive grid as a side product. The contributions of this paper,
in comparison to the state-of-the-art, are:

1) The proposed method can run continuously to provide
real-time estimates of the filter parameters and the grid
inductance.

2) In addition to the filter parameters, a general pulse-
transfer function of the system consisting of the filter and
the grid is estimated in real-time. The series resistance
seen by the converter is extracted from this pulse-transfer
function.

3) Compared to [19], the parameter estimation of the iden-
tification model is simplified without compromising ac-
curacy.

Additionally, the proposed recursive real-time implementation
allows for distributing the computational costs over the run
time of the algorithm. Despite the different characteristics of
the proposed method and [19], similar estimation accuracy is
maintained as both methods rely on the same prediction-error
method. As compared to our earlier conference paper [20], the
identification method is extended by estimating a more general
pulse-transfer function of the filter and the grid, from which
an estimate of the series resistance seen by the converter is
extracted. Simulation and experimental results are presented
for a 12.5-kVA three-phase grid converter.

II. SYSTEM MODEL

A space-vector model for a three-phase LC or LCL filter
connected between the converter and an inductive-resistive
grid is shown in Fig. 1, where Lc is the converter-side
inductance, Cf the filter capacitance, and Lg the grid-side
inductance, consisting of the grid-side filter inductance Lfg

and the grid inductance Lgr, i.e., Lg = Lfg + Lgr. The
resistances Rc, Rf , and Rg model the resistive losses of the
filter components Lc, Cf , and Lg, respectively. If some apriori
information regarding either the inductance of the grid-side
filter inductor or the grid is available, these two inductances
can be separated from Lg. A hold-equivalent discrete-time
model of the LCL filter in stationary coordinates can be written
as

x(k + 1) = Φx(k) + Γcuc(k) + Γgug(k)

ic(k) = Ccx(k).
(1)

In the above, x = [ic,uf , ig]
T is the state vector where uf

is the voltage over the filter capacitor and Cc = [1, 0, 0] (cf.
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Fig. 2. Block diagram representation of the discrete-time LCL filter model
including the computational delay caused by the control system.
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Fig. 3. ARMAX model structure.

Appendix A). The converter current ic can be obtained from
the state-space model (1) as

ic(k) = Yc(z)uc(k) + Yg(z)ug(k) (2)

where the pulse-transfer operator Yc(z) is given by

Yc(z) = Cc (zI−Φ)
−1

Γc (3)

where z is the forward-shift operator. The pulse-transfer oper-
ator Yg(z) is obtained similarly. Due to the finite computation
time of the control algorithm, the converter voltage reference
uc,ref is delayed by one sampling period, i.e., uc(k) =
z−1uc,ref(k). Taking the computational delay into account,
the pulse-transfer function from uc,ref to ic can be written as

Y (z) =
ic(z)

uc,ref(z)
= z−1Yc(z). (4)

A block diagram representation of the discrete-time LCL
filter model (2) including the computational delay is shown
in Fig. 2. Knowledge of the structure of Y (z) is important
for selecting a suitable identification model, and it can be
expressed as

Y (z) =
B(z)

A(z)
=
z−1(β1z

−1 + β2z
−2 + β3z

−3)

1 + α1z−1 + α2z−2 + α3z−3
. (5)

The coefficients of the above pulse-transfer function are com-
plicated functions of the filter parameters and the sampling
period Ts. If the resistances in the system are omitted, i.e., an
ideal filter is considered, the number of unique coefficients in
Y (z) is reduced. Furthermore, the coefficients can be written
using the closed-form expression of the hold-equivalent state-
space model (1) of the ideal LCL filter (cf. Appendix A) as
[17]

α1 = −α2 = −1− 2cos(ωpTs)

α3 = −1

β1 = β3 =
Ts + Lg sin(ωpTs)/(ωpLc)

Lc + Lg

β2 = −2Tscos(ωpTs) + 2Lg sin(ωpTs)/(ωpLc)

Lc + Lg

(6)

where ωp is the undamped resonance frequency of the LCL
filter, given by

ωp =

√
Lc + Lg

LcCfLg
. (7)
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Fig. 4. Block diagram of the identification method embedded to a grid converter system.

III. IDENTIFICATION MODEL

Choice of the identification model structure is crucial for
obtaining accurate results. The most common discrete-time
identification model structures are divided into equation-error
and output-error models [21]. Equation-error models include
an error term that passes through the same denominator
polynomial as the input signal. Such models correspond well
to the model of an LCL filter, as both inputs uc,ref and
ug pass through the same denominator polynomial A(z) to
ic. Therefore, an autoregressive-moving-average (ARMAX)
equation-error model, shown in Fig. 3, is used. Out of the
available equation-error models, ARMAX is selected due to
the flexibility it offers for modeling the error term. The
discrete-time ARMAX model can be expressed as [21]

A(z)i(k) = B(z)u(k) + C(z)e(k) (8)

where i(k) is the preprocessed converter current ic(k) cor-
responding to the model output, u(k) is the preprocessed
converter voltage reference uc,ref(k) corresponding to the
model input, and e(k) represents white noise with zero mean.
The grid voltage ug is not included in the model, as it is
assumed to be unknown in order to increase the generality of
the proposed method. However, this exclusion does not pose
a problem since the influence of the grid voltage is effectively
removed from the samples used in the identification, as will
be discussed in Section IV-B.

As the structure of the LCL filter dynamics from uc,ref

(corresponding to u) to ic (corresponding to i) is known [cf.
(5)], the orders of the polynomials A(z) and B(z) are selected
identical to the denominator and numerator of Y (z) given in
(5), respectively. For selecting the numerator polynomial C(z),
a parsimonious approach is adopted for the sake of generality
of the model [22]. A second-order polynomial

C(z) = 1 + c1z
−1 + c2z

−2 (9)

is employed, as it was found to yield similar results as
compared to higher-order polynomials in various simulations
and experiments. However, the order of C(z) can be optimized
for specific systems by using advanced model-order selection
approaches, such as the Akaike information criterion [22].

Next, the regression models for the realistic and ideal LCL
filters are presented. The realistic filter model is employed to
obtain an estimate of the series resistance R̂s = R̂c + R̂g

seen by the converter. As the reactive parameters are difficult

to obtain directly from the realistic model, an ideal filter
model is also considered. In the ideal filter model, the losses
of the components are neglected. This allows for expressing
the reactive filter parameters as functions of the estimated
polynomial coefficients [cf. (24)].

A. Regression Model for the Realistic LCL Filter

The ARMAX model (8) of a realistic LCL filter (5) can be
written as a regression model

yr(k) = ϕT
r (k)θr + e(k) (10)

where the regressed variable is

yr(k) = i(k) (11)

and the regressor vector ϕr and the parameter vector θr are

ϕr(k) = [−i(k − 1),−i(k − 2),−i(k − 3), u(k − 2),

u(k − 3), u(k − 4), e(k − 1), e(k − 2)]T

θr = [α1, α2, α3, β1, β2, β3, c1, c2]T
(12)

respectively.

B. Regression Model for the Ideal LCL Filter

In the regression model

yi(k) = ϕT
i (k)θi + e(k) (13)

of the ideal LCL filter with polynomial coefficients (6), the
regressed variable is

yi(k) = i(k)− i(k − 3) (14)

and the regressor and parameter vectors are

ϕi(k) = [i(k − 2)− i(k − 1), u(k − 2) + u(k − 4),

u(k − 3), e(k − 1), e(k − 2)]T

θi = [α1, β1, β2, c1, c2]T
(15)

respectively. As the resistive losses of the filter are neglected,
the coefficients in polynomials A(z) and B(z) of the identifi-
cation model (8) can be related to the parameters of the LCL
filter through (6).
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Fig. 5. Block diagram of the proposed identification method. LPF denotes a low-pass filter.

IV. IDENTIFICATION METHOD

A block diagram of the proposed identification method
embedded to a PWM-based grid converter system is presented
in Fig. 4. Sampling of the converter currents is synchronized
with the PWM and the digital control system is assumed to
cause a delay of one sampling period. The DC-bus voltage
udc is measured for the PWM and the converter current ic is
controlled by the converter.

A block diagram of the identification algorithm is presented
in Fig. 5. While the system is being excited by a wideband
excitation signal v(k), the following steps are taken at each
sampling period:
A) The most recent samples of the converter voltage refer-

ence uc,ref and the converter current ic are input to the
algorithm.

B) Significant grid-frequency harmonics, including the fun-
damental component, are removed from the samples.

C) Parameter estimates of the realistic filter model, θ̂r, and
the ideal filter model, θ̂i, are updated.

D) The estimate θ̂r is translated into an estimate of the series
resistance R̂s = R̂c+R̂g and the estimate θ̂i is translated
into inductance and capacitance estimates L̂c, Ĉf , and L̂g.

These steps are explained in the following subsections.

A. Excitation and Sampling

During identification, an excitation signal v(k) = vα(k) +
jvβ(k) is added to the converter voltage reference calculated
by the converter control system, as shown in Fig. 4. In order
to successfully identify the LCL filter, the power spectrum
of the excitation signal should be wide enough to excite the
resonance frequency (7) of the LCL filter sufficiently. Fur-
thermore, the power of the injected signal affects the accuracy
of the estimates. Higher power improves the signal-to-noise
ratio of the identification, which improves the accuracy of
the obtained estimates. A maximum-length binary sequence
(MLBS) is used as the excitation signal due to its ease
of implementation, deterministic behavior, repeatability, wide
power spectrum, and lowest possible crest factor [21], [23]. In
this paper, the MLBS is injected into vβ while vα = 0. As a
result, only the b and c phases are excited and thus only the
imaginary components of the sampled signals are processed.
The choice of amplitude of the MLBS signal is a compromise
between excitation power and distortion of the grid currents.
Standards, such as the IEEE 519-2014, set limits to harmonics
injected to the grid. Compliance with standards solely related

to harmonics is not an issue for the proposed method due
to the power of the excitation signal spreading mostly to the
interharmonic frequencies. However, standards for distributed
generation, such as the IEEE 1547-2018, set limits to the total
current distortion at the point of connection. The compliance
of the proposed method with regards to these standards will
be examined in Section V-D.

B. Harmonic Removal

In practice, the grid voltage includes some low-order har-
monics in addition to its fundamental component. In order
to increase the accuracy of the parameter estimates obtained
from the method, significant grid-frequency harmonics should
be removed from the current and voltage samples to eliminate
the effect of the grid voltage on the estimates. The selected
harmonic components are removed from the samples as

u(k) = ucβ,ref(k)−
∑
m

um(k) (16)

i(k) = icβ(k)−
∑
m

im(k) (17)

where um and im are the mth-order harmonics for the
voltage and current, respectively. In this paper, the harmonic
components m = [0, 1, 5, 7] are removed from the samples.
As a result, the sum in (16) becomes

∑
m um(k) = u0(k) +

u1(k) + u5(k) + u7(k) and the sum in (17) can be written
similarly. The DC component m = 0 is removed due to a
possible bias in the measurement sensors. Assuming that the
grid voltage consists purely of the aforementioned harmonics,
its influence is effectively removed from the samples used
in the identification. In practice, the grid voltage includes
several other frequency components as well. However, these
components are typically minor as compared to the low-order
grid-frequency harmonics that are removed from the samples.
As a result, they are mostly modeled by the noise term e(k).

There are several different algorithms for computing har-
monic components from a signal, the standard method for
batch processes being the discrete Fourier transform (DFT).
The DFT of a signal, e.g., current i, calculated from N
previous samples at time k for a mth-order harmonic can be
expressed as

Im(k) =
N−1∑
n=0

i(q + n)W−mn
N , ∀m ∈ {0, 1, . . . , N − 1}

(18)
where q = k −N + 1 and WN = ej2π/N [24].
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For computing a limited number of harmonics efficiently in
real time on a sample-to-sample basis, sliding DFT (SDFT)
algorithms are a superior tool. The SDFT algorithms leverage
the fact that only one element in the sample buffer changes
between the sampling instants by modifying the result of
the DFT from the previous sampling instant accordingly. The
traditional SDFT can be derived from (18) as [25]

Im(k) = W−mn
N [Im(k − 1) + i(k)− i(k −N)] (19)

where n = mod(k,N). However, this form of the SDFT
suffers from numerical instabilities and accumulated errors due
to a complex pole on the unit circle [26]. Hence, a guaranteed
stable and accurate variant of the sliding DFT, the modulated
sliding DFT (mSDFT), is used instead [26]. The structure of
the mSDFT is presented in Fig. 6, which depicts the extraction
of the harmonics from the converter current samples used
in the identification. The mSDFT consists of a comb filter
acting as a sample buffer and one resonator for tracking each
harmonic of interest. Mathematically, N -point mSDFT of a
signal, e.g., current i, at time k for a mth-order harmonic can
be expressed as [26]

Ĩm(k) = Ĩm(k − 1) +W−mn
N [i(k)− i(k −N)] (20)

Im(k) = W
m(n+1)
N Ĩm(k) (21)

where the tilde indicates that the DFT bin calculated in (20)
has phase error that is corrected with (21). Finally, as shown in
Fig. 6(a), the spectral bins are transformed into instantaneous
values of the harmonics as

im(k) =

{
1
N Re{Im(k)} if m = 0
2
N Re{Im(k)} otherwise.

(22)

C. Model Parameter Estimation

A recursive prediction error (RPE) algorithm [22] is used
for computing estimates for the coefficients of the polynomials
A(z) and B(z) of the ARMAX model (cf. Appendix B).
Estimates for the noise polynomial coefficients ĉ1 and ĉ2 are
also obtained in the process.

For tracking time-varying parameters with the RPE algo-
rithm, either a forgetting factor λ less than unity needs to
be used or the covariance matrix P needs to be actively
modified. If neither of these modifications is employed, the
tracking capability of time-varying parameters is severely

hindered due to the covariance wind-up phenomenon [27]. In
the covariance wind-up, the values of a number of elements
in the covariance matrix tend to zero, causing the estimation
algorithm to become insensitive to certain parameter changes.
In [20], two different methods to enable tracking of time-
varying parameters were presented. Here, only the constant
forgetting factor is considered.

If a forgetting factor less than unity is used, i.e., λ < 1,
the elements of the covariance matrix P are prevented from
tending to zero. The choice of the forgetting factor is a trade-
off between sensitivity to disturbances and capability to track
parameter variations. The smaller the forgetting factor is, the
more aware the estimation algorithm becomes of parameter
variations. However, as the sensitivity to parameter changes
increases, so does the sensitivity to disturbances. Thus, feasible
values for the forgetting factor are often limited close to unity,
typically between 0.98 and 0.995 [21].

In estimating the realistic filter model, lower frequencies are
given more weight in the estimator by low-pass filtering the
samples input to the RPE algorithm (cf. Fig. 5). This improves
the accuracy of the estimated model at lower frequencies at
the cost of decreasing the accuracy at higher frequencies [22].
For filtering, a simple first-order low-pass filter (LPF) with
the bandwidth of αf = 2 kHz was employed. The choice
of the LPF bandwidth αf is a trade-off between accuracy of
the identified series resistance and the accuracy of the high-
frequency behavior of the LCL filter. For the system used in
the experiments, the bandwidth of 2 kHz was found to be
a good compromise between the two. In case the frequency
response of the system for a wide range of frequencies is
desired, the LPF bandwidth should be maintained relatively
high. On the other hand, if only the series resistance is of
interest, low LPF bandwidth should be employed. Generally,
the frequency range of interest in identification depends on the
use case of the estimation result.

D. Translation to Inductance, Capacitance, and Resistance
Values

Finally, depending on the identified discrete-time model, the
model parameter estimates are translated either into inductance
and capacitance values or into series resistance seen by the
converter. In the following, the dependency on time k is
omitted to maintain a level of simplicity.



6

Start identification

Select the harmonics m removed from
the samples, the forgetting factor λ,
and the bandwidth αf of the LPF

Add v(k) to uc,ref (k)

Extract icβ(k) from ic(k)
and ucβ,ref (k) from uc,ref (k)

Remove harmonics m from the samples

Update θ̂r

Update θ̂i

LPF the samples

Translate to R̂s

Translate to
L̂c, L̂g , and Ĉf
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In case the realistic filter model is identified, the series
resistance estimate R̂s, consisting of the estimated converter-
side and grid-side resistances R̂c and R̂g, respectively, is
obtained as the inverse of the DC-gain of the identified model,
i.e.,

R̂s =
Â(1)

B̂(1)
=

1 + α̂1 + α̂2 + α̂3

β̂1 + β̂2 + β̂3
. (23)

In case the ideal filter model is identified, the inductance and
capacitance values are obtained by expressing the parameters
Lc, Cf , and Lg as functions of the discrete-time model
parameters in (6) as [17]

ω̂p =
1

Ts
cos−1

(
− α̂1 + 1

2

)
L̂c =

2
sin(ω̂pTs)

ω̂p
[cos(ω̂pTs)− 1]

2β̂1

[
cos(ω̂pTs)− sin(ω̂pTs)

ω̂pTs

]
+ β̂2

[
1− sin(ω̂pTs)

ω̂pTs

]
L̂g = − ω̂pL̂c[L̂cβ̂2 + 2Ts cos(ω̂pTs)]

ω̂pL̂cβ̂2 + 2 sin(ω̂pTs)

Ĉf =
L̂c + L̂g

ω̂2
pL̂cL̂g

. (24)

The above equations can either be calculated every sampling
period or more sparsely. To summarize, a flowchart of the
identification algorithm is shown in Fig. 7.

V. RESULTS

The proposed identification method (cf. Figs. 5 and 7) is
evaluated by means of simulations and experiments using
a 50-Hz 12.5-kVA grid converter system. During the iden-
tification, the converter is controlled using a state-feedback
current controller [5] tuned according to Appendix C. The
switching frequency of the converter is 5 kHz and the sampling
frequency is 10 kHz. An MLBS generated with 9 shift registers

Fig. 8. Simulated evolution of the LCL filter parameter estimates assuming
an ideal system. The identification algorithm is initiated at t = 0.55 s and two
stepwise changes occur: from 8.7 mH to 3.2 mH in the grid-side inductance
Lg at t = 2 s; from 8.9 µF to 7.5 µF in the filter capacitance Cf at t = 3 s.

Fig. 9. Simulated evolution of the grid-side inductance estimate under dif-
ferent violations of the inductive-resistive grid assumption. The identification
algorithm is initiated at t = 0.55 s and a step-wise change of 2 mH occurs
in the grid-side inductance Lg at t = 2 s.

is used [23]. The amplitude of the MLBS is selected as ±0.1
p.u. and it is generated at a frequency equal to the sampling
frequency. The converter is operating under constant load of
0.4 p.u. The base value of voltage is

√
2/3 · 400 V and the

base value of current is
√

2 · 18 A. The length of the mSDFT
buffer is selected as N = 200 to match the lowest trackable
harmonic frequency with the fundamental frequency of the
grid voltage. The initial values of the mSDFT sample buffer
are set to zero. A forgetting factor of λ = 0.995 is used in
all of the presented results. In the following, both the realistic
and ideal models are estimated in parallel to yield estimates
for Lc, Cf , Lg, and Rs. However, it is possible to estimate
only one of the models. Unless otherwise stated, the nominal
values of the LCL filter reactive parameters are Lc = 3.3 mH,
Cf = 8.9 µF, and Lfg = 3.2 mH.

A. Simulation: Validating the Proposed Identification Method

A simulation model of the system shown in Fig. 4 was
built in Simulink for validating the presented method. PLECS
blockset was used to model the physical system in Simulink.
Initially, no grid harmonics or losses of either the filter com-
ponents or the grid are included in the model. For validation,
the PWM is modeled as a zero-order hold as assumed in the
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Fig. 10. Simulated evolution of the LCL filter parameter estimates. The
identification algorithm is initiated at t = 0.55 s and two stepwise changes
occur: from 8.7 mH to 3.2 mH in the grid-side inductance Lg at t = 2 s;
from 1.5 Ω to 0.2 Ω in the grid-side resistance Rg at t = 3 s.

LCL
filter

dSPACE DS1006

12.5-kVA converter under test

Adjustable
impedance

udc ic,{abc} ug,{ab,bc}

20kV
grid

400V/20kV
500-kVA

Fig. 11. Block diagram of the experimental setup.

system model. Some noise is assumed in the identification
model (8), and thus white noise with standard deviation of
0.002 p.u. is included in the current and voltage measurements.
A simulation case using the aforementioned model is presented
in Fig. 8. The identification algorithm is initiated at t = 0.55
s. In the figure, a stepwise change of grid-side inductance Lg

from 8.7 mH to 3.2 mH occurs at t = 2 s and a similar
stepwise change of filter capacitance Cf from 8.9 µF to 7.5
µF occurs at t = 3 s. The nominal values of the estimated
parameters are given by the red dashed lines. While the
parameters remain constant and the estimation is not in a
transient state, the average relative errors of the estimates with
respect to their nominal values are all 0%.

B. Simulations: Violating the Assumption of Inductive-
Resistive Grid Impedance

Additionally, the effect of violating the assumption of
inductive-resistive grid was investigated. In total, three differ-
ent cases were simulated. Due to space constraints, only the
grid-side inductance estimates are shown. As in the previous
subsection, all the resistances are assumed zero. The LCL filter
reactive parameters are as defined by default (Lc = 3.3 mH,
Cf = 8.9 µF, and Lfg = 3.2 mH). In the simulations presented
for all of the three cases, the total grid inductance Lgr is
initially 3 mH, i.e., Lg = Lfg + Lgr = 6.2 mH. At t = 1
s, the grid inductance Lgr drops to 1 mH, i.e., Lg = 4.2 mH.

Fig. 12. Measured MLBS excitation signal (first), the space-vector compo-
nents of the converter voltage reference (second), and the converter phase
currents (third).

Fig. 13. Sequences of preprocessed voltage u (first) and current i (second)
used in the RPE method.

1) High-Frequency Grid Resonances: First, the grid was
assumed to have resonant characteristics at higher frequencies.
For this, the grid beyond the point of common coupling (PCC)
was assumed to be of LCL-type (cf. Fig. 1) without any
resistive components. Several different resonance frequencies,
ranging from 1 kHz to 22.5 kHz, were simulated. It was
found that for grid resonances below the Nyquist frequency
of the converter (5 kHz), all of the estimates obtained from
the method may be erroneous. However, as the resonance fre-
quency increases, the estimates become increasingly reliable.
For grid resonances above the Nyquist frequency, the estimates
are hardly affected. The estimate of the grid-side inductance
in the case of grid resonance at 6 kHz is shown in Fig. 9.
The 2 mH drop in the grid inductance occurs beyond the grid
capacitance. Thus, the applicability of the proposed method is
limited in grids with resonances below the Nyquist frequency
of the converter.

2) Another Converter Connected in Parallel to the PCC:
Next, an identical converter was connected in parallel with the
identifying converter. The estimate of the grid-side inductance
under these conditions is shown in Fig. 9. As can be observed,
when the grid impedance is high, most of the excitation flows
to the parallel converter, causing distortion in the estimate.
The estimates of the resistance Rs and the filter capacitance
Cf are distorted similarly while the estimate of the converter-
side inductance Lc is unaffected. However, for strong grids, the



8

Fig. 14. Experimental evolution of the LCL filter parameter estimates. The
identification algorithm is initiated at t = 0.55 s and two stepwise changes
occur: a relative change of 5.5 mH in the grid-side inductance Lg at t = 2
s; a relative change of 1.3 Ω in the grid-side resistance Rg at t = 3 s.

LCL
filter

50-kVA grid emulator

Dewetron
DEWE-50-PCI-32 uc,{ab,bc}

ic,{abc}
eg,{abc}

Z

Fig. 15. Block diagram of the LCL filter open-loop frequency response
measurement setup.

effect of the parallel converter is lesser. Thus, the applicability
of this method is limited for parallel-connected converters in
weak grids.

3) Series-Compensated Transmission Line: Lastly, the grid
beyond the PCC was assumed to be a series-compensated line,
i.e., consisting of a series capacitance and an inductance. The
compensation factor is assumed to be kc = XC/XL = 0.5,
where XC is the capacitive reactance and XL is the inductive
reactance. The estimate of the grid-side inductance under the
aforementioned conditions is shown in Fig. 9. The series-
compensation capacitance of 6.7 mF remains constant while
the grid inductance changes. As can be observed, the series
compensation of the transmission lines has an insignificant
effect on the estimate. The estimates of converter-side induc-
tance Lc and filter capacitance Cf are unaffected as well.
However, a small low-frequency oscillation is present in the
estimate of the series resistance Rs. This is because the series
compensation only affects the grid characteristics below and
around the fundamental frequency while the grid remains
inductive for higher frequencies.

C. Simulation: Stepwise Change in the Grid-side Inductance
and Resistance

The simulation model was modified to include grid harmon-
ics, inductor losses, and grid resistance. The grid harmonics
consist of 5th and 7th harmonics and both have an amplitude
of 0.05 p.u. The filter inductors are modeled to include the
effects of DC resistance and eddy currents. Therefore, they

Fig. 16. Identified frequency response of Yc(s) compared to the measured
frequency response of the LCL filter. Both frequency responses are obtained
from the same operating point.

TABLE I
NUMBER OF OPERATIONS TO UPDATE THE PARAMETER ESTIMATES

Multiplications Additions Divisions

mSDFT 40 25 0

RPE 101 71 1

Translation to physical parameters 18 8 1

Total 159 104 2

are modeled as an inductance in parallel with a resistance
and a resistance in series with the parallel connection of
the resistance and the inductance [17]. For the converter-side
inductor, the resistance value for the series resistor is Rc = 100
mΩ and for the parallel resistor Rc,p = 420 Ω. Similarly for
the grid-side inductor, Rg = 100 mΩ and Rg,p = 630 Ω. A
1.3 Ω resistance is initially included in the grid-side series
resistance, i.e., Rg = 1.4 Ω. Thus, the total series resistance
seen by the converter is initially Rs = Rc +Rg = 1.5 Ω. The
series resistance Rf of the filter capacitor is set to 5 mΩ.
Measurement noise with standard deviation of 0.02 p.u. is
added to the current and voltage measurements.

The evolution of the parameter estimates is presented in
Fig. 10. In the figure, a stepwise change in the grid-side
inductance Lg from 8.7 mH to 3.2 mH occurs at t = 2 s,
and a stepwise change in the grid-side resistance Rg from
1.5 Ω to 0.2 Ω at t = 3 s. After the stepwise parameter
changes, the average relative errors of the parameter estimates
with respect to their nominal values are 3% for L̂c, 3% for Ĉf ,
and 5% for L̂g. Furthermore, the half-second average value for
the estimate of the series resistance Rs is 0.35 Ω. Out of the
added non-idealities, the increased measurement noise induces
the greatest error to the parameter estimates while the effect of
grid harmonics is roughly 0%. The filter inductor resistances
cause relative errors of 1% on the inductance estimates.

D. Experiment: Stepwise Change in the Grid-side Inductance
and Resistance

The estimation case presented in Fig. 10 is repeated ex-
perimentally with a system depicted by the block diagram
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in Fig. 11. The converter under test is connected to a 20
kV grid through a 500-kVA 400-V/20-kV transformer and
an adjustable impedance. The converter is controlled using
a dSPACE DS1006 processor board. The DC-bus voltage,
converter currents, and PCC voltages are measured. The
PCC voltages are used only in the control system. Stepwise
changes in the grid-side inductance and resistance are created
by bypassing inductors and resistors with a switch. Fig. 12
shows the injected MLBS excitation vβ , the converter voltage
reference components ucα,ref and ucβ,ref , and the converter
phase currents ic,abc, when the MLBS is active. Fig. 13
shows the preprocessed current and voltage sequences i and
u from which the grid-frequency harmonics m = [0, 1, 5, 7]
have been removed from. These current and voltage sequences
are used as an input to the RPE algorithm. Under constant
load of 1 p.u. with the excitation applied, the total harmonic
distortion (THD), calculated according to IEEE 519-2014, of
the first 50 harmonics injected to the grid is approximately
3.9% for a-phase, 5.0% for b-phase, and 5.1% for c-phase.
Thus, the THD during identification practically complies with
the limit (5%) set by IEEE 519-2014. The total rated current
distortion (TRD), calculated according to IEEE 1547-2018, is
approximately 4.6% for a-phase, 8.3% for b-phase, and 8.1%
for c-phase. To comply with the standard, the amplitude of
the excitation could be reduced and the identification could be
run intermittently to reduce the average TRD below the limit
defined in the standard.

The evolution of the parameter estimates are presented in
Fig. 14. In the figure, a stepwise change of 5.5 mH occurs
in the grid-side inductance Lg at t = 2 s, and a stepwise
change of 1.3 Ω occurs in the grid-side resistance Rg at
t = 3 s. After the stepwise changes of the grid-side inductance
and resistance, the average relative errors of the parameter
estimates with respect to their nominal values are 4% for
L̂c, 8% for Ĉf , and 3% for L̂g. The reference value for the
series resistance seen by the converter is biased, as it does not
include the resistive behavior of the converter or the grid. The
difference between the half-second averages of the resistance
estimates before and after the stepwise change is 1.35 Ω,
which is close to the nominal change of 1.3 Ω.

To further validate the proposed method, the estimated
pulse-transfer function of the system (5) was formed based on
the half-second averages of the estimated model coefficients θ̂r
of the realistic LCL filter. The estimated pulse-transfer func-
tion Ŷ (z) was then transformed into Ŷc(z) by multiplication
with the forward-shift operator z, i.e., Ŷc(z) = zŶ (z), and
finally converted into the s-domain equivalent transfer function
Ŷc(s). The frequency response of Ŷc(s) was compared to the
corresponding experimentally measured open-loop frequency
response of the LCL filter. The measurement setup to obtain
the open-loop frequency response of the LCL filter is shown
in Fig. 15. The grid-side input terminal of the filter was
short circuited while the filter was excited with a 50-kVA
grid emulator (Regatron TopCon TC.ACS) through an external
impedance. The voltages and currents used to calculate the
frequency response of the filter were measured at the input
terminals of the filter with a data acquisition device (Dewetron
DEWE-50-PCI-32) employing a sampling frequency of 100

kHz. The operating point of the filter was set to correspond to
that used in the experiments. The comparison of the frequency
response of the identified transfer function Ŷc(s) obtained
from the proposed method and the measured open-loop filter
frequency response is shown in Fig. 16. Overall, the iden-
tified model agrees with the measured open-loop frequency
response. The difference in the magnitude at low frequencies
is partly due to the bias in the DC gain of the identified system
and partly due to the fact that the validation measurements do
not contain the effect of the converter parasitic resistances or
the grid resistance, which are included in the identified system.
However, as seen in Fig. 14, the identification method can
accurately track relative changes in the series resistance R̂s

corresponding to the DC gain of Ŷc(s).
As the estimation result obtained from the ideal simulation

model shows (cf. Fig. 8), the identification method yields exact
estimates in an ideal case. Therefore, the estimation errors in
the experiments are caused by unmodeled dynamics, nonlin-
earities of the system, unbalances in the filter components,
and inaccuracies in the transfer characteristics of the actuator
and the measurement devices, as also seen in the simulations
including some of these non-idealities (cf. Fig. 10).

E. Computational Aspects of the Proposed Method

Regarding the feasibility of the real-time implementation,
Table I shows the number of multiplications, additions, and
divisions executed at each sampling period to update the
reactive filter parameter estimates. In the table, the harmonics
m = [0, 1, 5, 7] are assumed to be removed from the samples.
By comparing the number of floating point operations required
to update the estimates, around 3 · 102, to the roughly 104 op-
erations required in [19], the benefits of the proposed method
become evident. The computational burden of the mSDFT
can be further alleviated at the cost of increased memory
consumption by precomputing the coefficients W−mn

N for
each m and n = {0, 1, 2, . . . , N} [26].

VI. CONCLUSIONS

This paper presented a real-time identification method for
the inductance and capacitance values of LCL filters used in
grid converters and the series resistance seen by the converter.
The method indirectly estimates the grid inductance as a
part of the grid-side inductance of the LCL filter. As a
result, the parameters of an inductive-resistive grid can be
obtained indirectly. The presented method can be embedded
to a control system of PWM-based converters in a plug-
in manner. An SDFT algorithm is used for computing the
grid-frequency harmonics to enable computationally efficient
real-time harmonic computation. A single recursive parameter
estimation algorithm is used to estimate the identification
model parameters. A forgetting factor is employed in the
recursive parameter estimation algorithm to enable tracking of
time-varying parameters. Simulation and experimental results
show that the method converges to correct estimates from its
initial state and it is capable of tracking time-varying LCL
filter parameters with good accuracy.
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APPENDIX A
DISCRETE-TIME MODEL OF THE LCL FILTER

A discrete-time model of an LCL filter in stationary co-
ordinates is presented below. The state vector is selected as
x = [ic,uf , ig]

T. The sampling of the converter currents and
grid voltages is synchronized with the PWM, which is modeled
as a zero-order hold. Under these assumptions, the system
matrix Φ and the input vector Γc required for solving Yc(z)
are obtained from [28]

Φ = eATs Γc =

(∫ Ts

0

eAτdτ

)
Bc (25)

where

A =

−
Rc+Rf

Lc
− 1
Lc

Rf

Lc
1
Cf

0 − 1
Cf

Rf

Lg

1
Lg

−Rf+Rg

Lg

 Bc =


1
Lc

0

0

 (26)

are the corresponding continuous-time counterparts of the
system matrix and the input vector for the converter voltage,
respectively. The input vector Γg can be obtained similarly to
Γc.

In the case of an ideal LCL filter, i.e., when the resistances
are omitted, the closed-form expressions for the system matrix
Φ and the input vector Γc become

Φ =


Lc+Lg cos(ωpTs)

Lc+Lg
− sin(ωpTs)

ωpLc

Lg[1−cos(ωpTs)]
Lc+Lg

sin(ωpTs)
ωpCf

cos(ωpTs) − sin(ωpTs)
ωpCf

Lc[1−cos(ωpTs)]
Lc+Lg

sin(ωpTs)
ωpLg

Lg+Lc cos(ωpTs)
Lc+Lg

 (27)

and

Γc =
1

Lc + Lg

 Ts +
Lg sin(ωpTs)

ωpLc

Lg[1− cos(ωpTs)]

Ts − sin(ωpTs)
ωp

 . (28)

APPENDIX B
RECURSIVE PREDICTION ERROR METHOD

The RPE algorithm [22] is presented below. It calculates an
estimate θ̂ based on the prediction error

ê(k) = y(k)− ϕ̂T(k)θ̂(k − 1) (29)

where ϕ̂(k) is the regressor vector with true noise terms e(k−
1) and e(k− 2) replaced with their estimated values ê(k− 1)
and ê(k − 2), respectively. The parameter vector is estimated
recursively as

θ̂(k) = θ̂(k − 1) + K(k)ê(k) (30)

where the gain K is calculated as

K(k) = P(k)ψ(k) =
P(k − 1)ψ(k)

λ+ψT(k)P(k − 1)ψ(k)
(31)

P(k) =
P(k − 1)

λ
− P(k − 1)ψ(k)ψT(k)P(k − 1)

λ[λ+ψT(k)P(k − 1)ψ(k)]
(32)

where ψ(k) is an approximate gradient. For the realistic filter
model, the approximate gradient is given by

ψr(k) = [− iF(k − 1),−iF(k − 2),−iF(k − 3), uF(k − 2),

uF(k − 3), uF(k − 4), êF(k − 1), êF(k − 2)]T.
(33)

For the ideal filter model, the approximate gradient is given
by

ψi(k) = [iF(k − 2)− iF(k − 1), uF(k − 2) + uF(k − 4),

uF(k − 3), uF(k − 4), êF(k − 1), êF(k − 2)]T.
(34)

The elements of the approximate gradients for both (33) and
(34) can be solved from

iF(k) = i(k)− ĉ1(k)iF(k − 1)− ĉ2(k)iF(k − 2)

uF(k) = u(k)− ĉ1(k)uF(k − 1)− ĉ2(k)uF(k − 2)

êF(k) = ê(k)− ĉ1(k)êF(k − 1)− ĉ2(k)êF(k − 2). (35)

The equations (29)–(32) are applicable to both the realistic
and ideal filter models. Initial values for θ̂ and P are required
in order to start the algorithm. The initial values are θ̂(0) = 0
and P(0) = I p.u for both models.

If convergence issues arise due to the nature of the RPE
method, a slightly modified version of the method should be
used to obtain initial estimates. This modification is accom-
plished by setting the estimates of the noise polynomials zero,
i.e., ĉ1 = 0 and ĉ2 = 0, in the equations for calculating the
approximate gradient (35). After the initial transients in the
estimates have subsided, the approximate gradient should be
calculated normally according to (35).

APPENDIX C
DESIGN PARAMETERS FOR THE CONTROL METHOD

The parameters for the observer-based current control
method of [5] are ωcd = 2π · 150 rad/s, ζcd = 1, ωcr = ωp,
ζcr = 0.01, ωod = 3ωcd, ζod = 1, ωor = ωp − ωg, and ζor =
0.7. The notation follows that used in [5]. The synchronous
reference frame of the control system was established using
a SRF-PLL tuned with with ζPLL = 0.7 and ωPLL = 2π · 15
rad/s. The DC-bus voltage is assumed constant.

For direct identification in closed-loop systems, the noise
e affects the input signal u [cf. (8)] through the feedback
loop and results in biased estimates [21]. The level of bias
depends on the accuracy of the selected noise model and on the
controller tuning. Therefore, reduced bandwidth and damping
factors are used for the duration of the identification to reduce
the bias caused by the feedback loop.
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