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Abstract
We consider a multipoint channel charting (MPCC) algorithm for radio resource
management (RRM) in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication systems. A massive MIMO (mMIMO) infrastructure network performs
logical localization of vehicles to a MPCC, based on V2I communication signals.
Combining logical distances given by channel charting with V2V measurements, the
network trains a function to predict the quality of a direct V2V communication link from
observed V2I communication signals. In MPCC, the network uses machine learning
techniques to learn a logical radio map from V2I channel state information (CSI) samples
transmitted from unknown locations. The network extracts CSI features, constructs a
dissimilarity matrix between CSI samples, and performs dimensional reduction of the
CSI feature space. Here, we use Laplacian Eigenmaps (LE) for dimensional reduction.
The resulting MPCC is a two-dimensional map where the spatial distance between a
pair of vehicles is closely approximated by the distance in the MPCC. In addition to V2I
CSI, the network acquires V2V channel quality information for vehicles in the training set
and develops a link quality predictor. MPCC provides a mapping for any vehicle location
in the training set. To use MPCC for cognitive RRM of V2I and V2V communications,
network management has to find logical MPCC locations for vehicles not in the training
set, based on newly acquired V2I CSI measurements. For this, we develop an extension
of LE-based MPCC to out-of-sample CSI samples. We evaluate the performance of link
quality prediction for V2V communications in a mMIMO millimeter-wave scenario, in
terms of the relative error of the predicted outage probability.

Keywords: Massive MIMO, Channel charting, Laplacian Eigenmaps, Out-of-sample
extension, V2I, V2V

1 Introduction
Communication technologies are becoming integrated in vehicles for safety applications,
such as blind spot warning and forward collision warning, as well as for non-safety-related
applications such as toll collection and infotainment [1]. The dedicated short-range
communication (DSRC) protocol can be used both for vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications, and provides a coverage range of about
1 km and achieves data rates in the range of 2–6 Mbps [2]. 4G-LTE connectivity below 6
GHz can be used for V2I, achieving a data rate of up to 100 Mbps [3].
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Next generation vehicles are expected to become automated and to contain hundreds
of sensor nodes. The increase in the number of sensors will generate a huge amount of
data that can be utilized for different applications. It is expected that autonomous cars
will comprise 75% of total traffic on the road by the year 2040. There are many benefits of
sharing rich sensor data with other vehicles and infrastructure. However, this will require
exchanging a large amount of data, from tens to thousands of megabits per second. The
state-of-the-art vehicular communication standard DSRC is not sufficient to handle such
high data rates in next generation vehicles [4].
The large bandwidth channels at millimeter-wave (mm-Wave) are a promising candi-

date to realizing high data rates and is of prime interest for 5G and Beyond 5G (B5G)
communication [5]. Massive MIMO (mMIMO) is another promising technology for 5G
and B5G, with the potential to provide high spectral and power efficiency. In a mMIMO
cell, each base station (BS) has a large number of antennas, which can provide a simulta-
neous use of the resource (e.g., frequency and/or time slots) for multiple user equipments
(UEs) in the cell [5–7]. Furthermore, the high spatial resolution exploited by the large-
scale antenna arrays used at the mMIMO BSs can be used for many applications, such as
UE positioning and environment mapping [8–10].
In [11], test results of mm-Wave for V2V and V2I communications are reported. The

results are promising, while it is indicated that much research is still needed to develop
the physical (PHY) and medium access control (MAC) layers for mm-Wave systems to
provide a reliable basis for V2V and V2I communication. A key challenge in developing
mm-Wave systems is the potential for rapid channel dynamics; mm-Wave propagation
suffers from high path loss, reduced diversity, and increased effect of blockage by obsta-
cles [12]. mm-Wave BSs have to use beamforming for transmission in order to increase
the signal-to-noise ratio, reaching a radius of up to 200 m. Hence, hundreds of BSs will
be needed to cover large spaces. Modeling, measuring, and predicting the radio channel
characteristics of mm-Wave systems for V2V communications are the currently active
research areas [3, 13]. Successful deployment of mm-Wave systems requires newmanage-
ment procedures to handle resource-constrained devices, radio resource management,
heterogeneous networking, and computing infrastructures [4, 5, 14, 15]. The level of
channel variability in mm-Wave has widespread implications for virtually every aspect of
V2V communications.
Motivated by the burgeoning progress of artificial intelligence (AI) and its break-

throughs in a variety of domains, the B5G research community is currently seeking
solutions from machine learning (ML) for intelligent control of PHY and MAC layers of
future networks. B5G networks are expected to be intelligent enough to adapt to very
dynamic topologies, intensive computation and storage applications, and diverse Quality
of Service (QoS) requirements [16–19].
To efficiently manage B5G networks and to perform cognitive networking tasks, the

network states which include the spatial distribution and trajectories of the UEs, neigh-
borhood relationships among the UEs, and handover boundaries among neighboring
cells need to be estimated. A novel ML framework called channel charting (CC) based
on the massive amounts of channel state information (CSI) available at the base sta-
tions is proposed for a single-cell MIMO system in [20]. CC applies unsupervised ML
techniques to create a radio map of the cell served by the BS, which preserves the
neighborhood relations of UEs, using features that characterize the large-scale fading
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effects of the channel. The obtained CC can be used for local radio resource man-
agement (RRM) in the cell. However, cell edge UEs may not be accurately located in
the chart due to their low signal-to-noise ratio (SNR) at the cell edge. In [21], a mul-
tipoint CC (MPCC) framework is proposed to support advanced multicell RRM and
to accurately map cell edge UEs. First, each BS generates its own dissimilarity matrix
between the users it can decode; then, the dissimilarity matrices are fused and used to
construct the MPCC. The trustworthiness and continuity measures show that the pro-
posed MPCC is capable to preserve the neighborhood structure between UEs in the
network.
MPCC-based approach entails more computational efforts compared to other approach

at the BSs to compute the dissimilarity matrix between the UEs seen by the same BS.
In this paper, we consider MPCC in V2I networks, where vehicular UEs communicate

with infrastructure BSs. Using only uplink radio channel features, a logical MPCC map
is constructed for the network. Furthermore, some of the UEs have the capability of V2V
communications. To enable V2V connectivity prediction, radio link quality information
of V2V pairs is collected and used to build a link quality prediction (LQP) model utilizing
the MPCC distance between V2V pairs.
To use MPCC for online RRM, it is important to generalize the chart, allowing the

incorporation of new data to an existing MPCC and/or to estimate the features related
to a location in the chart. As the radio channel features of a UE can change rapidly
in a small distance, it is important to accurately estimate the MPCC location of data
from a UE that was not included in the training data set (out-of-sample UE). In this
paper1, an extension-of-MPCC (EMPCC) to out-of-sample data points is considered.
This is a general framework that is needed to implement any online RRM function
using CC.
This paper investigates V2V link quality prediction based on an MPCC approach.

MPCC-based LQP for V2I/V2V consists of two phases: an offline training and online
usage phase. In the training phase, V2I and V2V radio channel features of a large number
of UEs are used to construct the MPCC and LQPmodel, respectively. In the online phase,
given the radio features of active vehicles (UEs), the EMPCC algorithm is used to map the
UEs to CC locations. Based on the CC distance and LQP model, the possibility of V2V
communication for a given pair of vehicles is evaluated. All simulation and modeling are
performed in an mm-Wave context, lending credibility for the considered solutions for
mm-Wave-based V2I/V2V. It is worth noting here that the proposed MPCC-based LQP
for V2I/V2V is not restricted to mm-Wave communications and can be used for other
radio frequencies.
In LQP based onMPCC, neither physical location information, downlink channel mea-

surement at the vehicular terminals, nor V2V measurements are needed for predicting
V2V connectivity. Advanced power allocation and beam alignment algorithms for V2V
communications can be then designed based on LQP and MPCC.
The remainder of this paper is organized as follows. Section 2 presents the system

model of V2I and V2V communications. In Section 4, the MPCC and LQP and EMPCC
frameworks are presented. Numerical results are presented and discussed in Section 5.
Finally, conclusions are drawn in Section 6.

1Part of the results of this paper were presented in [22].
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1.1 Notation

We adopt the following notation: matrices and vectors are set in upper and lower boldface,
respectively. (·)T , (·)∗, (·)H , | · |, || · ||p denote the transpose, the conjugate, the Hermitian,
the absolute value, and the p-norm, respectively. Tr(A) denotes the trace of matrix A.
Calligraphic letters denote sets, e.g., G, and |G| denotes the cardinality of G. R+ is the set
of non-negative real numbers, C is the set of complex numbers, CN×M is the space of
N × M matrices and E[ ·] denotes expectation, and ı = √−1.

2 Systemmodel
The system under consideration is schematically shown in Fig. 1.
Each infrastructure BS b = 1, . . . ,B hasM antenna elements. In the network, two types

of UEs are assumed: V2I UEs and V2V UEs.
Each UE of V2I type has a single antenna element, whereas UE of V2V type has N + 1

antenna elements, one is used for V2I communications, and N antennas for V2V com-
munication. In V2I communications, the base station antenna is at an elevated position,
10–25 m above ground. This is not the case in V2V communications; both the transmit
(Tx) and receive (Rx) antennas are at the same height relatively close to the ground level,
at some 1–2 m above ground, by having antennas close to the ground level, shadowing
effects from other vehicles and surrounding buildings are expected to be stronger. To han-
dle this issue, multiple antennas are used at both the Tx and Rx terminals [3]. Note that
UEs of type V2I can have more than one antenna; however, it is shown that one element
at the UE can be used to construct an accurate MPCC [21].
The V2I channel vector of UE k = 1, . . . ,K using a uniform-linear-array (ULA) at BS b

for a coherence bandwidth can be modeled as [23]:

hb,k =
Lk∑

l=1
β

(l)
b,ka

(
φ

(l)
b,k

)
, (1)

Fig. 1 V2I and V2V communication system with B BSs. A V2V/V2I example; a UE communicating with three
mMIMO BSs and direct communication between a pair of UEs
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where Lk is the number of multipath components for the wireless channel between UE k
and BS b, φ(l)

b,k is the direction of arrival of the lth path, β(l)
b,k is the complex-valued gain of

the lth path, and a(·) is the BS steering vector. For ULA, the steering vector is:
a(φ) =[ 1, eı

2π
λ
s sin(φ), . . . , eı

2π
λ

(M−1)s sin(φ)]T , (2)

where λ is the carrier wavelength, and s is the antenna spacing. The covariance Rb,k ∈
C
M×M of the CSI hb,k used to extract the features at BS b becomes:

Rb,k = E[hb,khHb,k]= Ab,kSb,kAH
b,k , (3)

where E is the expectation operator, Ab,k =
[
a

(
φ

(1)
b,k

)
, . . . ,a

(
φ

(Lk)
b,k

)]
is a matrix of array

steering vectors, and Sb,k = diag
(
E

[
|β(1)

b,k |2
]
, . . . ,E

[
|β(Lk)

b,k |2
])

is a diagonal matrix of
multipath power components.
For V2V communication between UEs i and j, the channel matrix is denoted as H i,j ∈

C
N×N , and the channel covariance matrix at receiver terminal j is:

Qi,j = E

[
H i,jHH

i,j

]
. (4)

The received signal vector at UE j is:

yi,j = √
PH i,jwi,jx + nj, (5)

where x is the transmitted symbol withE[ |x|2]= 1, P is the transmitted power, nj ∈ C
N×1

is the received white Gaussian noise, and wi,j is the beamformer weight. Assuming Tx i
knows the statistics of the wireless channel, the beamformer weight wi,j is selected as the
Eigenvector u corresponding to the largest Eigenvalue of the covariance matrix Qi,j. The
average V2V SNR at UE j can be computed as [24]:

�i,j = P
σn

E

[
Tr

[
H i,jwi,jwH

i,jH
H
i,j

]]
= P

σn
λmax, (6)

where Tr is matrix trace operator and σn is the received noise power. The latter equality
holds for the adopted Eigenbeamformer, and λmax is the maximum Eigenvalue of Qi,j.

3 Channel charting
3.1 Feature extraction and dissimilarity matrix

Large-scale effects of wireless channel are caused by reflection, diffraction, and scattering
of the physical environment, whereas small-scale effects are caused by multipath propa-
gation and related destructive/constructive addition of signal components. CC is based
on the assumption that statistical properties of MIMO channel vary relatively slowly
across space, on a length-scale related to the macroscopic distances between scatterers in
the channel, not on the small fading length-scale of wavelengths. In this regard, the CSI
covariance matrix can be used to capture large-scale effects of the wireless channel based
on the assumption that there is a continuous mapping from the spatial location pk of UE
k to the covariance CSI Rb,k [20, 21]:

Hb : Rd → C
M×M; Hb(pk) = Rb,k . (7)

Here, d is the spatial dimension which is either 2 or 3.
CC starts by processing the CSI covariance matrix Rb,k into suitable channel features

f b,k that capture large-scale properties of the wireless channel. CC then proceeds by using
the set of collected features {f b,k}Kb

k=1 for the set of UEs Kb = {1, . . . ,Kb} seen by BS b to
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learn the dissimilarity matrix Db ∈ R
Kb×Kb+ . The pairwise dissimilarity [Db]k,m between

UEs k andm, for k,m ∈ Kb measures the dissimilarity of the radio features between UEs k
and m. Different approaches can used to select the channel features and then computing
the dissimilarity matrix (see [20, 21]). In this paper, we select the feature vector f b,k based
on multipath components [21]:

f b,k =
[
λ

(1)
b,k , · · · , λ(Lk)

b,k ,φ(1)
b,k , · · · ,φ(Lk)

b,k

]
, (8)

where λ
(l)
b,k = E

[
|β(l)

b,k|2
]
. The multipath components (power and phase)

{
λ

(l)
b,k

}Lk
l=1

and
{
φ

(l)
b,k

}Lk
l=1

of UE k at BS b are estimated from the CSI covariance matrix Rb,k using the
multiple signal classification (MUSIC) algorithm [25]. The dissimilarity between two UEs
(k,m) is based on identifying multipath components in their feature vectors that are sim-
ilar. For this, the components of feature vectors are transformed to Cartesian coordinates
as [21]:

F{f b,k} =
[
x(1)
b,k , · · · , x(Lk)

b,k

]
, (9)

where x(l)
b,k =

[
cos(φ(l)

b,k)√
λ

(l)
b,k

, sin(φ
(l)
b,k)√

λ
(l)
b,k

]T

. To cluster multipath components to clusters deemed

to be similar, the density-based spatial clustering of applications with noise (DBSCAN)
algorithm [26] is used to label the multipath components2 {F{f b,k}}Kb

k=1. This results in a
label L

(
x(l)
b,k

) ∈ {C1, · · · ,CN } for each multipath component, where Cn is the label of the
nth cluster. The dissimilarity coefficient between a pair of UEs (k,m) then is computed
taking into consideration multipath components of the UEs that are in the same cluster.
The pairwise dissimilarity is computed as:

[Db]k,m =
{

||x(i′)
b,k − x(j′)

b,m||2 if L
(
x(i′)
b,k

)
= L

(
x(j′)
b,m

)
,

||x(1)
b,k − x(1)

b,m||2 otherwise,
(10)

where [ i′, j′]= arg max
i,j

min
(
λ

(i)
b,k , λ

(j)
b,m

)
.

3.2 Multipoint channel charting

MPCC utilizes the different views of the spatially distributed BSs by fusing the BS-specific
dissimilarity matricesDb, b = 1, . . . ,B into a global dissimilarity matrixD [21]. The bene-
fits of having multiple spatially distributed BSs can be utilized by merging the BS-specific
dissimilarity matrices {Db}Bb=1 into a global dissimilarity matrix D, where the (k,m)th
element [D]k,m can be computed as:

[D]k,m = 1
∑B

b=1 ωb(k,m)

B∑

b=1
ωb(k,m)[Db]k,m , (11)

where ωb(k,m) is a weighting factor computed as ωb(k,m) = min(γb,k , γb,m)2 and γb,k is
the SNR of the wireless link between UE k and BS b.

3.3 Dimesionality reduction and Laplacian Eigenmaps

CC finds in an unsupervised manner a low dimensional channel chart providing logical
locations Z = {zk}Kk=1 for the sample UEs such that neighboring UEs will be neighboring

2A non-linear transformation can be applied to make clusters of multipath components separable.
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points in the channel chart, i.e., CC preserves the local geometry. The relation between
the logical and physical locations is approximative:

‖zk − zm‖ ≈ α
∥∥pk − pm

∥∥ , for k,m ∈ K, (12)

where α is a scaling factor. Note that the UE spatial location P is not known and BS loca-
tion is not needed; CC is computed solely based on the dissimilarity matrix. A channel
chart is constructed using an unsupervised ML framework that processes the dissimilar-
ity matrix, and manifold learning is used to dimensionally reduce the CSI feature space
[20]. For a given dissimilarity matrix, different dimension reduction techniques have been
proposed in the literature. The performance of a given technique is problem dependent,
as discussed in [27]. The single-cell CC problem has been solved using principle compo-
nent analysis (PCA), Sammon’s mapping (SM), and autoencoder reduction techniques in
[20], whereas theMPCC is solved using SM, Laplacian Eigenmaps (LE), and t-Distributed
Stochastic Neighbor Embedding (t-SNE) in [21]. Recently, neural networks have been
used successfully for dimensionality reduction as in [28, 29].
LE is a computationally efficient non-linear dimensionality reduction technique based

on the graph Laplacian. It preserves neighborhood properties and clustering connections
[30]. LE constructs a graph from neighborhood information of the dissimilarity matrix.
The LE problem is expressed as [30]:

minimize
Z

Tr
(
ZTLZ

)
, (13a)

subject to ZTSZ = Id+1, (13b)

where Z = [
zT1 , . . . , z

T
K
]T represents the optimization variables (CC locations) in a matrix

form, Id is the identity matrix of order d, L is the graph Laplacian matrix, and S is the
degree matrix. The graph Laplacian matrix is computed as:

L = S − W , (14)

where W is the weight matrix. The degree matrix S can be constructed using the dis-
similarity matrix either by an ε-neighborhood, i.e., nodes k and m are connected by an
edge if [D]k,m ≤ ε, or by N nearest neighbors, i.e., nodes k and m are connected by an
edge if m is among the N nearest neighbors (N smallest dissimilarity values of the kth
row of D) of k or k is among the N nearest neighbors (N smallest dissimilarity values of
the mth row of D) of m. The weight matrix can be constructed using the dissimilarity
matrix either by a simple approach, if nodes k and m are connected, [W ]k,m = 1, other-
wise [W ]k,m = 0 or by using the heat kernel with temperature T, if nodes k and m are

connected, [W ]k,m = e−
[D]2k,m

T , otherwise [W ]k,m = 0. The temperature T can be selected
based on the statistics of the dissimilarity matrix.
The Laplacian matrix is a symmetric positive-semidefinite matrix. Every row sum and

column sum of L is zero, consequently λ0 = 0 is the smallest Eigenvalue of L, and v0 =
[ 1, . . . , 1]T satisfies Lv0 = 0. In addition, the elements of an Eigenvector sum to zero, i.e.,∑K

k=1[ vi]k = 0 for i = 1, . . . ,K − 1.
The solution of (13) can be obtained in closed form as the solution of a generalized

Eigenvector problem based on KKT conditions [30]. The CC locations are obtained by
finding the d+1 Eigenvectors corresponding to d+1 smallest Eigenvalues. An example of
a connected graph of five nodes is shown in Fig. 2. The dissimilarity matrix is computed
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Fig. 2 A connected graph of five nodes. Top: two-dimensional true location of the nodes. Middle: LE logical
location of the nodes using the first and second Eigenvectors. Bottom: logical location using the third and
fourth Eigenvectors

using the true Euclidean distance, three nearest neighbors are used to compute the degree
matrix, and the heat kernel temperature is set T = 1. The true location of the nodes
is shown in the top subfigure. LE is used to find the logical location of the nodes. The
second and third Eigenvectors preserve the local neighborhood information as shown in
the middle subfigure, whereas the forth and fifth Eigenvectors maximize the difference
between the nodes as shown in the bottom subfigure. The neighborhood information is
not preserved using Eigenvectors corresponding to the largest Eigenvalues.
Algorithm 1 summarizes how the CC locations can be obtained using LE.

3.4 Out-of-sample extension

Since theMPCC is constructed by processing the data of all UEs from all BSs, it is compu-
tationally expensive to repeat theMPCC process if an out-of-sample data item is available,
and needs to be inserted into the chart. If the original MPCC is based on a sufficient
number of samples, it is expected that the out-of-sample data will not change the MPCC
positions of the original samples.
Here, we address out-of-sample extension of MPCC in this sense, aiming to estimate

the location of the new sample on the MPCC, to be used for RRM functions, such as
V2V LQP. It is worth mentioning that the same feature extraction should be used for the
out-of-sample data items as for the original samples, and the data-driven dissimilarity
measure found for the original samples should be used tomeasure dissimilarity of the out-
of-sample items to the original samples. For an out-of-sample UE j, the CSI covariance
matrix Rb,j at BS b is used to find the feature vectorF{f b,j} =

[
x(1)
b,j , . . . , x

(Lj)
b,j

]
. The cluster
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Algorithm 1 The LE for MPCC
1: Given: the dissimilarity matrix D, ε/N , T.
2: Construct: the adjacency matrix, two approaches can be considered:

• The ε-neighborhood, nodes k and m are connected by an edge if [D]k,m ≤ ε.
• Nodes k and m are connected by an edge if m is among the N nearest neighbors

of k or k is among the N nearest neighbors of m.

3: Choosing: the weight matrixW ; two approaches can be considered:

• Using the heat kernel with temperature T, which needs to be chosen based on
the dissimilarity statistics; if nodes k and m are connected, [W ]k,m = e−

[D]k,m
T ,

otherwise [W ]k,m = 0.
• Simple approach, if nodes k and m are connected, [W ]k,m = 1, otherwise

[W ]k,m = 0.

4: Compute: the Laplacian Matrix L = S − W , where S is the degree matrix (diagonal
matrix) with [ S]k,k = ∑K

i=1[W ]k,i.
5: Compute: the eigenvalues λi for i = 0, . . . ,K−1 and eigenvectors vi for i = 0, . . . ,K−

1 for the generalized eigenvector problem: Lv = λSv,
6: Order: the eigenvectors v0, v1, . . . , vK−1 according to their eigenvalues, with 0 =

λ0 < λ1 ≤ λ2 ≤ . . . ≤ λK−1.
7: Return: the CC position of the kth UE on the MPCC as: z(k) =[ v1(k), v2(k)] for

d = 2 and z(k) =[ v1(k), v2(k), v2(k)] for d = 3.

label for an out-of-sample multipath component is determined based on the cluster label
of the nearest multipath component on the original data set, i.e., L

(
x(l)
b,j

) = L
(
x(l′)
b,m

)
where

[m, l′]= argmin
k,n

||x(n)

b,k − x(l)
b,j||2, k ∈ Kb, and n = 1, . . . , Lk . The out-of-sample dissimilar-

ity element [Db]j,m at BS b is computed using (10), and then, the global dissimilarity is
computed using (11). The relation between MPCC and EMPCC is shown in Fig. 3.
In [31], a generalized framework for out-of-sample extension is proposed for several

algorithms, providing that these algorithms learn Eigenfunctions of a data-dependent
kernel. The out-of-sample mapping can be formulated as an optimization problem, where
the objective is to find a normalized kernel function that minimizes the mean squared
error. The normalized kernel vector is used as a weight vector to find the out-of-sample
mapping. For LE, the normalized kernel function (weight) is computed as [31]:

Ŵ (k, i) = 1
K

W (k, i)
√
Ex[W (k, x)]Ey[W (i, y)]

, k, i = 1, . . . ,K , (15)

whereW (k, i) =[W ]k,i and the expectation is taking with respect to the original data set.
The EMPCC position of an out-of-sample data z(j) for j /∈ {1, . . . ,K}, i = 1, . . . ,K , and
d = 2 can be computed as:

z(j) =
[ K∑

k=1
Ŵ (j, k)v̂1(k),

K∑

k=1
Ŵ (j, k)v̂2(k)

]
, (16)

where the weight Ŵ (j, i) for j /∈ {1, . . . ,K} is computed based on the dissimilarity of the
radio features of UE j with respect to the radio features of all UEs in the original set, and
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Fig. 3 Main steps of MPCC and EMPCC. EMPCC uses the CC locations of the offline training set and the
dissimilarity measure learned by MPCC

the Eigenvectors v̂1 and v̂2 are computed based on the normalized weighting matrix Ŵ
of the original data set.
The resulting EMPCC method is summarized in Algorithm 2.

4 MPCC-based V2V link quality prediction
Radio maps can be utilized for RRM functionalities. To construct radio maps, either the
physical or the logical location of the UEs in the radio environment and the correspond-
ing CSIs are needed. The physical location can be obtained either by a global navigation
satellite system (GNSS) such as GPS or by a triangulation approach. Triangulation can be
used for only LOS communications with at least three BSs. The locations of the BSs need
to be known, whereas CC has the advantage of being able to be used for both LOS and
NLOS communications without the need to know the BS locations. CC can be used with
a single BS; however, using more BSs improves the CC accuracy. CC has the advantage

Algorithm 2 The EMPCC for UE j, j /∈ {1, . . . ,K}
.
1: Given the feature vector {F{f b,k}}, cluster label {L(

x(l)
b,k

)}, weighting matrix Ŵ ∈
R
K×K and the eigenvectors v̂1 and v̂2.

2: Estimate the multipath components {f (j)
b }Bb=1.

3: Compute the feature vector F{f b,j}.
4: Find the cluster label L

(
x(l)
b,j

)
for each multipath components.

5: Compute the dissimilarity coefficient [Db]j,m form = 1, . . . ,Kb.
6: Compute the dissimilarity fusion vector {[D]j,m }Km=1 for out-of-sample UE j.
7: Compute the weight vector =[ Ŵ (j, 1), . . . , Ŵ (j,K)].
8: Map the position z(j) on the MPPC using (16).
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of replacing the timely and costly measurement campaign in GNSS fingerprinting-based
algorithms by heavily processing ML algorithms (i.e., unsupervised learning plays a key
role of mapping radio features to logical locations and preserving neighborhood relations)
at the BSs, which has the advantage of being able to be applied for large-scale areas and
in an automated manner when the radio environment changes. The back-haul cost of
CC is less than the back-haul of GNSS fingerprinting, since the location information is
not transmitted. Table 1 compares CC-based radio maps with GNSS-based fingerprinting
and triangulation-based fingerprinting in terms of communication scenario, BS location,
back-haul load, and computational cost at UEs and BSs.
We consider V2I/V2V RRM based on large-scale radio features, i.e., the covariance

matrices. A large data set of radio features of V2I is processed to obtain a channel chart
of logical locations. In the training phase, the network control unit selects pairs of UEs
that have the capability for V2V communications, and asks them to establish connection
and measure the link quality. The vehicular terminals then feedback the average SNR of
V2V communication to the network. The control unit constructs a LQP model based on
the knowledge of CC locations of the vehicular terminals and the received average SNR
of V2V pairs. The RRM framework consists of an offline training phase where MPCC
and LQP are generated and an online phase where the MPCC and LQP are used to pre-
dict connectivity of UEs in the network. In the online phase, out-of-sample extension of
MPCC is used to place vehicles to the MPCC, and the LQP model is used to predict V2V
connectivity. The block diagram of the considered method to predict V2V connectivity is
shown in Fig. 4.

4.1 Link quality prediction model

In wireless communications, the optimal transmission scheme is adaptively selected
based on the estimated CSI. Due to the high-mobility nature of V2V, directivity, and
blockage of mm-Wave bands, link quality prediction of V2V is a challenging problem.
Generally, analytical and theoretical models for LQP are based on simplified bounding
assumptions, which cannot be used in practical scenarios. Here, we consider a data-driven
probabilistic LQP model, utilizing the MPCC locations and average SNR of a large set
of V2V pairs. The LQP of V2V communications is determined by the average SNR at
the receiving terminal. The most important characteristic of a V2V channel is whether
there is a connection or not. To proceed with predicting connectivity, we assume that
there is an SNR threshold for successful reception. Knowing the SNR statistics for V2V

Table 1 Benefits and costs of CC-based RRM

Property MPCC/CC GNSS-based Triangulation-based

fingerprinting fingerprinting

Scenario NLOS/LOS Signals from three
satellites

LOS from three BSs

BSs location Not needed Not needed Needed

Back-haul load CSIs CSIs and location
coordinates

CSIs

Comp. cost at BSs High (population-based
CSI processing)

Not applicable Low (point-based CSI
processing)

Comp. cost at UEs Not applicable GNSS position calcula-
tion

Not applicable
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Fig. 4 RRM for V2I/V2V communication systems. Offline phase: the MPCC and LQP models are constructed.
Online phase: network management uses EMPC and LQP to predict V2V connectivity

communication with a given MPCC distance, one may then predict the probability of the
V2V link being in outage with respect to this SNR threshold.
The channel charting distance d(C)

i,j betweenUE i andUE j is defined using the Euclidean
distance of MPCC locations zi and zj as:

d(C)
i,j = |zi − zj|2. (17)

The MPCC distance d(C)
i,j of the V2V pairs is quantized into a grid with G points, D =

{dC0 , . . . , dCG−1}, such that d(C)
i,j is assigned to grid point g if dCg−1 ≤ d(C)

i,j < d(C)
g . The outage

probability for CC grid distance d(C)
g can then be estimated as:

O
(
γth|d(C)

g

)
= Pr

(
� ≤ γth|dCg

)
, (18)

where γth is an SNR threshold determined for reliable communication at a rate required
by the network, and � is the average SNR of a V2V communication pair belonging to
the sample set with MPCC distance quantized to dCg . The outage probability for distances
dg ∈ D is empirically computed using the measured SNR of V2V UEs.

5 Simulation results and discussion
Amulticell mm-Wave scenario is considered as discussed in [21]. The simulation param-
eters are shown in Table 2. The UE locations are generated on the streets of a Manhattan
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Table 2 Simulation parameters [21]

Parameter Value Parameter Value

Pathloss at 1 m 61.4 dB Reflection loss 0–15.5 dB

UE tx power 23 dBm BS noise power −86 dBm

BS antenna gain 0 or 2 UE antenna gain 1

Bandwidth 200 MHz OFDM subcarriers 256

BS antenna 64 ULA V2V antenna 8 ULA

BS array gain 18 dB V2V array gain 8 dB

Noise figure 6 dB Noise power −174 dBm

No. of subrays/cluster 5 Max. no. of bounces 5

Max. no. of multipaths 10 Intra-cluster mean delay 10 ns

grid as shown in Fig. 5. In [21], a ray-tracingmm-Wave cellular channelmodel was created
following the principles of [32, 33]. Here, we use this channel model for V2I and further
generalize it to a V2V model. The channel simulator models the path loss experienced
by the multipath components using the free-space path loss model with power inversely
proportional to the square of the distance. The reflections from obstacles, i.e., the walls,
are modeled such that the reflection coefficients are based on Fresnel’s equations. The
typical value for the wall relative permittivity is between 4 and 6. The channel for each
link is then calculated using the ray-traced paths with the path loss, reflection losses, and
antenna gain accounted for in the channel. The multipath gain β

(l)
b,k is computed as:

β
(l)
b,k = eıψl

√√√√G0 ρ d−2
l g1(θl) g2(φl)

R∏

i=1

∣∣∣r(i)l
∣∣∣
2
, (19)

where G0 = 10−6.14 is the omnidirectional path gain at a reference distance of 1 m; ρ is
the transmit power;ψl is the phase modeled as a uniform random variableψl ∼ U(0, 2π);

Fig. 5 Simulated scenario: streets in a Manhattan grid with 10 BSs labeled by numbers and sampled UE
locations marked by colors
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dl is the propagation distance in meters; gl(θl) and g2(φl) are the antenna gain for an angle
of departure θl at the UE and angle of arrival φl at the BS, respectively; R is the number
of reflections that the lth multipath component undergoes; and r(i)l is the ith reflection
coefficient. For an LOS path, R = 1 and r(1)l = 1.
A scenario showing the propagation paths for multipath components using the ray-

tracing model is shown in Fig. 6. A UE location has LOS communication with one BS
(BS−LOS) and a NLOS communication with another BS (BS−NLOS). The SNR observed
at BS−LOS which is at a distance of 43.01 m is obtained as 38 dB. The SNR at BS−NLOS
which is at a distance of 235.7 m is calculated as −36.83 dB.

5.1 Performance of out-of-sample extension algorithm

First, we investigate the performance of EMPCC, which inserts out-of-sample UEs to the
chart. There are K UEs, and the number of neighboring UEs used to construct the graph
for LE is denoted by N. The number of UEs for which EMPCC is used is denoted by J.
Two scenarios are considered to evaluate the performance of EMPCC. In scenario I, the
MPCC is generated based on the channel features of K UE locations. Then, J UE locations
are removed at random, and EMPCC is used for mapping the J locations to the chart. In
scenario II, J UE locations are selected at random and theMPCC is generated based on the
channel features of K − J UE locations. EMPCC is used for mapping the J locations to the
chart. Both Laplacian Eigenmaps based on a conflict graph and LE based on a weighted
graph are used for channel charting.

Fig. 6 A scenario showing the propagation paths and MPCS for a UE location with LOS and NLOS BSs
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Fig. 7 Two-dimensional channel chart for 4 BSs. The channel chart location of out-of-sample UEs is in black
color. Left: re-inserting removed sample. Right: inserting new sample

An example instance for LE-based MPCC/EMPCC for different parameters is shown
in Figs. 7 and 8. For Fig. 7, the parameters are K = 500, J = 100, N = 25, and B = 4
BSs labeled as {1, 3, 5, 7}. We select a reference point in the first quadrant for K and K − J
MPCC to avoid the possibility of rotation or flipping of the EMPCC compared to MPCC.
In Fig. 8, the parameters are K = 5000, N = 250, J = 500, and B = 10. The J out-of-

sample locations are accurately mapped by EMPCC.
The performance of MPCC/EMPCC is evaluated using continuity (CT) and trustwor-

thiness (TW) measures as shown in Table 3. For a discussion on these measures, see [34].
CT and TW are computed by considering 50 nearest neighbors. For MPCC, all K UEs
are used to generate the chart, whereas for EMPCC, the chart is constructed by K − J
UEs and the EMPCC is used to position the reaming J UEs. For weighted Gaussian ker-
nel, T = 0.05. The CT and TW and measures of EMPCC are comparable to MPCC,
indicating that the out-of-sample extension methodology in EMPCC works.

5.2 Performance of link quality prediction

For V2V link quality prediction, theMPCC is constructed based on V2I communications.
For this, we consider a scenario with K = 5000 UEs and B = 10 BSs, in the Manhattan
grid considered above. The LQP model is constructed based on the SNR of V2V pairs
with the corresponding Euclidean charting distance computed using the MPCC loca-
tions. To construct the V2V channels, 1, 000, 000 random pairs of UEs are selected among

Fig. 8 Two-dimensional channel chart for 10 BSs. The channel chart location of out-of-sample UEs is in black
color. Left: re-inserting removed sample. Right: inserting new sample
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Table 3 Comparison of MPCC and EMPCC in terms of TW and CT measures considering 50
neighbors, weighted LE (w-LE) with T = 0.05 is considered

LE-MPCC LE-EMPCC wLE-MPCC wLE-EMPCC

CT TW CT TW CT TW CT TW

4 BSs 0.9880 0.9883 0.9868 0.9802 0.9777 0.9776 0.9777 0.9776

10 BSs 0.9943 0.9806 0.9788 0.9942 0.9955 0.9954 0.9955 0.9954

the chart locations. The V2V mm-Wave channels are generated by generalizing the ray-
tracing channel model of [21] in the same environment where the MPCC is constructed,
and the average SNRs for V2V communications are computed as in (6).
Figure 9 shows a scatter plot of the average SNR of the V2V pairs as function of physical

and chart distances. As expected, the SNR of a V2V link decreases with increasing phys-
ical distance, and the relation of SNR with chart distance also captures this. This figure
indicates that MPCC preserves the distance-SNR relation. It can be seen from Fig. 9 that
at smaller distances, when charting distance d(C) < 75, the probability that an average
SNR of a V2V link is below a SNR threshold of γth = 25 dB is zero, so for this charting
distance, V2V communication is guaranteed to be successful with high data rates, or the
transmitted power can be reduced to reduce the interference to other terminals.
Using the collected data of the average SNRs and the physical distances, a benchmark

LQP model is constructed. The outage probabilities OP(γth|d(P)
g ) are empirically com-

puted for the true location UEs, for different SNR thresholds γth using a grid distance
d(P)
g . Using the collected data of the average SNRs and the corresponding CC distances, a

LQP model is constructed. The outage probabilitiesOCC(γth|d(C)
g ) of (18) are empirically

computed for the chart UEs, for different SNR thresholds γth. The trained outage proba-
bility model for different physical and CC distances and different thresholds γth is shown
in Fig. 10. The left plot represents the benchmark LQP model that can be used to predict
the outage probability of an out-of-sample V2V pair by knowing the true distance. The
right plot represents the LQP model that can be used to predict the outage probability of
an out-of-sample V2V pair by just knowing the EMPCC (out-of-sample chart) distance
between them. The CC LQP relation as a function of the CC distance is similar to the
benchmark LQP as a function of true distance.
To estimate the performance of LQP in the online RRM phase, a test set of J = 1000

out-of-sample V2I UEs was generated. The large-scale radio features of V2I channels are

Fig. 9 Scatter plot of the average SNR of V2V links as a function of true distance (left plot) and CC distance
(right plot)
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Fig. 10 Outage probability for different SNR threshold values as a function of true distance (left plot) and CC
distance (right plot)

used to map these out-of-sample UEs to the existing chart using the EMPCC algorithm.
Again, 1, 000, 000 V2V pairs are constructed at random from these out-of-sample UEs.
The V2V mm-Wave channels and the V2V SNRs are generated in the same way as that
for the chart UEs.
The true outage probabilities as the function of physical and chart distances are then

constructed for this test set. As a result, we get the outage probabilities of out-of-sample
UEs as OOS

(
γth|d(P)

g
)
and OOS

(
γth|d(C)

g
)
, respectively. Note that for comparison to the

LQP model, the same quantization grid d(C)
g and d(P)

g are used for the physical and chart
distances of the test set, as for the original trained UEs, respectively.
The true outage probabilities can be compared to the ones predicted by the trained

LQP. The relative mean square error for LQP of the outage probability from the data of
chart UEs for a given γth at chart distance d(C)

g is given by:

δ2C,g =
(
OOS

(
γth|d(C)

g
)

− OCC
(
γth|d(C)

g
))2

(
OCC(γth|d(C)

g
)2 . (20)

Similarly, the relative mean square error for the benchmark LQP of the outage probability
from the data of UEs for a given γth at physical distance d(P)

g is denoted as δ2P ,g .
Figure 11 shows the error δ2C,g for different SNR thresholds as a function of the CC

distance and the error δ2P ,g as a function of the physical distance. The largest relative

Fig. 11 Relative mean-square error of prediction δ2P ,g (left plot) and δ2C,g (right plot). The small values of δ2P ,g

and δ2C,g indicate that the LQP model provides reliable prediction of the outage probability of the
out-of-sample UEs
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mean square error δ2C,g = 3.0% is observed for threshold γth = 6 dB, for a CC distance
larger than 150. This indicates that the trained LQP model provides reliable prediction of
the outage probability of the out-of-sample UEs just based on CSI of the V2I links. The
relative error δP ,g based on the true distance is smaller than the relative error δC,g based
on the chart distance.

6 Conclusion
We have presented the concept of link quality prediction for V2V communications
in dynamic environments based on multipoint channel charting. For this, the phys-
ical locations of neither the vehicles nor the base stations are required. We have
considered a network controlled V2V approach, where vehicles communicate with
infrastructure BSs, and the large-scale radio frequency features of the V2I channels
have been used to map vehicles to a logical map. A network control unit has been
used to manage the selection and collection of enough SNR samples of V2V chan-
nels and to construct a LQP model. In order to use the prediction in online RRM,
the channel charting principle has to be extended to out-of-sample data CSI features,
related to out-of-sample vehicle locations. For this, a MPCC has been constructed
first using an original data set of V2I CSIs. The multipath components of the new
CSI samples have been estimated at each BS and then processed using the data-
driven dissimilarity computation as the original set. The dissimilarity vector of the
out-of-sample vehicle has been used to generate the weighting vector for out-of-sample
mapping. The resulting EMPCC algorithm has been used to map out-of-sample vehi-
cles to the chart. The trustworthiness and continuity performance measures have been
used to evaluate the EMPCC, and we found that out-of-sample extension works in a
reliable manner.
The method has wide applicability in cognitive RRM, where predictions of vehicle con-

nectivity parameters would be used. Here, we have used the channel chart to predict V2V
connectivity. Based on the Euclidean chart distance, the probability of outage of V2V com-
munication between two out-of-sample vehicles has been predicted. This can be used by
the network to identify which vehicles may communicate over direct V2V links. The only
input for this prediction is the V2I CSI of the two involved vehicles, as measured by the
infrastructure base stations. In simulationmodeling of a mm-Wave network, the LQPwas
found to perform well, with a typical relative mean square error of < 2%.
In future work, the locations of V2V pair, not only the chart distance, are going to

be used to improve the LQP model. An advanced LQP model based on deep learning
will also be considered to predict the SNR of the link given the CC locations of the
V2V pairs. Using channel charting for multihop V2V communication is another RRM
problem that can be considered, i.e., selecting the relaying nodes for V2V communica-
tion to achieve a desired link quality. Advanced mm-Wave channel models, in which the
blockage probability, density, size, and speed of vehicles are taken into consideration, are
important components when verifying channel charting-based RRM in such challenging
scenarios.
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